
- DRAFT-

-DO NOT QUOTE OR CITE-

Vermont Department of Environmental Conservation
Watershed Management Division
Wastewater Management Program
Residuals Management Section

Eamon Twohig and Ernie Kelley September 2015

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

TABLE OF CONTENTS

I.	Introduction	3
II.	Residual Waste and Biosolids	3
III.	Current Biosolids Management: U.S., New England, and Vermont	.4
IV.	Biosolids Regulation: Federal and Vermont	.7
V.	Emerging Contaminants in Biosolids	
VI.	Transport & Fate of Biosolids Bourne CECs in the Environment	
VII.	Emerging Concerns for Pathogens.	
VIII.	Reported Adverse Impacts to Human and Animal Health	
IX.	Septage	
X.	References.	
XI.	Appendix 1: Tables A-1, A-2, A-3, A-4 Landfill Leachate Analyses	
XII.	Appendix 2: Table A-5 Biosolids Management Statistics for 2014	
XIII.	Appendix 3: Table A-6 Septage Management Statistics for 2014	
XIV.	Appendix 4: Table A-7 Information Regarding Cited Radionuclides	66
XIX.	Appendix 5: Table A-8 2005 World Health Organization Toxic Equivalency	
	Factors) 7
XX.	Appendix 6: Tables A-9 and A-10 Non-EQ and EQ Contaminant Limits in the	
	Fifty U.S. States	58
XXI.	Appendix 7: Table A-11 Regulatory Limits for Agricultural Use in Selected	
	Nations and Provinces.	
XXII.	Appendix 8: Acronyms	/2
	TABLES AND FIGURES	
T1 4		_
Figure 1	Location of Vermont's biosolids and septage management facilities	.5
Table 1	Sludge management option percentages (%) and dry weights by New England states	,
Figure 2	in 2011	
Table 2	Exposure Pathways used in Land Application Risk Assessment	y
Table 3	Comparison of Federal and Vermont pollutant concentration (mg/kg, dry wt.) standards	
	for land application of biosolids	
Table 4	Cumulative Pollutant Loading Rates (kg/ha)	
Table 5	Comparison of monitoring requirements for land application sites	14
Table 6	Comparison of minimum required isolation distance (in feet) requirements	14
Table 7	Literature review of recent studies of plant uptake of emerging contaminants	24
Table 8	Half-life (days) of selected organic compounds in biosolids amended soil systems	27
Table 9	Ruane Farm loading rates (dry tons/acre)	
Table 10	Annual Ruane Farm application rates (dry tons/acre)	
Table 11	Ruane Farm: post-application cadmium (Cd) and lead (Pb) soil concentrations	
	(mg/kg, dry wt.)	
Table 12	Concentrations (mg/L) of lead (Pb) and cadmium (Cd) in Ruane Farm groundwater	
Table 13	Average metals concentrations (mg/kg, dry wt.) and solids percentage (%) in septage	
Table 14	Comparison of typical permitted loading rate for various septage management options	.42

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

I. Introduction

On November 5, 2013, the Residuals Management Section (Section) of the Watershed Management Division within the Vermont Department of Environmental Conservation (DEC) hosted a public forum on the topic of biosolids management. Various stakeholders and citizens, representing a range of viewpoints, attended the forum to make presentations, provide testimony, voice concerns and ask questions. The forum represented DEC's first step toward developing a new set of regulations governing the management of residual wastes. The purpose of this white paper is to present a broad overview of residuals management in Vermont and provide a general survey of scientific research applicable to concerns and issues raised at the forum.

This paper is not intended to establish policy or regulation or to promote one means of residuals management over another. Rather, the intent of this paper is to present an unbiased base of information upon which those decisions can ultimately be made. To the greatest extent feasible, the authors of this paper have attempted to present information in a manner that the general public can grasp; and, for those who desire to dig a bit deeper, by providing references to the information cited herein through the use of hyperlinks embedded within the text of the document and in the references section. The studies and references cited represent only a fraction of the research that has been conducted on these issues. As with any subject of scientific research on controversial topics, there is an ample body of literature purporting to support both sides of the issues. This paper attempts to present an unbiased report of both the strengths and weaknesses of that science. To the greatest extent practical, only peer reviewed literature has been cited; although several important non-peer reviewed journal articles are referenced. Where differences in experimental methodology investigating the same question result in significantly different conclusions, we have attempted to provide citations representing both sides. This white paper will be left in draft form so that additional relevant material may be added.

Eamon Twohig, Environmental Analyst V, VT-DEC Residuals Management Section Ernie Kelley, Program Manager, VT-DEC Wastewater Management Program

II. Residual Waste and Biosolids

"Residual waste", as used in Vermont, is a term encompassing several waste materials. Primary among these is "sewage sludge" (which will simply be called "sludge" herein) - the solid, semi-solid, or liquid byproduct produced by the treatment of sewage in a Wastewater Treatment Facility (WWTF); and "septage" - the partially treated waste removed from an on-site septic system or holding tank.

"Biosolids" is defined as sludge which has been subjected to a treatment process for the reduction of pathogens and has been shown to meet the applicable requirements for contaminant concentrations, vector attraction reduction, and pathogen reduction, as necessary for the intended use, such that the material may be applied to the land under a site specific permit or marketed and distributed to the general public for unregulated use, as established under regulations.

"Secondary" residual wastes include wood ash, short paper fiber, sludge produced by the biological treatment of (non-pathogenic) dairy wastes, and sludge produced by the treatment of drinking water supplies. The management of secondary residual wastes is beyond the scope of this paper.

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

The three primary management options for sludge or biosolids that are currently available to Vermont WWTFs include land application after an approved pathogen treatment process, landfilling, or incineration. Although there are several emerging technologies that offer alternative strategies for sludge management, none are currently sited where their use is economically feasible for Vermont municipalities and relatively few are being operated as full scale facilities with a documentable track record of their capabilities.

All residual wastes can potentially be managed by application to agricultural or silvicultural lands as a valuable nutrient source and soil conditioner. The use of human wastes (night soil) as a fertilizer dates back thousands of years and land application of biosolids resulting from wastewater treatment has been practiced since sewage sludge was first produced (Hartman, 1975). Research into the plant nutrient value of sludge spans several decades (Rudolfs and Gehm 1942, Dowdy et al. 1976, Sommers et al. 1977, Page et al. 1987, Logsdon 1993 (as cited by National Research Council of the American Academies of Science 1996) and Chambers et al. 2007). The noted benefits of biosolids as a soil amendment to agricultural land include a supply of plant essential macro and micronutrients, addition of organic matter to soil, reduced soil erosion, increased water holding capacity, and improvement of soil structure – all of which result in increased soil fertility and crop yields.

Additionally, some benefits of reusing biosolids include conserving space in and reducing greenhouse gas emissions from landfills. Methane emissions from landfills accounted for approximately 18 percent of the total US anthropogenic emissions in 2012, the third largest contribution of any methane source (USEPA 2014). A recent study (Beecher 2008) compared greenhouse gas emissions from different biosolids management options for the Town of Merrimack, NH concluding that landfilling biosolids would produce roughly 2.5 to 3.4 times more methane than composting. Furthermore, although land applied biosolids will decompose under aerobic conditions and produce carbon dioxide rather than methane (which is about 23 times more potent than carbon dioxide as a greenhouse gas) as the end metabolic product, the substitution of biosolids for fossil-fuel based commercial fertilizers and the carbon sequestration in soils resulting from land application can actually result in a net credit of greenhouse gas (American Society for Microbiology 2011, Canadian Council of Ministers of the Environment 2009). Biosolids are also used in the preparation of manufactured top soils and in land reclamation projects. Brown et al. (2004, 2005) utilized biosolids to reduce the phyto and bioavailability of lead, zinc and cadmium in smelter contaminated soils and alluvial tailings from mining operations. Similarly, Ryan et al. (2004) applied iron-rich biosolids to an urban lot contaminated with lead to successfully reduce lead bioavailability and exposure risk.

Because the land application of biosolids combines cost effective management of these abundant materials with the return of valuable nutrients back to the soil and the enhancement of soil properties and plant yield, the beneficial use of residual wastes has historically been an objective for the management of these materials at both the Federal and State levels. Indeed, the Vermont statutes at 10 V.S.A. 6604 (c) stipulate that a section of the Vermont Solid Waste Management Plan "shall set forth a comprehensive statewide program for the collection, treatment, beneficial use, and disposal of septage and sludge."

III. Current Biosolids Management: U.S., New England and Vermont

Approximately half of all sludge produced in the United States (~7.1M dry tons per year) is treated to biosolids standards and land applied on less than one percent of the nation's agricultural acreage in crop production (USEPA 2012). In Vermont, approximately 1,030 acres of agricultural land is certified for the

September 2015

* DRAFT - DO NOT QUOTE OR CITE *

land application of biosolids and septage (approximately 780 and 250 acres, respectively), representing about 0.08% of the state's estimated 1.22 million acres in agriculture (Figure 1) (USDA 2009).

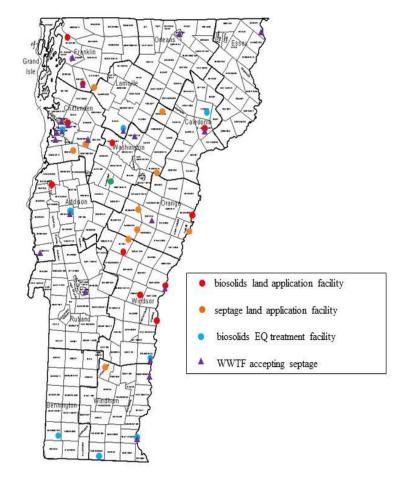


Figure 1. Location of Vermont's biosolids and septage management facilities.

The management of biosolids in New England generally follows a trend where southern New England states incinerate most of the sludge produced at their WWTFs while northern New England states rely on a diversity of disposal and beneficial uses (Beecher 2012). For example, in 2011, Connecticut and Rhode Island incinerated the vast majority of the sludge produced in those states while Maine and New Hampshire reused about 74% and 66%, respectively, of those states' biosolids via land application after composting or an equivalent pathogen reduction treatment (Table 1).

September 2015

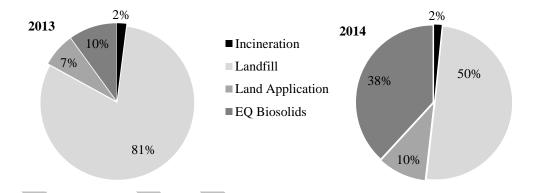

* DRAFT – DO NOT QUOTE OR CITE *

Table 1. Sludge disposal option percentages (%) and dry weights by New England states in 2011.

	CT	MA	ME	NH	RI	VT
Incinerate	99	36	0	16	76	2
Landfill	0	25	26	18	2	69
Reuse (land app and EQ biosolids)	1	49	74	66	22	29
Dry Weight (dry US Tons/year)	118000	201700	29900	28300	27500	8400

In 2011, Vermont's ninety-four municipal WWTFs treated in excess of 15.5 billion gallons of sewage which resulted in the generation of approximately 56,000 wet tons of sludge (8400 dry tons). Of this total, about 29% was treated to biosolids standards and used in agronomic settings and about 69% was disposed by landfilling, the highest rate in New England. In 2013, only 17% of Vermont's sludge was treated to biosolids standards and used agronomically and 81% was disposed by landfilling. However, in 2014, Vermont's WWTFs similarly treated approximately 15.3 billion gallons of sewage which generated approximately 59,500 wet tons (8900 dry tons) of biosolids, but nearly half (48%) was used agronomically and 50% was disposed by landfilling (Figure 2 and Appendix 2: Table A-5).

Figure 2. Vermont sludge management in 2013 and 2014.

Vermont's biosolids agronomic use rate (both land application and distribution of EQ biosolids — ("Exceptional Quality (EQ) biosolids" are biosolids that have undergone advanced treatment such that they can be marketed and distributed to the general public for use on the land without having to obtain a permit to do so see further discussion on pages 17-18) was 73.5% in 1999, but declined over the next fifteen years primarily as the result of a change in management of sludge generated by Chittenden County municipal WWTFs that, until 2007, had been composted at facilities in the eastern townships of Quebec through a contract established by the Chittenden Solid Waste District (CSWD), but had since been disposed in landfills. However, as of 2014, CSWD and Casella Organics have brokered a new agreement with WWTFs in Chittenden County that transfers sludge generated by these WWTFs to the Casella Organics Grasslands Facility in Chateauguay, NY, where sludge is treated to EQ biosolids standards via an advanced lime stabilization process and eventually land applied as a soil amendment. This shift in management strategy has increased Vermont's sludge reuse rate significantly, as is evidenced by the reuse rate increasing from 17 to 48% from 2013 to 2014 (Figure 2).

September 2015

* DRAFT - DO NOT QUOTE OR CITE *

Although Vermont's universal recycling law, <u>Act 148</u>, does not include any specific targets for the diversion of residual wastes to beneficial uses and is silent as to its applicability to banning sludge from landfills, any decision on its applicability to sludge and septage will be considerable, as a beneficial use rate of 75% remains the standard that the Vermont Agency of Natural Resources (ANR) would like to see accomplished (and would leave land application or incineration as the only remaining options for the disposal of sludge and biosolids).

Roughly 55% of Vermont residences utilize septic systems, the highest percentage in the United States (US Census Bureau 1990). Approximately 47 million gallons of septage was pumped from Vermont's on-site septic systems in 2014 and disposed as shown in Appendix 3: Table A-6.

Tables A-5 of Appendix 2 and A-6 of Appendix 3 provide breakdowns of sludge and septage management in Vermont in 2014. These tables show how those wastes were managed both in-state and out-of-state for the various management options available.

For an overview of biosolids management from a more global perspective, the <u>report</u> prepared by the United Nations Human Settlements Programme and the Greater Moncton Sewerage Commission (New Brunswick, Canada) provides descriptions of how biosolids are managed in thirty-seven other nations and the European Union. A synopsis of regulatory limits for biosolids used in agriculture from a number of those nations is provided in Appendix 7: Table A-11.

IV. Biosolids Regulation: Federal and Vermont

Before Congress banned the practice in 1988, wastewater sludge generated in the northeastern United States, except for Vermont and other interior regions, was typically disposed by ocean dumping. For example, starting in the 1920's, sludge generated in New York City was dumped into the relatively shallow waters of New York Harbor only12 miles offshore until the United States Environmental Protection Agency (EPA) established the Deepwater Municipal Sludge Site, also called the 106-mile site, on the edge of the continental shelf (average depth of 7500 feet), where at least 40 million tons of sludge was deposited between 1986 and 1992 (Specter 1992).

Although the Section was not able to locate definitive records, the first WWTF in Vermont may have been constructed in the late 1940s by the City of St. Albans (although the City of Burlington also lays claim to that honor with the city's first plant completed in 1953 and equipped with anaerobic sludge digestion), but it was not until the late 1950s or early 1960s that WWTF construction throughout Vermont began in earnest and the discharge of untreated sewage directly into Vermont's waterways ended. At that time, solids management was unregulated under Vermont's and federal regulations, and it is assumed (although not documented) that most solids were either land applied or disposed in the numerous local landfills that existed at the time. The formal regulation of sludge management in Vermont was first addressed in April 1962 when the Vermont Department of Health (VDOH) issued a one paragraph regulation that was based on public health protection. From that date through the early 1970s, sludge produced by Vermont's WWTFs was managed based solely on its pathogenic nature, primarily via land application. Draft Vermont Guidelines for solids management were first developed by DEC in the early 1970s to supplement the regulation and included basic management practices and the first numerical limits on pollutants.

In 1979, the <u>Code of Federal Regulations (CFR) Title 40, Part 257</u>, the first federal regulations for the application of solid wastes to agricultural lands, was promulgated. Part 257 contained numerical limits

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

only for cadmium and polychlorinated biphenyls (PCBs) and established the first pathogen reduction treatment options. The 1981 revisions to the Vermont Guidelines established additional "best practices" and pollutant standards, and adopted the pathogen reduction requirements of Part 257. In 1989, the first Vermont Solid Waste Management Rules (VSWMR) were promulgated, establishing most of the recommended practices in the Guidelines as a formal regulation. The VSWMR have been revised seven times since they were first promulgated, most recently in March 2012, with most revisions including some enhancements to the sludge/biosolids management regulations.

In February 1993, 40 CFR Part 503, "Standards for the Use or Disposal of Sewage Sludge", was promulgated as a standalone regulation for sludge management and disposal, some twenty years after the EPA first developed sludge management regulations under the 1972 Federal Pollution Control Act (and through amendments to the Act in 1977 and 1987) (USEPA 1993, 1994). Under 40 CFR Part 503, biosolids disposal became a highly regulated management practice. Part 503 establishes requirements for the disposal of biosolids when they are applied to the land to condition the soil or provide nutrients. Part 503 also establishes specific regulations for surface disposal and incineration – neither of which is a management practice for which facilities are sited in Vermont. "Surface disposal", as defined in Part 503, refers to what is essentially a sludge-only landfill. All sludge disposed in Vermont landfills is disposed in municipal solid waste landfills, which are regulated under 40 CFR Part 258.

In 1998, Vermont submitted an application to EPA seeking federal delegation to administer its sludge management programs. The delegation request was submitted for authority under Part 257 because sludge is defined as a solid waste under Vermont statute. Vermont was the last state that EPA allowed to do so. In most states, sludge management is regulated under their National Pollutant Discharge Elimination System (NPDES) authority, and the seven states currently delegated to administer the biosolids program for EPA are delegated under the authority of Part 503. However, due to the legalistic conflicts between Parts 503 and 257, Vermont's delegation request has been stalled in EPA's hands since the early-2000s. As of the date of this white paper, Vermont is no longer actively pursuing federal delegation for the program, although it has not formally withdrawn its delegation petition.

Beginning in FY2012, EPA began disinvesting in the sludge management programs regulated under Part 503 under the guise that "the Rule is sufficiently protective of human health and the environment and is self-implementing". The primary areas of disinvestment are in EPA's Office of Enforcement and Compliance Assistance (OECA), the number of FTEs dedicated to the biosolids program in EPA's regional offices, and in providing ongoing technical support and training for the states' regulatory staff. EPA Region 1 currently allots 0.1 FTE to its biosolids program. Although EPA's Office of Science and Technology still performs the biennial reviews required under the Clean Water Act (CWA) and continues to support the Pathogen Equivalency Committee, EPA believes that it is capable of ensuring compliance with the regulation through the monitoring, reporting, and recordkeeping requirements of Part 503. However, since 40 CFR 503.18 only requires major WWTFs [defined as those with a design flow of greater than one million gallons per day (1 MGD) or which serve a population of 10,000 people or more (only 30 of the 94 municipal WWTFs in Vermont)] to submit an annual report to EPA of their sludge management activities (with no reporting requirement at all for non-major WWTFs), and considering that there have been no federal biosolids program inspections conducted by EPA in Vermont in more than 25 years, Vermont WWTFs actually receive no federal oversight of their biosolids programs.

For all practical purposes, OECA's disinvestment in compliance and enforcement oversight will have no impact on Vermont's program since DEC has been the sole authority administering and enforcing this program in Vermont for more than 25 years.

* DRAFT – DO NOT QUOTE OR CITE *

To protect public human, animal, soil and crop health from metals that are typically present in municipal biosolids, EPA conducted an extensive probabilistic risk assessment (using a Monte Carlo type approach to their modeling) of fourteen potential exposure pathways and set numeric limits for ten trace elements [Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Molybdenum (Mo), Nickel (Ni), Selenium (Se) and Zinc (Zn)] with high enough potential risk to warrant regulation (Table 2). The Part 503 technical support documents, in two volumes, detail the risk assessment's underlying science (TSD - Vol. 1 and TSD - Vol. 2). EPA has also prepared a document, "A Guide to the Biosolids Risk Assessment for the EPA Part 503 Rule" (USEPA 1995).

Table 2. Exposure Pathways used in Land Application Risk Assessment.

Exposure Pathway	Description of Highly Exposed Individual	Metal limiting pathway
Biosolids>soil>plant>human	Human (not home gardener) lifetime ingestion of plants grown in amended soil	None
Biosolids>soil>plant>human	Human (home gardener) lifetime ingestion of plants grown in amended soil	None
Biosolids>human	Child directly ingesting biosolids	As, Cd, Pb, Hg, Se
Biosolids>soil>plant>animal>human	Human lifetime ingestion of animal products raised on forage grown on biosolids amended soil	None
Biosolids>soil>animal>human	Human lifetime ingestion of animal products from animals directly ingesting biosolids	None
Biosolids>soil>plant>animal	Animal lifetime ingestion of plants grown on biosolids amended soil	Mo
Biosolids>soil>animal	Animal lifetime direct ingestion of biosolids	None
Biosolids>soil>plant	Plant toxicity from biosolids amended soil	Cr, Cu, Ni, Zn
Biosolids>soil>soil organism	Soil organism ingestion of soil/biosolids mix	None
Biosolids>soil>soil organism>soil organism predator	Predator of soil organisms that have ingested biosolids amended soil	None
Biosolids>soil>airborne dust>human	Adult human lifetime inhalation of dust from biosolids amended soil	None
Biosolids>soil>surface water>human	Human lifetime drinking surface water and ingestion of fish contaminated with pollutants in biosolids	None
Biosolids>air>human	Human lifetime inhalation of pollutants in biosolids that volatilize to air	None
Biosolids>soil>groundwater>human	Human lifetime drinking well water containing pollutants leached from biosolids	None

The modelling used by EPA, and the conclusions it used for development of the regulation was reviewed by both the Section and VDOH. Those reviews concluded that the initial modelling, which employed a deterministic risk analysis approach (as opposed the probabilistic Monte Carlo type approach used in

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

subsequent models to refine the risk analysis and verify the results of the initial modelling) was generally sufficient to assure public health and safety and to protect the environment for the ten metals for which standards were ultimately promulgated. VDOH and the Section did express concerns regarding the concentration limits established for arsenic and cadmium (discussed later in this paper), and Vermont's standards were accordingly promulgated at lower concentrations. Similar concerns were also one of the primary justifications for Vermont adopting a single tier of contaminant standards at levels lower than the absolute ceiling concentrations established in Part 503.13 – Table 1, which neither the Section nor VDOH considered to be acceptable.

One significant, and perhaps the most misunderstood, set of parameters in EPA's exposure pathway modelling centers around the level of risk employed in setting the standards, the population to which those risk levels were applied, and how the risk relates to the general population. Traditionally, EPA and the states establish environmental standards based on the risk of some adverse effect being observed in any one member of an exposed population. The typical risk level assumed by EPA is one in one million (1:1,000,000), although there is no regulatory mandate to use that level. The size of the exposed population can vary widely depending on the risk being modelled, on its geographic distribution and persistence and on numerous other factors.

Exposed populations can vary in size from the entire world population if climate change impacts are being modelled, to very small groups – as EPA chose to do for the Part 503 modelling by applying the selected risk level to the class of Highly Exposed Individuals (HEI) (note that the HEI can be human, animal or plant depending on the exposure pathway) for each of the fourteen exposure pathways (see Table 2), rather than to the entire population of potentially exposed individuals within the general population. Therefore, the population of HEIs for each pathway is very small. For example, Pathway 3, direct human consumption of biosolids, was the limiting pathway for the six most toxic of the regulated metals. The HEI for Pathway 3 was identified as a PICA child (that is, a child who habitually ingests an inordinate amount of dirt) who was characterized as having an average body weight of 16 kilograms, who consumed 0.2 grams of dirt each day from the ages of one through six (five years), and where the "dirt" was composed of 100% biosolids which contained the metal being modelled at a concentration sufficient to provide a dose equal to the No Observable Adverse Effect Level (the NOAEL is the maximum dose that does not cause observable adverse effects) of each metal over the five year period of ingestion. By EPA's estimate, the population of this HEI cohort is on the order of a dozen individuals in the United States.

Because the modelling was done on the HEI populations rather than on the entire potentially exposed population or the even larger general population, EPA opted to employ a risk level of one in ten thousand (1:10,000) for the Part 503 modelling, rather than the more "traditional" 1:1,000,000. The proper interpretation of the modelling done under these parameters is that the most sensitive HEI in each pathway has a 1:10,000 or less chance of experiencing an adverse effect from any individual regulated metal if exposed to biosolids which contain that metal at a concentration equal to the regulatory limit and the exposure is at the NOAEL dose for the entire period being modelled. Therefore, since the level of exposure to the entire population of potentially exposed individuals is generally several orders of magnitude less than that experienced by the HEI and since the population of potentially exposed individuals is also several orders of magnitude larger than the population of HEIs, the risk to any individual in the *potentially exposed population* is actually less than the traditionally employed risk of 1:1,000,000 and the risk to any individual in the *general population* is significantly less than that.

Both VDOH and the Section did, however, believe that there were several significant deficiencies in the modelling, mainly in that EPA did not have sufficient data to accurately model the risk derived from

* DRAFT – DO NOT QUOTE OR CITE *

numerous organic compounds (including dioxins, for which the needed data was subsequently amassed and modelled by EPA), and radionuclides. Similar concerns were noted by several states and similarly conveyed to EPA. In response EPA conducted several other studies over the period 1982 through 2006 in order to better characterize these other contaminants and to develop standards where appropriate. However, because Congress in crafting the CWA specifically established in Section 405 that contaminant standards must be developed:

"on the basis of <u>available information</u> on their toxicity, persistence, concentration, mobility, or potential for exposure, may be present in sewage sludge in concentrations which may adversely affect public health or the environment" (<u>emphasis</u> added),

insufficient information has precluded EPA from accurately modelling and thereby establishing standards on many potential contaminants. Indeed, the standards established for molybdenum and chromium in Part 503 were vacated by federal court actions mainly on the basis that EPA was not able to demonstrate that the information available when the standards were developed was sufficient to satisfy this requirement of Section 405. As of the date of this paper, EPA is continuing to amass the data necessary to reestablish the molybdenum standard and to consider additional contaminants for regulation under Section 405's constrictions. While the Section recognizes the limitations this places upon EPA and its legal authority to establish standards for other compounds, Vermont simply does not currently have the staffing and expertise that would be necessary to develop appropriate risk based standards for such contaminants of its own volition.

As a result of EPA's legal preclusion from establishing comprehensive standards, policy based decisions in Vermont, as well as in many other states, have led to the adoption of biosolids regulations that are more restrictive than the federal Part 503 rule, in order to further safeguard public health and the environment (NEBRA 2007). Tables comparing the Non-EQ and EQ biosolids contaminant limits in each of the fifty states are presented in Appendix 6: Tables A-9 and A-10.

Vermont regulates biosolids and residual wastes under the <u>Vermont Solid Waste Management Rules</u> (the <u>current version became effective 3/15/12)</u> (VSWMR) and has adopted more stringent standards for the diffuse disposal (the term used in the VSWMR for 'land application') of biosolids (Tables 3 - 6). In practice, biosolids management in Vermont is regulated at the most conservative standards established under either the VSWMR or Part 503. For example, Vermont has set pollutant concentrations in biosolids for arsenic, cadmium, and mercury that are lower than all federal levels, has retained its historical standard for Polychlorinated Biphenyls (PCBs), and has maintained standards for molybdenum and chromium despite their having being dropped from Table 3 of <u>40 CFR 503.13</u> due to federal court action (<u>Molybdenum notice</u> and <u>Chromium Decision</u>).

Under 40 CFR 503.13, two tiers of contaminant concentrations are established: 503.13 - Table 1 [the (higher) ceiling concentrations for biosolids that can be applied to permitted, controlled sites]; and 503.13 - Table 3 [the (lower) maximum concentration of contaminants in biosolids that can be marketed and distributed to the general population as an unregulated commodity]. Vermont has adopted one tier of contaminant standards (§6-702 VSWMR) for all biosolids that are to be applied to the land or marketed and distributed to the general public that are more stringent than or equal to the more conservative standards in 503.13 – Table 3.

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table 3. Comparison of Federal and Vermont pollutant concentration (mg/kg, dry wt.) standards for land application of biosolids.

	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB
503.13 – Table 1	75	85	N/R	4300	840	57	75	420	100	7500	N/R*
503.13 – Table 3	41	39	N/R	1500	300	17	N/R	420	100	2800	N/R*
VT	15	21	1200	1500	300	10	75	420	100	2800	10

N/R = no regulatory standard established.

As stated above, Vermont DEC has opted to take the more conservative approach and to retain standards for chromium and molybdenum despite federal court action that vacated those standards in Part 503. Industry lawsuits were successful in convincing the federal court that the chromium standard was not risk based (as required by the CWA) in that there is no evidence that chromium in sludge exists in the toxic hexavalent form (in sludge, it exists only in the non-toxic trivalent or elemental forms) and that the risk to grazing animals from molybdenum was inconsequential when the copper concentration met the Table 3 standard. Before Part 503 was promulgated, Vermont had already adopted a lower cadmium standard of 25 mg/kg (dry wt.) in the VSWMR. The cadmium limit was then lowered to 21 mg/kg (dry wt.) in a subsequent rule revision due to concerns raised by Dr. Rufus Chaney and the United States Department of Agriculture (USDA) regarding potential export restrictions on grains and sunflower kernel to the European Union, which has adopted extremely low limits for cadmium in those commodities. The lower, 15 mg/kg (dry wt.), standard for arsenic was adopted after Part 503's promulgation due to the VDOH's concerns regarding perceived deficiencies in how the Part 503 risk assessment dealt with the carcinogenic potential of inorganic arsenic compounds (Southworth 1995). Because there is scant research into which form of arsenic compounds exist in sludge (non-carcinogenic organic vs. carcinogenic inorganic compounds), VDOH opted to take a conservative approach and assume that all arsenic in sludge exists as carcinogenic inorganic compounds and determined that it was appropriate to establish a standard on that basis. Although VDOH's analysis concluded that an arsenic standard of 10 mg/kg (dry wt.) was appropriate; the complex, organic rich matrix of biosolids produces analytical interferences such that laboratories (at the time that the standard was adopted) were unable to reliably attain detection limits at that concentration. As a result, the arsenic standard was established at 15 mg/kg (dry wt.) in the VSWMR, the lowest limit that laboratories could reliably achieve in order for permittees to be able to definitively demonstrate compliance. The historic standard of 10 mg/kg (dry wt.) for mercury established in early versions of the VSWMR was retained in the current Rule. Similarly, the historic standard of 10 mg/kg (dry wt.) for PCB established in early versions of the VSWMR was retained. Part 503 has never contained a standard for PCBs, although biosolids (or any wastes) containing PCBs in concentrations of 50 mg/kg (dry wt.) or greater must be disposed in accordance with 40 CFR Part 761, rather than Part 503.

Part 503.13 - Table 4 establishes Annual Pollutant Loading Rates (APLR) for any biosolids that are applied to the land under the 503.13 – Table 1 ceiling concentrations. The APLRs limit the mass of the regulated pollutants that may be applied to a site in any 365 day period. Since Vermont has not adopted the two tiered Table1/Table 3 approach to contaminant standards, and because it is virtually impossible to load a site to the APLR limits under the 503.13 – Table 3 or Vermont pollutant limits when agronomic application rates are observed, Vermont does not regulate based on the federal APLR limits. The only exception to this is that the VSWMR has always had an established APLR for cadmium of 0.45 lb Cd/acyear (derived from 40 CFR Part 257). Any other APLRs based on concerns held by the Vermont Agency of Agriculture, Food, & Markets (VAAFM) should be considered.

^{*} No standard established in Part 503, but any waste containing >50 mg/kg PCB must be managed per 40 CFR Part 761.

September 2015

* DRAFT - DO NOT QUOTE OR CITE *

40 CFR 503.13 - Table 2 establishes Cumulative Pollutant Loading Rates (CPLR), the maximum mass of a pollutant that may be applied per acre (or hectare), for biosolids that are applied to the land (Table 4). With the exceptions of cadmium, where the VSWMRs has retained its historic standard (again, derived from 40 CFR Part 257) of 4.5 lbs Cd/acre (5.0 kg Cd/hectare) compared to the federal standard of 39 kg Cd/hectare (34.7 lbs Cd/acre); chromium and molybdenum, where Vermont continues to enforce the CPLRs for these contaminants that were vacated by the federal court action; and arsenic, where the federal CPLR was decreased in proportion to the reduced ceiling concentration (from 75 kg As/hectare down to 15 kg As/hectare); Vermont observes the federal standards despite having not yet been formally adopted in the VSWMR.

Table 4. Vermont Cumulative Pollutant Loading Rate Limits (kg/ha).*

As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn
15	5	1200	1500	300	17	75	420	100	2800
*	*Note: $kg/ha \times 0.89 = lbs/acre$; 1 hectare (ha) = 2.47 acres								

Application rates for biosolids and septage are strictly controlled. The Section has developed an Excel® based spreadsheet model (Application Rate Model) for calculating application rates based on both nitrogen and phosphorus. Historically, application rates have been calculated based solely on the nitrogen content of the biosolids with respect to the annual nitrogen requirement of the crop being grown on the site, with the ultimate goal being a net balance of 'zero' between the mass of nitrogen applied and the amount removed by the crop. Additionally, although not required under the VSWMR, the Section requires that the application of biosolids to all permitted sites must be done under an approved Nutrient Management Plan. This is generally accomplished by including biosolids management as a part of the farm's approved NRCS Nutrient Management Plan.

Due to developing concerns regarding the potential for phosphorus transport from agricultural lands to surface waters, especially in the Lake Champlain basin with the establishment of a total maximum daily load (TMDL) for phosphorus and with excessive phosphorus levels in agricultural soils, the Section has expanded the model to include phosphorus as a potentially limiting nutrient. Work is currently progressing on a minor revision of the Vermont Phosphorus Index (the incorporation of a source code to account for the difference in phosphorus solubility based on whether the WWTF employs biological phosphorus removal versus a chemical precipitation process), a task that must be accomplished in order to obtain accurate application rates from the phosphorus side of the application rate model. By the end of 2015, application rates will be based on the more restrictive of these two nutrients. Although the water extractable phosphorus (WEP) content of biosolids, a key indicator of their potential to release phosphorus to runoff, is far lower than manure (3% in digested biosolids vs 48% in dairy manure) (Moss et al. 2002), the implementation of application rates based on biosolids' phosphorus content could potentially present additional challenges to existing land application programs. Typically, in cases where phosphorus is the limiting nutrient, it is not due to crop nutrient requirements, but rather to either a preexisting overabundance of phosphorus in a site's soils or because the site features highly erodible soils proximate to surface water. Biological phosphorus removal results in higher concentrations of phosphorus in biosolids, and a large majority of the phosphorus exist in a form that is relatively soluble in water and immediately plant available. This results in a significantly reduced application rate and a correspondingly greater acreage need per unit volume of biosolids.

* DRAFT – DO NOT QUOTE OR CITE *

Removal of phosphorus by chemical precipitation results in a sludge that is predominantly insoluble in water and, while increasing the overall amount of sludge produced by a WWTF, will not have the same impact on land application programs because the two sludge streams typically are not intermingled and the Section has historically not allowed the management of sludges produced by the chemical precipitation of phosphorus because they have minimal nutrient value. These sludges are typically disposed in a landfill, so a substantial increase in that volume is expected. The Section is, however, exploring the potential use of these precipitate sludges as a method of immobilizing soluble phosphorus in soils where its concentration is excessive. Any such use would only be approved following close consultation with VAAFM and their approval of using the precipitate sludge for that purpose.

Vermont's land application site monitoring requirements also go beyond the federal requirements established in 40 CFR 503.16, including annual or bi-annual soil and groundwater testing, as well as plant (forage) analysis once each certification period (Table 5). Under 503.16, the large majority of Vermont's WWTFs would only be required to monitor the quality of their biosolids once per year, based on their low biosolids production rates.

Table 5. Comparison of Vermont and Federal monitoring requirements for land application sites.

Media	Vermont	40 CFR 503.16
Biosolids	Every batch applied or a minimum of once per year	Varies based on mass produced
Groundwater	Minimum: once per year	None
Soil	Minimum: once per year	None
Plant Tissue	Once per permit cycle	None

Operators of land application sites are also required to install a network of groundwater monitoring wells, minimally comprising of one up gradient and two down gradient wells, to enable a comparison of the quality of ground water entering and exiting a site after flowing under the active application area. The Section has amassed over 25 years of monitoring data documenting the effects (or lack thereof) of land application on groundwater beneath such sites. In addition, minimum isolation distances established under the VSWMR at §6-503 are either more strict than the corresponding federal standard (503.14) or are established where no federal standards exist (Table 6).

Table 6. Comparison of Vermont and Federal minimum required isolation distance (in feet) requirements.

Distance to	Vermont	40 CFR 503
Water table at time of application	3	None
Bedrock	3	None
Surface water	100	10 meters (~33 ft)
Property line	50	None
Residences, schools, etc.	100	None
Drinking water sources *	300	None

^{*} may be reduced if the facility is hydrologically down gradient of the source

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

The VSWMR, in Subchapter 5, also establishes that (* with certain specific minor exceptions) sludge or biosolids management facilities may not be sited in the following designated areas:

- in Class I and Class II Groundwater areas
- in Class I and Class II wetlands and associated buffers, absent a Conditional Use Determination
- in Class III wetlands, absent a Part 401 Water Quality Certification
- in a National Wildlife Refuge
- in a Wildlife Management Area administered by the Vermont Department of Fish & Wildlife
- in a designated threatened or endangered species habitat
- in the watershed for a Class A Water
- within 500' of an Outstanding Natural Resource Water
- within Zone 1 or Zone 2* of a Public Water Supply Source Protection Area
- within the floodway portion of a 100 year floodplain.

The EPA also developed standards for pathogen reduction and vector attraction reduction (VAR), codified at <u>503.32</u> and <u>503.33</u>, respectively, and determined appropriate treatment technologies capable of achieving these reductions prior to land applying biosolids.

The VAR standards were established by EPA as a means of setting criteria intended to demonstrate the degree of reduction of the putresibility of the biosolids as a means of controlling the generation of nuisance odors, which are the main attractants for flies and other vermin that could potentially spread pathogens. Generally, the VAR options all measure the amount, or reduction, of putrescible volatile solids in biosolids.

While Vermont accepts any of the twelve VAR demonstrations established under the federal regulation, the same is not the case for the pathogen reduction demonstrations established in Part 503.33. Under Part 503, two tiers of pathogen reduction standards are established – Class A and Class B, which are not universally accepted in Vermont.

Pathogen reduction is not measured by culturing and enumerating specific human pathogens, mainly due to the hazards of doing so and the scarcity of laboratories holding the federal permits and level of protection necessary to culture such pathogens. Instead, indicator organisms – *fecal coliforms* and *salmonella s.p.*, bacteria that are ubiquitous in the environment, are used as surrogate indicators. *Salmonella s.p.* was selected because they are typically present in higher densities in sewage than other bacterial pathogens and are at least as resistant to treatment as other specific pathogens. *Fecal coliforms* are enteric bacteria that were selected because they are also present in high densities in raw sewage and, although not normally human pathogens, *fecal coliforms* are excellent indicators of the survivability of other truly pathogenic species in treatment processes.

Class B biosolids are comprised of sludge which has been subjected to a <u>Process</u> to <u>Significantly Reduce Pathogens</u> (PSRP) or an equivalent process approved by EPA's <u>Pathogen Equivalency Committee</u> (PEC) or the permitting authority (ANR, in the case of Vermont). However, in general, the Section is extremely hesitant to approve the use of any process (for Class B <u>or</u> Class A treatment) which has not been vetted and received an equivalency determination from the PEC. PSRP processes are typically low temperature aerobic or anaerobic digestion regimes or low temperature stabilization with hydrated lime, which result in the reduction – but not elimination, of pathogen indicator organisms in the biosolids. The targeted level of treatment for a PSRP results in a two log reduction of the density of indicator organisms, *fecal coliforms* or *salmonella s.p.*. Because PSRP methods reduce, but do not eliminate, pathogens in biosolids;

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

in Vermont, Class B biosolids may only be applied to sites which are specifically authorized for such use under a Solid Waste Management Facility Certification issued by ANR. Sites used for the management of Class B biosolids are also subject to a wide range of site use restrictions designed to further reduce the potential for public health and environmental hazards that could derive from contact with the Class B biosolids.

Permittees operating sites to which Class B biosolids or stabilized septage is applied are required to implement the following site use restrictions:

- application of biosolids to frozen or snow covered ground is prohibited
- application of biosolids where there is less than 36 inches of unsaturated soil is prohibited
- public access to the site must be restricted for a period of twelve months following the last application event (Note: the Rule requires "restricted" access, not "prohibited" access)
- the pH of the site's soil must be maintained in the range of 6.5 8.0 S.U.
- domestic food source animals may not be grazed on a biosolids amended site for a minimum of six months following the last application event
- sites may not be used for the production of crops for direct human consumption for a minimum of 36 months following the last application event (38 months if the harvested part grows below the ground surface, per Part 503)
- feed crops may not be harvested for a minimum of five weeks following the last application event
- silage grown on biosolids amended sites may not be fed to animals for a minimum of four months following the last application event
- turf grown on biosolids amended sites may not be harvested for a minimum of one year following the last application event

Class A biosolids are comprised of sludge which has been subjected to a Process to Further Reduce Pathogens (PFRP) or again, an equivalent process approved by the PEC or the permitting authority. These processes typically entail high temperature aerobic or anaerobic digestion, heat drying, high temperature lime stabilization, or other thermal or chemical treatment processes that result in the reduction of pathogen indicator organism densities to below their test method's detection limits. PFRP methods are, in effect, pasteurization processes designed to virtually eliminate pathogens. Under the federal regulation, the set of pathogen indicator organisms that may be selected for Class A demonstrations is expanded from the testing of fecal coliform or salmonella s.p. densities, the only indicator organisms allowed for Class B demonstrations, to include viable helminth (parasitic worms) ova and enteric viruses under Class A: Alternatives 3 and 4, neither of which include process based requirements. Of the six Class A alternative demonstrations established in Part 503, Vermont only accepts the four alternatives (Class A: Alternatives 1, 2, 5, and 6) that do include process based treatment requirements and that do not recognize the use of viable helminth ova or enteric viruses as indicator organisms. Vermont has adopted this approach for two main reasons: 1) in order to further assure pathogen kill, treatment in a process based on a time/temperature relationship or chemical environment necessary to assure pasteurization is requisite, and 2) recent research has shown that the density of viable helminth ova and/or enteric viruses in raw sewage is commonly sufficiently low such that it can meet the Class A standard absent any treatment for pathogen reduction. In other words, a demonstration of the absence of these organisms in treated biosolids, when they might not have been present in the raw sewage, is not a valid demonstration of the degree of pathogen reduction achieved by the process. In fact, EPA itself is considering deleting Class A: Alternatives 3 and 4 from the Part 503 regulation over those same concerns, primarily in relation to the issues surrounding the presence/absence of viable helminth ova and enteric viruses in raw sewage, which can result in the need to seed systems with these pathogen

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

indicators ahead of the pathogen reduction treatment process in order to obtain usable data on the level of their destruction. The Section will not approve any processes that require seeding pathogen indicators in order to have sufficient densities in the raw sewage for the ability to make a compliance demonstration in the treated biosolids.

Septage is also managed via land application in Vermont. Under Part 503, septage that may be managed via land application is restricted to *'domestic septage'*, defined in <u>503.9</u> as:

"material removed from a septic tank, cesspool, portable toilet, Type III marine sanitation device, or similar treatment works that receives only domestic sewage. Domestic septage does not include material removed from a septic tank, cesspool, portable toilet, Type III marine sanitation device, or similar treatment works that receives either commercial wastewater or industrial wastewater and does not include grease removed from a restaurant or grease trap."

Vermont further restricts what it considers to be domestic septage by specifically prohibiting any cesspool, portable toilet, or Type III marine sanitation device wastes from being managed via land application, primarily because none of these wastes, unlike those contained in a traditional septic tank, has undergone an adequate degree of biological decomposition during their accumulation.

Septage must also be subjected, at a minimum, to a Class B/PSRP pathogen reduction process prior to application to the land and is typically treated via the addition of hydrated lime by which the pH is raised to a minimum of 12.0 S.U. and held at that pH for a minimum of two hours prior to application. 40 CFR 503.32 (c)(2) requires only 30 minutes of exposure at this elevated pH (an "operational concession" to operators of septage land application programs), whereas the VSWMR has retained its historic two hour standard, which predates the Part 503 regulation. Land application sites used for septage management are subject to the same site use restrictions as are sites used for the management of Class B biosolids.

Under both federal and state regulations, biosolids that have been treated to the Class A pathogen standards and meet the VAR and applicable contaminant standards (503.13 - Table 3 at the federal level or as established in the VSWMRs if produced in Vermont - see Table 3 of this paper) are no longer classified as a solid waste. Such biosolids are commonly referred to as "EQ biosolids" (for Exceptional Quality biosolids – a common misnomer is to call them "Class A biosolids", which actually refers solely to the degree of pathogen reduction), and those biosolids and/or products derived from them (such as manufactured topsoil) may be marketed and distributed to the general public for unrestricted use and application to the land without first having obtained a permit to do so from ANR [40 CFR 503.10 (g) and §6-301 (b)(5) of the VSWMR]. The EPA adopted this approach because it believes that the use of EQ biosolids is not likely to be a recurring event on any given parcel of land (thereby minimizing the potential for over application), that biosolids treated to Class A pathogen standards pose minimal risk to human health, that biosolids meeting the VAR requirements are not likely to create nuisance conditions or attract vermin, and that attainment of the 503.13 - Table 3 contaminant standards represents a minimal risk to exposed individuals. Vermont has historically agreed with this concept, and there are currently seven municipal WWTFs that treat the biosolids they produce to EQ standards and market them to the general public (Bennington, Lyndonville, Middlebury, South Burlington – Airport Parkway, Springfield, Stowe, and Wilmington). One additional facility (Brattleboro) is currently undergoing start-up testing and hopes to be EQ certified by the end of 2015, and one composting facility (Johnson) is currently mothballed with no immediate plans to resume operation.

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

However, because the VSWMR, as currently written, only applies to biosolids produced in Vermont, an additional conflict between federal and Vermont regulations exists. Biosolids or biosolids products that are treated to EQ standards in facilities not located within Vermont may be imported into the state as an unregulated commodity provided they meet the more restrictive standards established under Part 503 or the regulations of the state in which they are produced, despite the fact that those standards may be less restrictive than the corresponding Vermont standards. Until such time as the VSWMR are revised (or supplanted for residual waste management by a new set of Vermont rules) to include a registration and approval program for out-of-state EQ biosolids using the same standards to which Vermont facilities are held, federal interstate commerce regulations preclude Vermont from prohibiting or otherwise restricting their importation and use. Currently, with no such program in place, the Section has no idea of the source, volume, quality, or final uses of imported EQ biosolids and biosolids products. It is a specific goal of this regulatory reform effort to develop and implement such a system. It is important to note that the only way Vermont could prohibit the importation and subsequent use of EQ biosolids and biosolids products without running afoul of federal interstate commerce regulations is via an outright ban on applying any such material to the land, regardless of its origin.

As mentioned in the "Introduction" section of this paper, an in-depth discussion of switching from centralized water based sewage collection and treatment systems to innovative waterless technologies such as DESAR systems (Decentralized Sanitation and Reuse), ECOSAN, Clivus Multrum, and other related products, is beyond the scope of this paper. While there are unquestionably numerous advantages that could be derived by separating purely domestic sewage from the flow of other wastewater entering a WWTF and managing them as separate waste streams; absent any monitoring of treatment conditions and testing of the final product for pathogen indicator organism densities, these innovative systems provide no assurance of adequate pathogen kill other than their claim of compliance with the American National Standards Institute (ANSI)/National Sanitation Foundation's (NSF) Standard 41 (the text of which is only available if purchased from NSF and the requirements and standards established thereunder are not presented on any website of these technologies manufacturers). Compliance with ANSI/NSF Standard 41 is not recognized as an accepted PFRP process in Part 503, and no attempt has been made by ANSI/NSF or any manufacturers of these systems to obtain a Class A Pathogen Reduction Equivalency Determination from the PEC. EPA determined, and 503.32 establishes, that a minimum temperature of 50° C must be attained for composting biosolids in order to achieve Class A pathogen reduction, yet the website of one major manufacturer of these units proclaims that "temperatures inside the composting unit never exceed 100°F" (37.8°C). For those reasons, the Section and the VDOH agree that the waste removed from composting toilets that are not operated in compliance with the requirements of Part 503 for Class A pathogen reduction must be still be considered to be a pathogenic waste that may only be applied to the land as Class B biosolids under a site specific solid waste management facility certification issued by the DEC.

Modern WWTFs and the regulations under which they must function have provided one of the most effective means of preventing the spread of numerous fecal borne diseases - such as typhoid fever, cholera, dysentery, cryptosporidiosis, hepatitis, and polio; which were pandemic in their occurrence prior to the introduction of centralized wastewater collection and treatment systems and the introduction of antibiotics and vaccines effective against these diseases. Ineffective or improper operation of these innovative systems and the subsequent unregulated management of the material they produce would only serve to counteract the public health benefits provided by traditional WWTFs, the original and primary driver for their construction. Therefore, it is important to note that the treated material produced in these waterless innovative systems, just as with sludge produced by municipal WWTFs, is fully regulated under 40 CFR Part 503 (see 503.1), 40 CFR Part 257, or 40 CFR Part 258 depending on its nature and how the material is disposed. And because these Parts, which in large were developed to provide similar

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

safeguards against disease transmission resulting from solids management, specifically prohibit any state's regulations from being less stringent than the corresponding federal regulation, all non-federal jurisdictions are effectively precluded from regulating the "biosolids" these innovative systems produce less stringently than they regulate biosolids produced by a traditional WWTF. This regulatory applicability is derived from the "Definitions" section (503.9) of the regulation where (emphasis added):

'domestic sewage' is defined as:

"waste and wastewater from humans or household operations that is discharged to or otherwise enters a treatment works"; where,

'treatment works' is defined as:

"either a federally owned, publically owned, or privately owned device or system used to treat (including recycle and reclaim) either domestic sewage or a combination of domestic sewage and industrial waste of a liquid nature"; and

'sewage sludge' is defined as:

"the solid, semi-liquid, or liquid residue generated during the treatment of domestic sewage in a treatment works".

Part 503 does not provide any *de minimis* threshold for escaping regulation and specifically provides such at 503.3 (b), which states:

"No person shall use or dispose of sewage sludge through any practice for which requirements are established in this part except in accordance with such requirements.";

where 503.1 (a)(1) provides (in part):

"Standards are included in this part for sewage sludge applied to the land..."

without any qualification or exclusions provided as to why the sludge is being applied (nutrient value in an agronomic setting, soil conditioning, land reclamation, simple disposal, etc.).

On this basis, it is the Section's interpretation of Part 503 that the material produced in such innovative systems <u>may not</u> be applied to the land unless the treatment conditions are established in a permit, are monitored for compliance, and the finished material has been tested to demonstrate that it meets all the applicable standards established under the more stringent of federal or state regulations. Vermont regulations, at §1-922 of the Vermont <u>Wastewater System and Potable Water Supply Rules</u>, do provide a minor exception for the disposal of composting toilet waste that is intended to mimic the landfill disposal provisions of Part 257, by providing for on-site disposal of the material:

§1-922 Composting or Incinerating Toilets and Greywater Disposal Systems

(a) Composting or incinerating toilets may be approved in place of conventional water carried toilets. Use of these toilets in buildings other than single family residences on their own individual lots, is subject to review related to the adequacy of the particular unit for the proposed use.

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

(b) All waste removed from a composting toilet shall be considered to be pathogenic. The waste material shall be disposed of at a certified landfill, or by shallow burial in a location approved by the Agency that meets the minimum site conditions given in section 1-805 of these Rules.

Even if the manufacturers of these systems were to obtain a PFRP equivalency determination from the PEC, the unrestricted use of the "biosolids" they produce under any permitting authority would not be sufficiently protective of human health unless specific monitoring, testing, and reporting protocols were also established and required, as most of these innovative technologies require faithful on-going maintenance by their owner/operators in order to maintain and assure their proper function and capabilities to destroy pathogens. Alternatively, the wastes removed from composting toilets may only be disposed by bagging the material and disposing of it in a landfill or by disposal at a WWTF.

V. Emerging Contaminants in Biosolids

Wastewater treatment facilities are highly regulated under the CWA and other regulatory requirements. During the 1970s and 80s, source control and industrial wastewater pre-treatment programs, established by USEPA under 40 CFR Part 403, began to limit the discharge of industrial pollutants into municipal sewers, resulting in a reduction of trace elements in wastewater and, therefore, biosolids (WEF 2004).

The EPA conducted two surveys, in 1982 ("40 City Study") and 1988 (National Sewage Sludge Survey), to identify contaminants in sludge and to develop information on the fate and effects of priority pollutants in wastewater treatment plants and sludge. This information was used in establishing the Part 503 Rules. Since the promulgation of the Part 503 Rules, studies by the EPA, Water Environment Research Foundation (WERF) and other agencies have concluded that the Part 503 Rules adequately protect human and environmental health when biosolids management practices established in the rule are followed. For example, a comprehensive National Academy of Sciences/National Research Council review of the Part 503 Rules in 1996, and again in 2002, concluded that biosolids use on food crops and feed crops presents "negligible risk" when conducted in accordance with federal regulations (NRC 1996). In 2003, after five years of study, including peer review, the EPA determined that dioxins present in biosolids do not pose a significant risk to human health or the environment and elected not to regulate dioxins in land applied sludge (USEPA 2003).

During the last decade, however, the technological progress in analytical methods has enabled the detection and quantification of a large number of compounds at very low, previously undetectable, concentrations that are ubiquitous in our environment and that may accumulate in sludge during wastewater treatment. As a result, the EPA conducted a Targeted National Sewage Sludge Survey (TNSSS), collecting samples at 74 randomly selected publically operated treatment works (POTWs) from 35 states in 2006 and 2007, to obtain updated concentration values for some pollutants previously evaluated and to obtain information on whether certain contaminants of emerging concern (CECs) may be present in sludge and at what levels. The EPA analyzed sludge samples for 145 analytes and reported a wide spectrum of concentrations of polycyclic aromatic hydrocarbons (PAHs) and semi-volatiles at the part per billion (μ g/kg) scale, flame retardants in the part per trillion (μ g/kg) to part per million (μ g/kg) range, pharmaceuticals in the part per billion to part per million range, and steroids and hormones in the part per billion to part per thousand (μ g/kg) range (USEPA 2009b).

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

Micro-pollutants are often referred to as 'contaminants of emerging concern' because the risk to human health and the environment associated with their presence, frequency of occurrence or source may not be completely known. Examples include pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs) such as organohalogen and organophosphate flame retardants, plasticizers (bisphenol A, etc.), detergent metabolites (alkylphenols, etc.) and natural or synthetic steroids/hormones, as well as pesticides, disinfectants, antimicrobials and other organic contaminants that occur in trace levels in our environment and are commonly derived from consumer products discharged to municipal, agricultural, and industrial wastewater sources and pathways.

The large majority of CECs enter municipal wastewater through bathing, cleaning, laundry, and the disposal of human waste and unused pharmaceuticals (USEPA, 2010). The occurrence of CECs in sludge will depend on the concentration and physiochemical properties of contaminants in wastewater sources, on the extent of industrial wastewater pre-treatment, and on the operational conditions of the wastewater treatment facility. Although WWTFs are designed to reduce the load of organic pollutants and pathogens in treated wastewater discharged to the environment, WWTFs are not designed to specifically remove CECs from wastewater (USEPA 2009, 2010), nor are such contaminants currently regulated in wastewater effluent. Therefore, many organic contaminants enter and leave WWTFs unaltered or incompletely removed and subsequently enter surface waters (Kolpin et al. 2002, Kinney et al. 2006) like Lake Champlain (Phillips et al. 2009; 2012). The impact of CECs on aquatic ecosystems has been thoroughly examined and remains the focus of several recent studies (Blair et al. 2013, Rosi-Marshall et al. 2013, Bradley & Kolpin 2013). Because WWTP influent is partitioned into two components by the treatment process, sludge and liquid effluent, a significant fraction of the total organic contaminants entering a WWTF could reside in sludge, and therefore, biosolids. A notable study by Heidler and Halden (2007) investigated the persistence of the antimicrobial, Triclosan, in a conventional activated sludge WWTF and concluded that the majority of the compound was partitioned to the solid phase and sequestered into the wastewater residuals. The authors also noted that estimations of aqueous-phase removal efficiencies for wastewater contaminants should not be interpreted as proof that these pollutants are actually being destroyed due to the mere transfer of a significant fraction of the contaminant mass to municipal sludge. Concerns over the effects of Triclosan in the environment and on human health have led the Minnesota legislature to ban the sale of retail consumer products containing Triclosan in that state commencing January 1, 2017.

The EPA continues to conduct biennial reviews of the Part 503 standards for the purpose of regulating new pollutants that may be present in biosolids and to ensure that there are effective and protective management practices in place. However, there are no federal regulations requiring the testing of biosolids for the presence of organic chemicals. To help fill the gaps in knowledge regarding the presence of organic chemicals in sewage biosolids, a growing number of studies have focused on emerging contaminants in wastewater effluent and sludge. In 2006, for example, Harrison et al. published results from an extensive literature review of organic chemicals in sludge and reported data for 516 organic compounds grouped into 15 classes. The vast majorities of these chemicals were not on the EPA established list of priority pollutants or target compounds, demonstrating the need for additional surveys of organic chemical contaminants in sludge and, more importantly, to assess the potential risks from biosolids land application to human and environmental health through various pathways.

* DRAFT – DO NOT QUOTE OR CITE *

VI. Transport and Fate of Biosolids Bourne CECs in the Environment

CEC exposure pathways from the land application of biosolids, as reported in the literature, include direct soil consumption by foraging livestock (Fries 1996, Wild et al. 1994), uptake of contaminants into plants consumed by livestock (Wild et al. 1994, Rideout & Teschke 2004, Macherius et al. 2012) and humans (Kipper et al. 2010, Karnjanapiboonwong et al. 2011, Sauborin et al. 2012, Wu et al. 2012), terrestrial bioaccumulation (Kinney et al. 2008, Snyder et al. 2011, 2013), leaching and/or runoff from land applied fields to surface and ground waters (Lapen et al. 2008, Gottschall et al. 2012, 2013, Wong et al. 2012, Yang et al. 2012) and bioaerosol transport from land application operations (Rusin et al. 2003, Pepper et al. 2008, Viau et al. 2011).

The occurrence of organic chemicals in soil and the potential transfer of contaminants through various pathways depend on many factors, including the concentration and physiochemical properties of contaminants in amendment source, soil type, organic matter, reduction/oxidation (redox) potential, pH, the pollutant's octanol/water partition coefficient, slope of fields, presence and type of vegetation, rate of application, management practices, and climate parameters affecting degradation and off site transport, such as temperature and precipitation.

Generally, organic contaminants that survive wastewater treatment are strongly bound to organic matter in biosolids amended soils and are relatively insoluble, thus limiting runoff and leaching potential. Gotschall et al. (2012, 2013) reported no significant impact on the quality of either tile drainage or groundwater despite relatively high rates of biosolids application (~22 Mg dw/ha or ~8.9 dry tons/acre) and detection of PPCPs in biosolids aggregates up to one year post-application. The authors reported several mechanisms that limited tile and groundwater contamination, including incorporation of biosolids via tillage, lighter textured soils with fewer macropores, a deep tile drainage system, and limited winter precipitation. However, the same group of researchers (Lapen et al. 2008, Edwards et al. 2009) published very different results from a similar experiment that monitored PPCPs in tile drainage post application of biosolids. Lapen et al. (2008) showed that PPCPs moved rapidly to tile drains via soil macropores and were found in maximum concentrations of 10 to 1000 parts per trillion (ng/L). The conflicting results between these studies are most likely attributed to different experimental conditions, namely in Lapen et al. (2008): i) selected PPCPs were spiked into biosolids; ii) biosolids were liquid with very low solids content; iii) soil type was more clayey with macropores (worm burrows) and; iv) the fall application season was wet with frequent and heavy rainfall. In fact, Lapen et al (2008) admits that the conditions of their study represented a 'worst case' scenario in terms of contamination risk from tile drainage.

As with any fertilizer, attention to weather conditions, to application rates and to appropriate management practices are important for reducing losses of nutrients (particularly phosphorus) and other compounds through runoff or over-application (Pepper et al. 2008). Positive correlations have been reported for rainfall and hormone runoff from agricultural test plots amended with biosolids, but those studies were conducted under simulated conditions of heavy precipitation replicating 100-year rainfall events 5 days before and 1, 8 and 35 days after biosolids application (Yang et al. 2012). A study of viral contaminant runoff from biosolids amended fields by Wong et al. (2010) also used a simulated rainfall rate that was much higher than natural rainfall rates. Results demonstrated that sandy-loam soils with a vegetative cover can be an effective filter for removing viruses due to virus sorption to biosolids particles and that depth of the soil profile was an important factor. However, because high rainfall rates saturated soils and created surface ponding, water samples from ponded water contained viral contamination that, according to the authors, represented a threat to water quality when biosolids were allowed to remain on the soil surface after application. The authors suggest using management practices to reduce runoff potential,

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

including pre-tillage, low application rates, incorporation, and timing of application to avoid wet ground or significant rainfall.

As presented in Section III of this document, Vermont's regulations address the potential runoff exposure pathway via several mechanisms. Application practices and rates for biosolids and septage are strictly controlled and application of biosolids to frozen or snow covered ground, or where there is less than 36" of unsaturated soil, is prohibited. Furthermore, minimum isolation distances (Table 6) and site monitoring requirements (Table 5) for land application exceed corresponding federal standards or are established where no federal standards exist.

In addition to research on the potential for runoff of organic chemicals from amended agricultural lands, the uptake of emerging contaminants to vegetation from amended soils has been a topic addressed by numerous research studies. Manure from livestock and poultry is a source of a number of contaminants, including pathogens, hormones, and antimicrobials; and several studies have documented the presence of veterinary medicines in manure amended soils (Kumar et al. 2005, Boxall and Johnson 2006, Dolliver et al. 2007, Bassil et al. 2013). In 2007, the approximately 2.2 billion livestock in the U.S. generated an estimated 1.1 billion tons of manure (USDA 2009), which the EPA estimated to be an amount 13 times greater than all human sewage produced in the US (USEPA 2013). Vermont farms produce and manage an estimated 3.8 million tons of manure annually and ranks #3 out of all US states in the amount of manure generated on a farmland area basis, with an estimated 3.05 tons of manure per acre (USEPA 2013). Over 29 million pounds of antimicrobials were sold for livestock in 2010 in the U.S., an estimated four times greater than the amount used to treat human infections (USEPA 2013). The uptake and accumulation of such chemicals into plants is well documented, however, authors report mixed conclusions regarding risks to human health. Kumar et al (2005) found that the uptake of the antibiotic, chlortetracycline, into plant tissues was small (2-17 ng/g fresh weight) but concluded that there was potential human health risks associated with consumption of fresh vegetables grown in soil amended with antibiotic laden manures. Similarly, Dolliver et al (2007) demonstrated the uptake of the veterinary antibiotic sulfamethazine, into corn, lettuce and potato plant tissue, with concentrations ranging from 0.1 to 1.2 mg/kg (dry weight).. Although less than 0.1% of applied sulfamethazine accumulated in plant tissue after 45 d of growth, and greater than 70% remained in soil, results raised potential human health concerns of consuming low levels of antibiotics from produce grown on manure-amended soils. Bassil et al (2013) performed a pot study in the greenhouse to measure the uptake of gentamicin and streptomycin by carrot, lettuce and radish, reporting that these plants did not absorb either antibiotic in significant quantities except for the uptake of gentamicin into radish root. All three studies (Kumar et al. 2005, Dolliver et al. 2007, and Bassil et al. 2013) found that levels of antibiotics in plant tissue increased with increasing concentration in manure. Boxall and Johnson (2006) also used pot studies with manure amended soils to study uptake of veterinary medicines into carrot roots (tubers) and lettuce leaves. Although exposure concentrations were appreciable in a few instances, accounting for 10% of the acceptable daily intake values (ADI), all were lower than the ADI values, indicating little evidence of an appreciable risk.

Approximately 6400 wet tons of biosolids were land applied to less than 0.1% of Vermont's agricultural land in 2014 (Appendix 2: Table A-5) and nationally, biosolids are applied to approximately 0.1% of agricultural land (NRC 2002). Yet much of the research on potential pathways of emerging contaminant into the food chain has focused on uptake and accumulation of pollutants into plants grown on biosolids amended fields. Several of these recent studies are summarized in Table 7.

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

Table 7. Literature review of recent studies of plant uptake of emerging contaminants.

Conditions	Contaminant	Vegetation	Author Conclusions	Author/Year
Hydroponics, spiked test	bisphenol A, diclofenac, naproxen,	Lettuce, collards	Accumulation (µg/kg) greatest in roots, human dietary uptake	Dodgen et al. 2013
compounds	4-nonylphenol	0.11	predicted to be negligible	W 11 1 2010
Hydroponics,	carbamazepine,	Cabbage,	Human pharmaceuticals can be	Heklotz et al. 2010
spiked test	salbutamol,	Wisconsin Fast	actively taken up by plants	
compounds	sulfamethoxazole,	Plants (Brassica	(μg/kg) under hydroponic	
C - 11 4	trimethoprim	rapa)	conditions	F 1 2012
Soil pots,	organophosphates,	Barley, wheat,	High translocation into leaves	Eggen et al. 2013
spiked test	plasticizer & insect	meadow fescue,	of meadow fescue (mg/kg), a	
compounds	repellant (DEET)	oilseed rape,	forage crop. Risk assessment needed	
Soil note	aarhamazanina	Chinese cabbage		Holling et al. 2012
Soil pots, spiked test	carbamazepine, salbutamol, triclosan,	Cliffiese Cabbage	PPCPs at environmentally relevant concentrations	Holling et al. 2012
compounds	sulfamethoxazole,		resulted in uptake and plant	
compounds	trimethoprim		accumulation (µg/kg)	
Soil pots,	17α-ethynylestradiol,	Bean plants	Uptake and accumulation	Karnjanapiboonwong
spiked test	triclosan	Dean plants	(mg/kg) greater in plants	et al. 2011
compounds	arorosan		grown in sand vs clay soil	O. a 2011
Soil pots,	fluroquinolines and	Potato	Uptake into potato (µg/kg) and	Kipper et al. 2010
spiked test	sulfonamides	Totalo	low adsorption of on soil may	Impper et un 2010
compounds	Surromannacs		contaminate food plants	
Soil pots,	Sulfonamides	Pakchoi Cabbage	Uptake into cabbage (µg/kg);	Li et al. 2013
spiked test		Tunion Cuccugo	microbial degradation in soil	2010
compounds			mechanism of dissipation	
Soil pots,	galoxlide, tonalide,	Carrot, Barley,	Accumulation (mg/kg) in carrot	Macherius et al. 2012
spiked test	triclosan	Meadow Fescue	peel relevant to food chain;	
compounds			intro to food chain via feeding	
			livestock less likely due to low	
			uptake to aerial plant parts	
Soil pots,	Triclosan (TCS)	Lettuce, radish,	TCS may accumulate (mg/kg)	Pannu et al. 2012
spiked test		bahia grass	in plants; no toxicity at	
compounds			agronomic application rates	
Soil pots,	Organophosphates,	Barley, carrot	Organophosphates have a high	Trapp & Eggen 2013
spiked test	plasticizer & insect		potential for bioaccumulation	
compounds;	repellant (DEET)		(mg/kg) in crops; reach	
model			agricultural fields via biosolids	
simulations		<u> </u>	and by atmospheric deposition	***
Soil pots,	Carbamazepine,	Soybean	Uptake of PPCPs (µg/kg) into	Wu et al. 2010
spiked test	diphenhydramine,		edible portion of agriculturally	
compounds	fluoxetine, triclosan,		important crop; uptake	
C. T	triclocarb	D1.'	behavior compound specific	A 1 0 D ! 1 11
	triclocarban (TCC),	Pumpkin,	Leaves and stems accumulated	Aryal & Reinhold
-	triclocon (II 'S')	zucchini, switch	(mg/kg) TCC and TCS; plant	2011
biosolids	triclosan (TCS)			
biosolids amended		grass	uptake reduced leaching	D.1
biosolids amended Soil pots,	4-nonylphenol	Wheat, oil seed	Rapidly degraded in soil;	Roberts et al. 2006
biosolids amended Soil pots, biosolids			Rapidly degraded in soil; biosolids enhanced	Roberts et al. 2006
		Wheat, oil seed	Rapidly degraded in soil;	Roberts et al. 2006

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Soil pots, sludge amended	ketoprofen, naproxen, diclofenac, ibuprofen	Wheat, soybean	No detectable uptake even at 2x sludge application rate. Risk of exposure via crops very small.	Cortes et al. 2013
Soil pots, biosolids amended, spiked test compounds	Carbamazepine, diphenhydramine, triclocarb	Pepper, tomato, collard, lettuce, radish	PPCP uptake and accumulation (µg/kg) into plant tissue affected by PPCP physio-chemical properties and interaction with soil	Wu et al. 2012
Field study, biosolids application	Pharmaceuticals and personal care products (PPCPs)	Wheat	No PPCPs detected in wheat grain planted post, high rate biosolids application; no significant impact on quality of tile drainage or groundwater	Gottschall et al. 2012
Field study, biosolids application	PBDEs (flame retardants)	Corn	PBDE soil concentrations increased but corn did not exhibit measurable uptake	Hale et al. 2012
Field study, biosolids application	Pharmaceuticals, hormones, parabens	Tomatoes, carrots, potatoes, sweet corn	Little risk of PPCP uptake into vegetable crops with one year offset between biosolids application and harvest	Sauborin et al. 2012

The studies referenced in Table 7 confirm the potential for plants to uptake and accumulate a variety of emerging contaminants in concentrations ranging from parts per billion (µg/kg) to parts per million (mg/kg, dry weight). However, the results and conclusions from the majority of these studies are the outcome of experimental methods that do not reflect actual field conditions and, therefore, should be considered in that context. For example, studies employing hydroponic cultivation (Dodgen et al. 2013, Heklotz et al. 2010) neglect the contaminant-soil and plant-soil interactions that greatly impact contaminant availability to plant uptake. Macherius et al (2012) noted that the use of hydroponic cultivation likely resulted in greater plant accumulation of PPCPs/EDCs due to the absence of chemical sorption to soil organic matter and minerals. It should also be realized that there is absolutely no use for biosolids or biosolids amended soils in hydroponic agriculture, as all required nutrients are supplied by the hydroponic solution and hydroponic systems do not use soil as the growing media, rendering studies of chemical uptake into hydroponic crops suspect as to their applicability to biosolids management in conventional agriculture.

Similarly, the majority of the studies above relied on laboratory growing conditions (pot studies) with soils spiked with test compounds as opposed to amending soils with biosolids that contain pollutants of concern (Eggen et al. 2013, Holling et al. 2012, Karnjanapiboonwong et al. 2011, Kipper et al. 2010, Li et al. 2013, Macherius et al. 2012, Pannu et al. 2012, Trapp & Eggen 2013, Wu et al. 2010). Pannu et al. (2013) warned that using models, empirical equations, hydroponics, and unamended systems overestimate the bioaccumulation potential of the antimicrobial, Triclosan, and may not be applicable for biosolidsamended soils.

More appropriate than studies employing hydroponics or soil pots with spiked test compounds are experiments that use soil pots but amend the soils with biosolids (Aryal and Reinhold 2011, Roberts et al. 2006, Cortes et al. 2013, Wu et al. 2012). However, such studies fail to take into account the variations in

* DRAFT – DO NOT QUOTE OR CITE *

field conditions when assessing persistence of compounds and potential risks. Chaney et al (1999) warned of the tendency for overestimation of metal uptake by plants when extrapolating from pot studies in the greenhouse to the field. Langdon et al (2012) concluded that using experiments to predict field persistence of compounds in biosolids amended soils may overestimate degradation rates and inaccurately predict patterns of dissipation, although their findings were likely due to the unfavorable environmental conditions for degradation at the location of the field trial. Similarly, Holling et al. (2012) noted that in most studies, uptake of PPCPs has been evaluated under non-standard growing conditions or at concentrations of PPCPs that are elevated relative to those expected in soils amended with agronomic rates of biosolids. It is important to understand the potential uptake of contaminants by crops exposed to environmentally relevant concentrations.

Only three of the studies referenced in Table 7 were performed under actual field conditions where soils were amended with biosolids (Gottschall et al. 2012, Hale et al. 2012, Sauborin et al. 2012). These studies generally demonstrated low risk to human health from biosolids borne PPCPs, PBDEs, hormones and parabens, citing low rates of plant uptake and minimal impact on ground water quality. Even under conditions where vegetables of the family Cucurbitaceae (zucchini, pumpkin) were shown to accumulate antimicrobials Triclosan and Triclocarb in mg/kg concentrations when grown in biosolids amended soils, the predicted acute risk from direct human consumption was considered minimal (Aryal & Reinhold, 2011). However, these few studies represent only a small fraction of the wide body of research that has been or is currently being performed on plant uptake of contaminants from biosolids amended soils. It is important to note that more data has been collected for certain chemical classes than for others that may pose greater risk. Metabolites of some compounds can also be of environmental concern and may be converted back to the parent compound once the metabolites reach the environment (Jjemba et al. 2002). Therefore, a disregard of conjugates in studies on plant uptake of environmental contaminants may severely underestimate the extent of uptake into plants and, eventually, the potential human exposure to contaminants via food of plant origin (Macherius et al. 2012).

Another contaminant exposure pathway associated with biosolids land application is through crop uptake and bioaccumulation into livestock. In 2004, Rideout & Teschke reported results from a literature review of the potential for increased foodborne exposure to dioxins (PCDD/F) when sludge is used on agricultural land. The authors reported a weak correlation between concentrations in soils and concentrations in root crops, leafy vegetables, tree fruits, hay and herbs, and that in all cases, large increases in PCDD/F soil concentrations were required to achieve a measurable increase in plant contamination. These results suggest that biosolids application to land used for most crops would not increase human exposure. However, a considerably stronger positive relationship was observed between PCDD/F in feed and resulting levels in cattle tissue, suggesting bioaccumulation. Although PCDD/Fs are excreted in milk, no association was found between feed contamination and levels of PCDD/Fs measured in milk. Still, the use of sludge on land used to graze animals appears likely to result in increased human exposure to PCDD/F.

Grazing animals may be exposed to contaminants by consuming soil along with fodder; either by eating soil directly or by consuming plants to which soil has adhered (Chaney et al. 1996). Wild et al. (1994) pointed to the key role of PCDD/F transfer into livestock via ingestion of biosolids adhered to vegetation. Fries (1996) reported that cattle may consume an average of 6% of their ingested dry matter as soil but that soil ingestion by lactating dairy cows would likely not exceed 1-2% under normal management conditions. Fortunately, Vermont's regulations address this exposure pathway by limiting grazing of domestic food source animals on biosolids amended sites for a minimum of six months following the last application event.

* DRAFT – DO NOT QUOTE OR CITE *

When biosolids are applied to fields in accordance with such site use restrictions and with pollutant loading limits, risk to human health and the environmental from synthetic organic compounds is minimized by a number of barriers. Chiefly among these is the fact that organic compounds that survive wastewater treatment are strongly bound to organic matter in soils and are relatively insoluble in water. For example, PBDEs are strongly sorbed to soil colloids and are relatively immobile in soil, potentially (depending on its degradation rate) remaining conserved in soils for decades or longer (Pepper et al. 2008). More recently, Yager et al. (2014) reported dissipation of CECs in land applied biosolids during weathering at the soil surface by vertical transport into the soil column, but results also showed long-term (> 1 year) storage of persistent CECs in surface soils. Limited mobility of biosolids bound CECs, along with site management practices such as buffer zones, incorporation/tillage and restrictions on application timing; reduce the opportunity for these compounds to move to water bodies. Furthermore, compared with aquatic ecosystems, terrestrial systems have orders of magnitude greater microbial capability and residence times to achieve decomposition and assimilation (Overcash et al. 2005). Lorenzen et al. (2006) reported that endocrine disrupting compounds in biosolids rapidly degrade from biosolids following land application and, similarly, Roberts et al. 2006 showed rapid mineralization of the surfactant metabolite, 4nonylphenol, in soils under aerobic conditions.

It has become generally accepted that only field data from long term studies of environmental contamination sources provide data appropriate for risk assessment and environmental regulation (Chaney et al. 1999). Research has indicated drastic differences in the rate of decomposition of organic compounds between studies examining decomposition rates in biosolids amended field soils and laboratory pot tests. Degradation rate differences are generally attributed to the variations in field conditions present in natural field settings versus what is experienced in laboratory tests. Overcash & Pal (1979), Clark & Smith (2011), Langdon et al. (2012), and Gottschall et al. (2012) have reported the observed half-lives of a number of organic contaminants in biosolids amended field soils (Table 8).

Table 8. Half-life (days) of selected organic compounds in biosolids amended soil systems.

Compound	Half-life (days)	Researcher
hydroquinone	0.5	Overcash & Pal 1979
pyrocatechin	0.5	Overcash & Pal 1979
testosterone	0.5 - 8	Overcash & Pal 1979
17β-estradiol	1 - 10	Overcash & Pal 1979
phenol	1.3	Overcash & Pal 1979
2,4-methylaniline	1.5	Overcash & Pal 1979
polydimethylsiloxanes	2 - 28	Overcash & Pal 1979
17β-ethanyl estradiol	3 - 10	Overcash & Pal 1979
acetic acid	5 - 8	Overcash & Pal 1979
ibuprofen	12	Clark & Smith 2011
quaternary ammonium compounds	17 - 40	Clark & Smith 2011
Gemfibrozil	20	Clark & Smith 2011
cellulose	35	Overcash & Pal 1979
octylphenol	35	Overcash & Pal 1979
n-nitrosodiethylamine	40	Overcash & Pal 1979
bisphenol A	43	Langdon et al. 2012
carbamazepine	46	Gottschall et al. 2012
acetaminophen	63	Gottschall et al. 2012
organotin compounds	70	Clark & Smith 2011
azithromycin	71	Gottschall et al. 2012
4-t-octylphenol	75	Overcash & Pal 1979
nonylphenol	80	Overcash & Pal 1979

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

di-n-butyl phthalate ester	80 - 180	Overcash & Pal 1979
anthracene	110 - 180	Overcash & Pal 1979
synthetic musk compounds	180	Clark & Smith 2011
Galaxolide	180	Clark & Smith 2011
triclosan	182	Gottschall et al. 2012
epitetracycline	198	Gottschall et al. 2012
Ofloxacin	198	Gottschall et al. 2012
Norfloxacin	289	Gottschall et al. 2012
miconazole	347	Gottschall et al. 2012
benzo (a) pyrene	60 - 420	Overcash & Pal 1979
non-ionic surfactants	300 - 600	Overcash & Pal 1979
aminoanthroquinone dye	100 - 2000	Overcash & Pal 1979
polydimethylsilicone	900 - 1400	Overcash & Pal 1979
polybrominated diphenyl ethers (PBDE)	1400 - 7300	Clark & Smith 2011

As is evidenced by these data, many CECs are degraded relatively quickly in agricultural soils. With the exception of polyhalogenated diphenyl ethers, biphenyls, dioxins, and similar highly stable molecules; the half-life of most of these compounds is on the order of six months or less. These compounds are all relatively resistant to decomposition in the chemical and biological conditions of the wastewater treatment environment but all exhibit accelerated degradation rates in soil systems. This is due in large part to the differences in the chemical and environmental conditions that these compounds are exposed to in the two environments. Chemicals which "survive" wastewater treatment, when placed into an agricultural soil media, are exposed to a wide range of new biological and chemical reactions that they were not exposed to in the wastewater treatment process. Additional chemical degradation processes to which these compounds are exposed includes hydrolysis reactions, photolytic reactions, adduct formation, redox reactions, acid/base neutralization, and precipitation, among others. In situ soils also contain populations of a huge variety of aerobic bacteria and other higher organisms that are not present in wastewater treatment operations. These naturally occurring organisms are typically present in densities that are several orders of magnitude greater than those found in wastewater treatment processes, and they provide numerous additional routes of metabolic decomposition compared to those provided by microbial activity during wastewater treatment.

In general, chemical concentrations and risk of exposure to contaminants via biosolids is very low in comparison to other routes of exposure. For example, human exposure to flame retardant chemicals is greatest from household dust (Lorber 2008). And exposure from consumption of vegetables known to accumulate antimicrobials when grown in biosolids amended soils is substantially less than from use of the product in which they were originally contained (Aryal & Reinhold 2011). Furthermore, recent risk assessments published in the American Society of Microbiology's (2011) report on "Land Application of Organic Residuals" indicate that the spread of human pathogens via biosolids show lower human health risk for many microbial contaminants in municipal biosolids than for manures. However, before biosolids application, careful consideration should be given to the types of agricultural products grown and to the optimization of site management practices that limit exposure. Allowing as much time as practicable between biosolids applications allows for maximum degradation and assimilation of contaminants and the least potential for long term disruption of the soil ecosystem. In addition, biosolids managers should support pollution prevention and other source control programs that promote the disposal of PPCPs by means other than wastewater. WWTF personnel should maximize the potential for biological degradation of organic contaminants by prolonging detention times (Leu et al. 2012) and by using various treatment methods (anaerobic and/or aerobic digestions, composting). While most of these compounds could potentially be destroyed or removed from sludge by using technologies such as

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

ozonation or activated carbon filtration (both very expensive from a capitol and operating cost perspective), serious consideration must be given to the appropriateness of the use of these "contaminants" in the consumer products from which they originate.

The Vermont legislature lent serious credence to this position via the passing of <u>Act 188</u> in the 2014 legislative session, which enumerated a list of 66 chemicals (actually more, as the list includes eight entries such as "*Cadmium and cadmium compounds*", all of which can include hundreds of individual chemicals) that are considered hazardous to children. However, the listed contaminants are toxic to adults just as they are to children; and either do, or have the potential to create toxic effects on other organisms when released into the environment.

Currently, there a number of efforts under way to develop a reliable, repeatable, and scientifically sound method of directly measuring the impact of biosolids, or more accurately – the contaminants they contain, on the health and fertility of agricultural soils. In general, these efforts are centered on the development of a bioassay method that could be used in real time and in *in situ* applications as a compliance tool. While there is no disputing the presence of numerous contaminants in biosolids, the ultimate consideration of policy decisions cannot be based on mere presence. Fortunately, this is one area of research in which EPA has continued to invest funding. Staff at EPA's research facility in Cincinnati, in cooperation with the PEC, has made significant strides in developing a bioassay method that is applicable to biosolids management. Although a final method is still unlikely to be fully developed, tested, and vetted for a number of years; care must be taken to not adopt currently available screening methods which are wholly inapplicable to measuring the impacts of land applying biosolids. For example, recent research on a soil screening method developed at Duke University serves well to emphasize the need to critically review any claims of a particular method's applicability. In a paper titled "Determining the Ecological Impacts of Organic Contaminants in Biosolids Using a High-Throughput Colorimetric Denitrification Assay: A Case Study with Antimicrobial Agents", Holzem et al. (2014) claimed to have modeled the ecological impacts of a few organic contaminants that are often found in biosolids. But the contaminants tested were not "in biosolids" when they were tested and no biosolids or soil was used in the assay. Rather, the researchers used "a model denitrifier" (bacterial cultures) that were spiked with fresh samples of the chemicals being tested, a methodology that has repeatedly been shown as nonrepresentative of actual biosolids amended soil characteristics. Conversely, research conducted at the University of California at Davis has tested the impacts of biosolids amended soils containing typical levels of the anti-microbials. This research found:

"that the increased N added with biosolids stimulates nitrogen cycling sufficiently to offset any detrimental impacts on the N cycling caused by Triclosan (TCS) at realistic application concentrations. Biosolids contain traces of TCS and other antimicrobials, but, because the chemicals become transformed and bound as they go through the wastewater and solids treatment processes, they are not as available as fresh chemicals added to soil, and their impacts are negligible. Meanwhile, the stimulating effects of the nutrients and organic matter in biosolids demonstrably boost soil microbial activity."

The Section supports the development and use of a bioassay method that provides the reliability and assurances required of a demonstration of regulatory compliance.

The only alternative to the management of biosolids via land application or incineration available to Vermont WWTFs is disposal in a municipal solid waste landfill. As of this date, in September 2014, there is only one landfill operating in Vermont that is accepting biosolids for disposal – the Waste USA

* DRAFT – DO NOT QUOTE OR CITE *

Landfill in Coventry, into which almost 46,000 wet tons (approximately 90,000 cubic yards) of sludge was disposed in 2013 alone. In 2012, slightly less than 8.9 million gallons of landfill leachate was disposed at three Vermont WWTFs (Barre, Montpelier, and Newport). Aside from the issue of consuming Vermont's very limited landfill capacity with a potentially reusable material, landfill disposal inevitably results in compounding the contentious issues surrounding the management of biosolids. Appendix 1 of this paper presents four tables of analytical data for contaminants in landfill leachates. As is evident from Appendix 1: Tables A-1 through A-3, there is a wide range of contaminant types and concentrations present in landfill leachate, and it must be assumed that there are numerous other contaminants for which an analysis was not, or could not, be conducted. Albeit that a significant number of contaminants that were not included in these analytical efforts are relatively innocuous byproducts of the decomposition of other landfilled organic wastes that are extremely amenable to near complete degradation in wastewater treatment processes, Appendix 1: Table A-4 clearly shows that there are numerous compounds found in leachate that are structurally similar to CECs found in sludge and for which landfilled sludge would be one of the primary sources for leachate contamination. These compounds do not undergo degradation in a landfill's anaerobic reducing environment, just as they survived degradation in the wastewater treatment process, indicating that for many classes of chemicals, their leachate concentrations remain the same or may even increase over long periods of time. And, because all landfill leachate generated in Vermont is disposed for treatment at municipal WWTFs that manage their sludge production by landfilling in the same facilities that generated the leachate, a closed loop is created wherein the mass loading and subsequent leachate concentration of these compounds can significantly increase over time. While this may appear to be a means of containing these contaminants in a closed system, it must be realized that the concentration of these contaminants in leachate will simply continue to rise and that there will be a commensurate decrease in the ability of the WWTF to remove them. This will inevitably result in a significant increase in the concentration of the contaminants in effluent discharged to surface waters and in the attendant issues that raises with aquatic biota that receive chronic low level exposure. For an in-depth analysis of the severe adverse effects on aquatic biota from chronic low level exposure to these contaminants, there is a wealth of research reports available through the U.S. Geological Survey's library catalog.

The continual cycling of leachate to sludge to leachate, along with the contaminants they contain, is likely not sustainable in the long term and may create a significantly larger and more costly problem for future generations of Vermonters to assume. The constant recycling of previously disposed contaminants and the on-going addition of new contaminants will only result in their ever increasing concentrations in the leachate and sludge. Ultimately, the liner and collection system of any landfill will fail, albeit that is highly unlikely to occur within the foreseeable future. Regardless of the timing, any such failure has the potential to result in the release of copious quantities of leachate and the contaminants it contains to the groundwater. Secondly, as sewage and septage inputs to municipal WWTFs continue to increase towards their design capacities for either flow or biochemical oxygen demand (BOD) removal, WWTFs will have a correspondingly decreasing capacity to accept and treat leachate. Eventually, this will require either upgrades to WWTFs in order to accept the increasing volumes of total flow (at a huge expense to the municipality, not the generator of the leachate) or increasing transportation distances to WWTFs with adequate capacity to accept the volumes of leachate being generated. In order to mitigate this concern, landfills permitted to operate in Vermont could be required to install and operate a private WWTF to pretreat or fully treat leachate on-site to decrease the BOD concentration, and could also employs a process (akin to carbon filtration or ozonation) to efficiently remove or destroy the large majority of the organic contaminants of emerging concern discussed in this paper that pass through a WWTF designed for the treatment of sewage without degradation.

September 2015

* DRAFT - DO NOT QUOTE OR CITE *

VII. Emerging Concerns for Pathogens

Most land application occurs with class B biosolids that, by definition, are likely to contain human pathogenic bacteria, viruses, and protozoan parasites (see Section IV). A comparison of pathogen levels found within biosolids sampled before and after the Part 503 Rule has illustrated that the Part 503 Rule has been effective in reducing public exposure to pathogens relative to before the promulgation of the Part 503 Rules (Pepper et al. 2010). However, the Part 503 regulations pertaining to human exposure to pathogens were established through treatment-based standards and through land application guidelines rather than through risk or epidemiological analysis. And although the USEPA continues to support the Pathogen Equivalency Committee, which approves alternative sludge disinfection processes, potential exposure to pathogens from the land application of biosolids has called into question the sustainability of the practice of land applying class B biosolids.

The greatest amount of uncertainty in quantitative microbial risk assessment is due to a lack of data on exposure and proper assessments of risk from land applied biosolids, particularly for indirect routes of exposure, such as contact with bioaerosols at land application sites or consumption of groundwater beneath sites (Pepper et al. 2008, 2010). In addition, concerns have arisen about the presence of specific 'emerging pathogens' that could be present in biosolids. An emerging pathogen can be considered any pathogen that increases the incidence of an epidemic outbreak and examples include *Cryptosporidium*, *E coli* O157:H7, Hantavirus, multidrug resistant pneumococci, and vancomycin-resistant enterococci.

To evaluate the sustainability of land application of class B biosolids, the University of Arizona undertook a study that collected and analyzed biosolids samples from a single WWTF over an eighteen year period, from 1988-2006. In addition, the same researchers conducted a national study on the incidence of pathogens in anaerobically digested biosolids produced within WWTFs across the US between 2005 and 2008. These two studies therefore represent a large database on the incidence of pathogens in class B biosolids, including national and historic distributions, and have generated several publications on the presence of and potential exposure risks to pathogens associated with the land application of biosolids.

Pepper et al (2008) analyzed pathogen data collected during the University of Arizona study in an effort to identify potential biological hazards associated land application of class B biosolids. They reported that both direct risks and indirect exposures via bioaerosols or microbially contaminated groundwater to human health posed by pathogens in biosolids were low. Specifically, the authors reported that while raw sewage was a definitive source of Staphylococcus aureus, the organism was never detected in Class A or B biosolids or in bioaerosols resulting from land application sites. These results agreed with previous work by Rusin et al. (2003) who showed that biosolids are not a significant source of S. aureus exposures or infections in humans. Community risk of infection from Salmonella and Coxsackie virus A21 were also determined to be low at various distances from land applied biosolids, likely due to dilution and natural attenuation of pathogens from environmental factors such as desiccation and ultraviolet light. Ultraviolet light, which acts by rapidly scrambling the organisms' genetic material – thereby rendering them incapable of reproducing, is a particularly effective antimicrobial to the extent that is commonly employed as the final stage disinfectant of treated wastewater effluent. Occupational risks to biosolids workers were evaluated and found to be low, although higher than community risks due to enhanced duration of exposure and proximity to the site. The authors also concluded that the majority of aerosols, including endotoxins, captured during land application arose from soils sources rather than from biosolids.

* DRAFT – DO NOT QUOTE OR CITE *

The limited transport of pathogens via aerosols may also be due to the binding of organisms to biosolids particles, which would also reduce the potential for microbial contamination of ground water. Work at the University of Arizona showed that viruses are embedded and/or adsorbed to biosolids, likely restricting the mobility and transport of viruses through the soil and vadose zone. These findings are consistent with studies referenced in Section V of this document (Gotschall et al. 2012, 2013; Wong et al. 2010) and, although Pepper et al. (2008) cites conflicting reports on the effect of organic matter on the transport of pathogens in soil, the authors ultimately concluded that microbial contamination of groundwater from land application of biosolids is unlikely. However, while pathogens absorbed to or embedded within land applied biosolids are less likely to be transported to groundwater, contamination of groundwater or nearby surface waters by microbial pathogens from on-site sewage treatment (septic) systems is always a potential risk to human health. Scandura and Sobsey (1997) studied the survival and transport of a model enterovirus and fecal coliform bacteria in four on-site wastewater treatment systems, reporting that systems with the most coarse (sand) soils and highest water tables (most shallow vadose zones) saw extensive ground water contamination by viruses and other wastewater constituents. Therefore, on-site wastewater treatment systems must be properly sited, designed, installed, operated, and maintained to ensure adequate long term performance in treating microbial pathogens, and other contaminants in sewage. Similar considerations must, therefore, be afforded for siting land application projects.

The prevalence of antibiotic-resistant bacteria and endotoxin in soil after land application of biosolids was reported by Brooks et al. (2007) and reviewed by Pepper et al. (2008). Soil samples were collected before and for a 15-month period following land application of biosolids and soil bacterial resistance to ampicillin, cephalothin, ciprofloxacin and tetracycline was ascertained, showing negligible increase in the percentage of antibiotic resistance bacteria. Similarly, no significant increases in the concentrations of endotoxins in soil were observed.

Additional research conducted at the University of Arizona on potential biological hazards associated with biosolids focused on the regrowth potential of *Salmonella* in both Class A and B biosolids and biosolids amended soil. Pepper et al. (2008) reported regrowth of *Salmonella* following rainfall events during which biosolids became saturated and anaerobic and specified that moisture content greater than 20% was required for regrowth. No regrowth occurred from Class A or B biosolids when the material was added to soil, regardless of saturation. The risks of infection from *Salmonella* in land applied Class B biosolids were low regardless of exposure route (ingestion or inhalation of aerosol), however, risks from ingestion or aerosol inhalation of Class A biosolids following regrowth in the initial biosolids was significant. Therefore, practices such as covering stored biosolids and avoiding saturated anaerobic conditions should be required for generators and distributors of biosolids.

As part of the University of Arizona evaluation of the sustainability of land application of class B biosolids, the long term effects of land application on soil microbial properties was also reviewed by Pepper et al (2008). Twenty years of annual biosolids applications to replicated field-plots demonstrated a lack of adverse effects on soil microbial numbers. In fact, land application increased microbial diversity and enhanced microbial activity. These results are in accordance with Snyder et al. (2011) who found that biosolids borne Triclosan had no effect on soil microbial community respiration or ammonification up to the greatest concentration tested. Interestingly, reports from research on aquatic systems have shown a correlation between Triclosan concentrations in stream sediments and the number of benthic bacteria resistant to Triclosan (Drury et al. 2013). Analysis also indicated that Triclosan in sediment resulted in decreased benthic bacterial diversity and shifts in community composition. Such a comparison lends support to the argument that terrestrial systems have orders of magnitude greater microbial

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

capability and residence times to achieve decomposition and assimilation of potential contaminants in biosolids (Overcash et al. 2005).

The University of Arizona historic data set revealed no evidence of long term persistence of enteric pathogens in the soil. After 20 years of biosolids application, no known pathogens were detected in soils sampled nine months after the last biosolids application (Pepper et al. 2008). Furthermore, the review of the national data set showed that emerging pathogens such as *Campylobacter* and *E. coli* 0157:H7 were never detected in mesophilic anaerobic digested biosolids, and *Shigella* was only detected occasionally (Pepper et al. 2010). This is not to say that risks to human health are zero, and the same authors report that adenoviruses may be more commonly present in Class B biosolids than enteroviruses, but overall, researchers from University of Arizona concluded that the risks to human health posed by pathogens within biosolids are low if current USEPA regulatory guidelines are followed.

A more recent collaboration between University of Arizona researchers and the USDA (Brooks et al. 2012) resulted in the first study comparing biosolids to manure microbial risks. Researchers used quantitative microbial risk assessment to estimate pathogen risks from occupational and public exposures during scenarios involving soil, crop and aerosol exposures. *Campylobacter jejuni* and enteric viruses provided the greatest single risks for most scenarios and the highest risks were associated with both manures and biosolids immediately at application. Comparison by pathogen group confirmed greater bacterial risks from manure whereas viral risks were exclusive to biosolids. A direct comparison of shared pathogens resulted in greater risks for manure. All pathogen risks decreased with treatment, attenuation, dilution and time between land application and exposure and nearly all risks were insignificant when using a four-month harvest delay for crop consumption.

Similarly, Viau et al (2013) performed a risk assessment of pathogen exposure, concluding that other than accidental ingestion, the highest public risks of infection from land application are associated with aerosol exposure. The authors admit that there is large uncertainty in aerosol risk values, due to limitations in current exposure models, pathogen content, and dose-response information. Ultimately, the authors concluded that a rigorous biosolids pathogen treatment process, rather than extending community separation distances, is the most efficient method for reducing pathogen exposure and infection risk.

VIII. Reported Adverse Impacts to Human and Animal Health

Over the past twenty to twenty-five years, nationwide, there have been several hundred reports of adverse impacts on human health and quality of life which have been purported to have resulted from the management of Class B biosolids. The Section is not aware of any such incidents related to the use of properly stabilized EQ biosolids, although there have been two incidents of extremely noxious odors resulting from the use of poorly stabilized EQ compost in Vermont.

The Section is aware of only one incident reported in Vermont in which adverse health impacts to humans were alleged to possibly have been caused by exposure to Class B biosolids. That single incident involved attendees at the Phish concert that was held on the grounds of the Newport State Airport in 2004. Agricultural fields surrounding the runways at the concert site had been used for more than a decade for the management of biosolids generated by the City of Newport's WWTF. All applications of biosolids had been conducted by subsurface injection at a depth of approximately 12 inches, with the last application having occurred some eleven and one half months prior to the concert. The permit for the concert specified that the areas to which biosolids had been applied were to be used only for parking and that camping there was not permitted. However, heavy rains during the event turned the entire concert

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

site into a sea of mud, leading many concert attendees to abandon the designated camping areas and camp in or near their vehicles. Regardless, the site management practices, the use of subsurface injection (which leaves no biosolids on the soil surface), the fact that a corn crop had been grown and harvested on the sites in the intervening period, and the duration of time since the previous application event all suggest that concert attendees were exposed to minimal, if any, biosolids. Rather, all evidence examined by the Section and the VDOH indicated that the health impacts reported by concert attendees (primarily skin rashes and gastrointestinal distress) were more likely derived from exposure to raw sewage that occurred as a result of two conditions. First, the weather conditions made it impossible for pumper trucks to access the portable toilets for maintenance, causing all toilets to overflow and contaminate the ground in the area around them. The other major exposure occurred when gate crashers toppled a perimeter security fence, knocking over an entire row of full-to-capacity portable toilets that discharged their contents onto the ground, which subsequently became distributed throughout the concert site by people walking through the spilled sewage after the units were righted and immediately put back into service at the same location without any remediation of the spilled contents.

In general, the complaints of adverse health impacts resulting from Class B biosolids management predominantly include mucous membrane and eye irritation, respiratory and gastrointestinal distress, headaches, and skin rashes – although more serious effects have been alleged. Residents also report nausea derived from noxious odors and interference with their quality of life and beneficial use of their property. Typically, these incidents are reported by persons residing within about one half mile of sites on which undigested, lime stabilized biosolids or poorly prepared anaerobically digested biosolids have recently been spray applied in liquid form without incorporation into the soil.

Odors are the most frequent cause of complaints surrounding land application. Historically, odors were dismissed as purely esthetic or quality-of-life issues. However, Schiffman et al (2004) reported evidence that exposure to odor-causing chemicals can cause illness and that some airborne contaminants can cause a variety of symptoms including eye, nose, and throat irritation, headache, nausea, diarrhea, hoarseness, sore throat, cough, chest tightness, nasal congestion, palpitations, shortness of breath, stress, drowsiness, and alterations in mood. Schiffman's findings correlate well with those of Harrison et al (2002), who characterized symptoms of 328 people who related their ailments to the land application of biosolids. These tend to be very similar to the symptoms anecdotally related by residents alleging health impacts from land applied biosolids as well. Eliminating one potential means for noxious odor conditions was the primary driving rationale for Vermont having prohibited on-site storage of biosolids destined for land application other than for very short term staging in preparation for an application event.

Poor anaerobic digestion of sludge, unquestionably, will often result in nuisance odors derived from reduced sulfur compounds and mercaptans. Raising the pH of undigested sludge or septage to greater than 12.0 S.U. in order to attain the pathogen reduction requirements via lime stabilization, increases the potential to produce copious amounts of gaseous ammonia and other malodorous amines. Far too often, lime stabilized biosolids or septage are delivered and applied to sites without a sufficient post lime addition holding time and the materials are still off-gassing ammonia and other malodorous compounds. For septage, the primary reason behind the VSWMR continuing its requirement for holding septage at a minimum pH of 12.0 S.U. for two hours, rather than adopting the 30 minute hold time established in 503.32(c)(2), was to provide additional time for the reactions that produce malodorous compounds to abate. Because there is minimal hold time to allow the gas producing reactions to subside and for the gasses to dissipate prior to the biosolids or septage being applied to the land, the immediate area around such sites can be negatively impacted. This problem can be further exacerbated if such biosolids or septage is applied on windless days or under thermal inversion atmospheric conditions that tend to trap air emissions at ground level in localized areas.

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

Composted biosolids also present the potential to generate noxious odors. Compost typically requires a minimum thirty day curing period following active composting in order to allow the biological decomposition to subside and for the compost to cool to ambient temperatures. During active composting, the potential to generate noxious odors due to the production of volatile fatty acids, amines, terpinoid compounds, mercaptans, and reduced sulfur compounds can be heightened depending on the composting technology employed and on the actual composting conditions. The odorous compounds are usually contained in the mix during the active composting cycle, which must be long enough to assure decomposition to the greatest extent feasible, and during the curing cycle that allows the odorous compounds to dissipate as the biological decomposition decreases. If the active composting or curing cycle is inadequate or not provided, even EQ biosolids will have the potential to create nuisance conditions.

Two such incidents have occurred in Vermont in the past 25 years, the last in 2001, both of which involved the importation of composted EQ biosolids produced in Springfield, MA, at a facility which, at that time, was processing undigested sludge without any curing cycle. In both cases (one in Tunbridge, the other in Danville), the stockpiled "biosolids" were still undergoing active biological activity and were hot to the touch, despite having met the minimal requirements of Part 503 (which does not require a curing cycle) for composted biosolids. These materials were producing copious quantities of highly malodorous amines and volatile fatty acids and both were being managed in locations that trapped those odors in valleys, resulting in particularly nauseating odor problems and a large number of complaints to the Department. In both cases, the Department ordered the immediate removal of the offending material and reached a voluntary agreement (albeit under the threat of an enforcement action if it were to recur) with the managers of the compost (different ones in each case) that they would never again import that material into Vermont. The Section, through its facility permits, has virtually eliminated odor issues with composted EO biosolids produced by Vermont facilities by tightening the conditions of active composting and by requiring a minimum thirty day curing cycle and temperature reduction to ambient temperatures before it may be released from the facility. However, note that the lack of regulatory oversight for EQ biosolids produced at out of state facilities and imported into Vermont (see the discussion in Section XI-F on page 48) leaves DEC with little but local nuisance ordinances and state nuisance air pollution regulations as enforcement mechanisms to address these types of odor problems.

Gastrointestinal complaints are more difficult to relate to a specific causative agent as they may result from exposure to biosolids derived airborne pathogens and noxious odors, as well as from naturally occurring exposure to pathogens in the environment that are not associated with the management of biosolids. Although research at the University of Arizona (Rusin et al 2003, Pepper et al. 2008, Brooks et al. 2005; 2012) has found little risk from potential pathogenic content in aerosols collected downwind of biosolids application events, the potential for exposure of residents in the immediate area cannot be entirely discounted. A review of available literature indicates that gastrointestinal complaints tend to generally be clustered around sites where liquid biosolids were spray applied under windy conditions that had a strong potential to transport aerosols off site. However, most of the causative biological agents are also relatively ubiquitous in the environment, making a definitive determination of the source tenuous at best. If an application event was also associated with exposure to noxious odors, there appears to be a relatively strong correlation with the number of gastrointestinal ailment reports, again making it more difficult to determine if the ailment is pathological in nature or derived from the adverse effects that noxious odors can have on certain members of the general population.

There have also been allegations that exposure to biosolids has been correlated to ALS (Lou Gehrig's disease), AIDS, cancer, Creutzfeldt-Jakob disease, mad cow disease, and several other uncommon serious diseases. All these purported linkages have been investigated by a number of health organizations (the

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

Centers for Disease Control (CDC) and Mayo Clinic, among others) who have found no demonstrable evidence of any correlation.

At least four human deaths since 1990 have been linked to exposure to pathogens from land application of Class B biosolids. In 1991, Shavne Connor of Greenfield, NH, died from what was diagnosed as unspecified 'community pneumonia' less than 24 hours after being hospitalized. Mr. Conner slept in a room at his parent's home where he kept the window open at night, and which was near fields where Class B biosolids had recently been heavily surface applied without incorporation. Numerous other residents of the neighborhood also complained of respiratory ailments following the application. Although an autopsy was unable to determine the cause of death, and the coroner who performed the autopsy said there was no evidence to suggest sludge toxins contributed to the man's death, the family settled out of court with the company managing the site for an undisclosed settlement and no admission of culpability. In 1994, Tony Behun of Osceola Hills, PA, rode his dirt bike in a field to which Class B biosolids had recently been surface applied without incorporation. Mr. Behun became ill a few days later with flu-like symptoms that persisted for a week before he was admitted to a local hospital and eventually airlifted to Pittsburgh's Allegheny General Hospital where he died of what was diagnosed as staphylococcus (S. aureus) infection. The Pennsylvania Department of Environmental Protection (DEP) found no medical or scientific evidence that Mr. Behun's death was linked to contact with biosolids and the CDC was not asked to investigate the biosolids/disease correlation until 1999, by which time it was impossible to determine if such a correlation existed. In 1995, Daniel Pennock of Berks County, PA, died after contracting both rotavirus and *Staphylococcus* infections allegedly from exposure to land applied Class B biosolids on a local farm. Official interim and final reports by the Pennsylvania DEP pointed to violations by the land-applier for this site, including improper storage and stabilization of biosolids, as well as surface application without incorporation. However, these reports, as well as the subsequent investigation by the EPA, concluded that a source of the viral staph pneumonia could not be determined and that available evidence did not establish that Mr. Pennock had any contact with either biosolids or the land to which biosolids had been applied. In 2003, Michael Seth Jones of Erwin, TN, a farm hand who had participated in the application of Class B biosolids to his employer's fields, died of multiple causes. During autopsy, a biopsy of lung tissue matched bacterial DNA with species present in biosolids (the specific species were not cited in the available report of the incident). With the exception of the case of Mr. Jones, these claims were cited as evidence in a 2003 Center for Food Safety et al. petition entitled "Petition Seeking an Emergency Moratorium on the Land Application of Sewage Sludge". In its response to the petition, the EPA strongly denied the claims of adverse health effects, citing anecdotal evidence and stating no causal connection whatsoever established between the deaths of Shayne Conner, Tony Behun or Daniel Pennock and exposure to land-applied sewage sludge (US EPA, 2003b). Ultimately the EPA concluded that the facts presented in the petition did not support the petition for a moratorium on land application of sewage sludge.

The land application of biosolids has also alleged to have been contributory to several instances of severe adverse impacts on farm livestock. The most notorious case involved two dairy farmers, Andrew McElmurray and William Boyce, in the Augusta, GA, area who alleged that biosolids produced by the Messerly Wastewater Treatment Plant in Augusta was responsible for the death of nearly 500 head. Evidence introduced in court indicated that concentrations of cadmium, arsenic, and PCB in the "biosolids" far exceeded all regulatory standards, and that the concentration of thallium, a pollutant that is highly toxic to cattle but not regulated under federal, Georgia, or Vermont standards, was dangerously elevated. The court also found that the City's wastewater and sludge management programs were in a shambles, that records were incomplete and likely falsified, that sludge was applied to the sites far in excess of agronomic and cumulative pollutant loading rates, and that the City failed to maintain the sites'

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

soil pH in the proper range (<u>United States District Court, S.D. Georgia, Augusta Division, 2008</u>). This was a situation highlighting what can go wrong when the regulatory framework and standards and required management practices are not observed and gross mismanagement occurs.

Two other notable cases of alleged adverse health impacts on herds and the resident farmers involved the farms of Jim Bynum, outside of Kansas City, MO; and the Zander farm in Lynden, WA. Both Mr. Bynum and the Zanders have related a large number of herd problems and multiple ailments suffered by members of their families to sludge management at sites on or adjacent to their dairy farms. Again, the evidence in both cases points to these incidents as cases of what can go wrong if biosolids are not appropriately managed. In both of these cases, the adverse effects have been related to groundwater contamination derived from excessive application rates and failure to control soil pH as well as allegations of exposure to other toxic compounds volatilized from the biosolids applied to the sites.

The only case that has been reported to any State agency in Vermont alleging adverse impacts to livestock due to exposure to biosolids involved biosolids produced by the City of Rutland's WWTF and Robert Ruane - a local farmer. Between November 1987 and December 1990, the City applied biosolids to three fields on the Ruane Farm in Clarendon, Vermont. A total of approximately 1300 wet tons of sludge (estimated from the 52 dry tons reported, at 20% solids) was applied to three fields totaling 87 acres at the loading rates and resulting masses of cadmium and lead applied as reported in Table 9.

Table 9. Ruane Farm loading rates (dry tons/acre).

Site	Acreage	dry tons/ac applied	lbs/ac Cd applied	lbs/ac Cd limit	lbs/ac Pb applied	lbs/ac Pb limit
8	37	19.20	0.36	4.5	11.16	268
8A	20	4.40	0.11	4.5	4.39	268
9	30	18.10	0.32	4.5	14.10	268

The annual application rates to each site appear to be lower than the annual nitrogen based agronomic rate for a corn crop (typically about 4 to 5 dry tons biosolids/acre), with the exception of the combined March and April 1990 applications to Site #8 and the combined November and December 1990 applications to Site #9 (bold highlight in Table 10); which, under most scenarios, would *suggest* that the agronomic rate was exceeded. However, it was not possible to calculate an accurate application rate to verify or refute that notion for any of these events, as it is not known if additional nutrients were being applied (or at what rate, if they were) to the sites from manure and/or chemical fertilizers in those and the preceding three years, and the nitrogen requirement of the corn strain sown is unknown.

* DRAFT – DO NOT QUOTE OR CITE *

Table 10. Annual Ruane Farm application rates (dry tons/acre).

Land Application Date	Field 8	Field 8A	Field 9
November 1987	1.25		
May 1988	2.57		4.47
October 1988	0.67		
November 1988	1.26		
March 1989	1.30		
April 1989		4.39	
May 1989			2.52
November 1989	2.30		
March 1990	1.30		
April- 1990	8.57		
November 1990			5.55
December 1990			5.55

During this period the cadmium concentration in the sludge averaged 9.03 mg/kg, dry weight, within a range of 5.6 – 18.7 mg/kg, dry wt.; and the lead concentration in the sludge averaged 382.45 mg/kg, dry wt., within a range of 49.8 – 791.0 mg/kg, dry wt. All cadmium concentrations met all former and current regulatory standards. The lead concentrations never exceeded the federal or Vermont regulatory standards in effect at the time (1000 mg/kg, dry wt.) or the current 503.13 – Table 1 ceiling concentration of 840 mg/kg, dry wt., but the majority did exceed the current standard (Vermont and 503.13 – Table 3) of 300 mg/kg, dry wt. The Vermont APLR for cadmium (0.45 lbs Cd/acre-year) was never exceeded in any 365 day period during the sites use, nor was the federal APLR for lead (18.67 lbs Pb/acre-year) ever exceeded; and indeed, the total cumulative mass of each pollutant applied to the sites over the three years of their use do not even exceed the annual pollutant loading limits.

In 1988, Mr. Ruane began to notice health changes in his dairy herd. In a proceeding before the Waste Facility Panel (appeal of City of Rutland Interim Certification #I9125, 1992), Mr. Ruane testified that his cows acted arthritic, lost weight, aborted calves and wouldn't breed back, and there appeared to be a high mortality rate. In addition, Mr. Ruane testified that the corn crop planted in the spring of 1989 on Site #9 failed after having had 2.52 dry tons/acre of biosolids applied. However, the same seed planted on the other two sites that year produced successful corn crops, despite Site #8 having received an application of biosolids of 1.3 dry tons/acre and Site #8A having received nearly twice the Site #9 loading at 4.39 dry tons/acre. Subsequently, over the next year relations between the City and Mr. Ruane deteriorated over these and numerous other issues, and the use of the Ruane Farm for biosolids management ceased, with the last applications occurring in December 1990. Subsequently, all sludge produced by the City's WWTF has been disposed in landfills.

Investigations of Mr. Ruane's claims were conducted by the Section and the (then) Department of Agriculture, Food, and Markets (DAFM), but only very limited documentation of findings could be located in the Section's files, as the majority were lost during the Tropical Storm Irene flooding of the Section's offices in Waterbury. The remaining information regarding the Section's investigation includes limited soil (Table 11) and groundwater (Table 12) data from that period. All soil data apparently date from post-December 1990, which indicate a *potential* concern regarding the cadmium and lead concentrations in soil, which are slightly higher than the range typical for the soil types present on the

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

sites (the *potential concern* is primarily because no background native soil data for the site could be found for comparison with the biosolids amended soil concentrations).

The few groundwater data available do indicate that the cadmium and lead concentration greatly exceeded current groundwater protection standards. Those standards were higher in 1989 than today, and although a copy of the standards in effect at the time could not be located, the lead and cadmium concentrations bold highlighted in Table 12 still exceed any groundwater standards known to have been in effect in any jurisdiction at that time. Records establishing the definitive location of the monitoring wells could not be located either, although a sketched site plan depicting general well locations indicates that there were two monitoring wells associated with the sites, both on Site #9 - Well 9 East was the upgradient well and Well 9 West was the down gradient well. Again, no pre-application background groundwater data could be located, the sketch map does not show any wells located on either Site 8 or Site 8A, and no groundwater monitoring data for those sites is in the Section's files. It should also be noted that this area of Clarendon has historically been the focus of investigations and enforcement actions taken by the DEC against several industrial facilities over incidents of illegal waste management and disposal. Residents of North Clarendon, well removed from the vicinity of the Ruane farm, have also engaged VDOH to investigate what they perceive to be an unusual cluster of relatively rare cancers in the general area. VDOH found that there was not a statistically significant increase in the local cancer rate.

However, relative to these local health concerns as they relate to the Ruane situation; the General Electric plant located on Windcrest Rd., about ½ mile directly uphill of Site 9 on the Ruane Farm, operated an unlined landfill at the plant's location from 1979 to 1986 in which lead and other metal hydroxide sludges generated by the G.E. facility were disposed, and G.E. was fined \$30,000 in 1989 for illegally disposing of lead contaminated wastes at the facility. The impact of those activities on groundwater flowing beneath the Ruane Farm and the potential that they are the source of the lead contamination is unknown, although the presence of significantly elevated lead concentrations in the upgradient monitoring well lends substantial credence to the position that biosolids managed on the farm were not the source. It must also be noted that the lead and cadmium concentrations in the groundwater samples taken from the wells on Site #9 were already several orders of magnitude above standards prior to any biosolids being applied to that site, where the April 1988 lead concentrations were all approximately 17 mg/l and the cadmium concentrations were also elevated, yet biosolids were not present on Site #9 until May of that year (although some biosolids had been both stored in a PVC lined concrete bunker and relatively lightly applied on Site #8, nearly ½ mile from the Site #9 monitoring wells, in November 1987) – a fact that essentially precludes biosolids as being the source of the groundwater contamination. An analysis of the corn crop grown on each of the sites during the summer of 1989 yielded results that were below analytical detection limits for both cadmium and lead (the detection limits were not reported). Thallium and other unusual metals of similar toxicity to cattle were not being used by any area industries at the time; so although not subjected to an analysis for those pollutants, their presence in any significant concentration in the sludge would not be expected.

Table 11. Ruane Farm: post-application cadmium (Cd) and lead (Pb) soil concentrations (mg/kg, dry wt.).

Site	Soil Cd	Typical Natural Soil Cd Range	Soil Pb	Typical Natural Soil Pb Range
8	0.78		22.3	
8A	0.75	0.55 - 0.85	21.0	8.1 - 19.9
9	0.88	0.05	21.1	0.1 17.7

September 2015

* DRAFT - DO NOT QUOTE OR CITE *

Table 12. Concentrations (mg/L) of lead (Pb) and cadmium (Cd) in Ruane Farm groundwater.

Monitor Well	Test Date	Pb	Cd	Notes
9	4/26/1988	17.1	0.43	Site #9. Specific well not identified
9	4/26/1988	16.5	1.28	Site #9. Specific well not identified
9	6/3/1988	< 5.0	< 1.0	Site #9. Specific well not identified
9E	5/2/1988	17.0	< 1.0	
9E	5/2/1988	17.0	< 1.0	duplicate of previous test
9E	4/28/1989	< 1.0	< 1.0	•
9E	4/23/1990	29.0	< 0.2	
9 W	5/2/1988	8.0	< 1.0	
9 W	4/28/1989	< 1.0	< 1.0	
9W	4/23/1990	< 5.0	0.9	
Preventive Act	ion Limits	.0015	.0025	
Enforcement Standards		.015	.005	VT Groundwater Protection Standards

The DAFM investigation related to Mr. Ruane's concerns regarding his herd's health was conducted by two of that Department's employees. Their report to the Commissioner of DAFM, while non-conclusive as to an assignment of cause, did specifically note several issues and deficiencies in Mr. Ruane's operations, including:

- Anecdotal evidence that his farm management was marginal;
- Anecdotal evidence that the cause of the crop failure on Site #9 in 1988 was the result of sowing seed on soil that was too wet;
- Cows were aborting calves and not breeding back;
- The "sick" animal at the farm at the time of the investigation had a number of calving problems, including an infected uterus:
- The herd had a history of foot problems, including elongated toes;
- Silage quality was marginal;
- The recommended feeding program for lactating dairy animals was not being observed;
- The one forage sample analyzed had an elevated copper content, although it was lower than what the NRC considers to be toxic to dairy cattle;
- A cull rate of 50 animals over three years was not unusual (given the size of the herd), as a cull rate of 25% 30% is the average range; and,
- That Mr. Ruane was a livestock transporter and operated an open herd, whereby numerous head were shuttled on and off the farm.

The report did state however, that not enough testing of forage had been conducted and that the link between the herd's water supply, groundwater contamination, and sludge management should be investigated further. The Section is unable to locate any documentation that these additional investigations were conducted. Other testimony presented to the Waste Facility Panel by Mr. Ruane (also re: appeal of City of Rutland Interim Certification #I9125, 1992) indicated that an autopsy of one deceased cow and blood tests on several other sick cows was apparently conducted at Cornell University at Mr. Ruane's initiative; but again, no reports of the results could be located. It must also be noted that Mr. Ruane claimed a misunderstanding in the information provided to the DAFM investigation team, in that he also testified in the same Waste Facility Panel proceeding that the feeding program he had related was what he provided in each feeding (done three times each day) and were not the daily aggregate totals

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

as the report to the Commissioner suggested. The Section has not been able to confirm or refute Mr. Ruane's testimony.

Ultimately, neither the Section's or the DAFM investigations were able to establish any definitive link between the use of Mr. Ruane's fields for biosolids management and the adverse health conditions experienced by his herd.

IX. Septage

Any regulatory reform for residual waste management must consider the issues surrounding septage management in Vermont. In 2014, more than 47,000,000 gallons of septage was managed in Vermont, of which approximately 99% was pumped from the tanks of Vermont residences. Of that total volume, approximately 6.65 million gallons was managed via direct application to approximately 250 acres of agricultural lands, following stabilization with hydrated lime to achieve the Class B pathogen reduction standard (See Appendix 3: Table A-6).

The average concentration of contaminants in Vermont generated septage, as determined from a continually updated database (comprised of 1293 data points as of April 2015), is provided in Table 13.

Table 15. Average metals concentrations (mg/kg, drv wt.) and solids percentage (%) in septa	trations (mg/kg, dry wt.) and solids percentage (%) in septage	dry wt.)	mg/kg.	e metals concentrations	Table 13. Averag
---	--	----------	--------	-------------------------	------------------

Parameter	Concentration
As	7.58
Cd	5.39
Cr	37.3
Cu	730.
Hg	1.62
Mo	31.0
Ni	30.8
Pb	76.7
Se	7.3
Zn	1122.
% solids	2.41

There is relatively little difference in composition between septage that is directly applied to the land in comparison to the biosolids produced in a WWTF. Although the treatment of sewage and digestion of sludge will result in greater decomposition of many CECs due to the higher operating temperatures, septage that has accumulated over a number of years in a septic tank has also undergone a significant level of anaerobic digestion, albeit at a lower temperature. However, insofar as decomposition of the organic components are concerned, the degree of digestion achieved in a septic tank is only slightly less than that achieved in an anaerobic digester due to the significantly longer detention time, and lime stabilization provides essentially the same degree of pathogen reduction as is provided by anaerobic digestion to Class B pathogen reduction standards.

As an aside, four of the operators of septage land application programs have stated their intention to retire within the next five to seven years. The discontinuance of these four land application programs will entail

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

the loss of approximately 140 acres permitted for this use. All four facilities are located in areas of the state where the need to utilize other options for septage disposal will entail significantly longer haul distances to facilities that accept septage.

On average, operators of septage land application programs utilize approximately 32% of their maximum permitted application capacity each year. Put into perspective, the volume actually applied if the maximum permitted application capacity were to be used represents loading each of the 250 acres with the approximate equivalent of a 1.7" rain event spread out over about a six month period. By comparison, the septic system for a four bedroom home located on soils with midrange permeability, loads the approximate equivalent of a 3" rain event each year to the area of the leachfield – essentially the same as the hydraulic loading of land application sites during those periods of the year when they can be used. (see Table 14). Because the amount of liquid applied to a site in each application event is so low, the Section has never observed or been able to confirm a report of the direct runoff of septage from any site since enhanced regulatory oversight was implemented nearly 25 years ago. This is further supported by monitoring that was conducted as permit requirements in the late 1990s both upstream and downstream of septage (and biosolids) land application sites proximate to a surface water, in both dry and wet weather conditions, where analyses for bacterial contamination and nitrogen contamination showed no discernable difference in water quality between the sampling locations and in some cases actually detected greater concentrations upstream of the sites than was found at the downstream sampling points.

Table 14. Comparison of typical permitted loading rate for various septage management options

Septage Management System	Typical Permitted Loading Rate (gal/ft²/day)
direct land application	0.2 (see Note 1)
single residence leachfield	2.0 (see Note 2)
indirect discharge leachfield	0.5 (see Note 3)
Note 1 – based on full use of a maximum application	
Note 2 – single residence of four people, median pe	ermeability soils
Note 3 – system design flow >6,500 gal/day, media	an permeability soils
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P

In developing the future strategy for septage management, regardless of one's position on the issue of its management via direct land application, the greater picture of septage management in Vermont, in general, must be considered. Currently, the capacity of WWTFs to accept septage varies widely in the state. As is evident from the map of facilities (Figure 1, on page 5), there are many areas of Vermont where there is very limited, or no capacity at local WWTFs to accept septage. The greatest volume capacity for septage receiving is in the Chittenden County area, the area of the state with the greatest percentage of its population residing and working in areas served by centralized sewage collection systems (apx. 65%). Both the Northeast Kingdom and the southwestern portions of the state face a severe lack of facilities for septage management. This leaves but two options for the disposal of the majority of septage generated in Vermont – land application, or a long transportation distance and cost to the nearest incineration facility or WWTF that will accept the septage. As fuel costs and WWTF operating costs increase, pumping and tipping fees rise at a commensurate rate. Septage haulers, out of necessity, must pass the associated costs of pumping, transporting, and disposing a tank's contents on to the customer. The potential downside of a radical increase in the cost of septage disposal is that homeowners will delay or refrain entirely from having septic tank maintenance done, thereby exacerbating the incidence of septic system failures. This will mainly be driven by the inability of homeowners to pay a sizable lump sum (often \$300 or more) to have their septic tank pumped; as opposed to making small monthly or quarterly payments, as is the case with residences that are on municipal sewer systems.

* DRAFT – DO NOT QUOTE OR CITE *

One Vermont municipality, the Town of Londonderry, has addressed this situation by developing and permitting a land application site for the management of locally generated septage. Approximately 200,000 gallons of septage is now managed at this site annually, at a significantly lower cost than would be incurred by transporting it to the next nearest facilities that accept septage, in Bellows Falls or Springfield. As a side benefit, the Town's site, which is located on the former cover material borrow area adjacent to the old, now closed Town landfill, has been successfully reclaimed and now bears an excellent vegetated cover which has virtually eliminated the severe erosion that was occurring on the site previous to its reclamation. The availability of land application as a more cost effective disposal option, which can provide additional side benefits, must therefore be considered.

The Section has long advocated the development of a state-wide program under which owners of septic systems would be billed easily affordable amounts on a regular cycle (monthly or quarterly), and the fees placed in an escrow account which would then be used to reimburse septage haulers for servicing systems on a regular basis at appropriate intervals.

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

X. References

- American Society for Microbiology. 2011. "Land Application of Organic Residuals: Public Health Threat or Environmental Benefit?" http://www.asm.org/index.php/component/content/article?id=7489:biorep8-2011
- Andrews, WJ, JR Masoner, and IM Cozzarelli. 2012. "Emerging Contaminants at a Closed and an Operating Landfill in Oklahoma." *Ground Water Monitoring & Remediation* 32(1): 120-130.
- Bassil, RJ, II Bashour, FT Sloiman and YA Abou-Jawdoh. 2013. "Antibiotic uptake by plants from manure-amended soils." *Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes* 48(7): 570-574. http://dx.doi.org/10.1080/03601234.2013.774898
- Beecher, N. 2008. "A Greenhouse Gas Emissions Analysis of Biosolids Management Options for Merrrimack, NH." Northeast Biosolids and Residuals Association (NEBRA). April 2008. http://www.nebiosolids.org/uploads/pdf/MerrmckC02AnalysFINALApr08.pdf
- Beecher, N. 2012. "Current Biosolids Use, Regulatory Trends, and Public Perception in New England." Journal of the New England Water Environment Association 46(3) (Fall 2012): 17-25.
- Blair, BD, JP Crago, CJ Hedman and RD Klaper. 2013. "Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern." *Chemosphere*, 1–8.
- Boxall, ABA, and P Johnson. 2006. "Uptake of Veterinary Medicines from Soils into Plants." *Journal of Agricultural* (3): 2288–2297. http://pubs.acs.org/doi/abs/10.1021/jf053041t
- Brooks, JP, SL Maxwell, C Resnging, CP Gerba and IL Pepper. 2007. "Occurrence of antibiotic-resistent bacteria and endotoxin associated with the land application of biosolids." *Canadian Journal of Microbiology* 53: 616-622.
- Brooks, JP, MR McLaughlin, CP Gerba and IL Pepper. 2012. "Land Application of Manure and Class B Biosolids: An Occupational and Public Quantitative Microbial Risk Assessment." *Journal of Environmental Quality* 41(6): 2009-2023.
- Brown, SL, RL Chaney, J Hallfrish, JA Ryan and WR Beti. 2004. "In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium." *Journal of Environmental Quality* 33: 522–531.
- Brown, S, M Sprenger, A Maxemchuk and H Compton. 2005. "Ecosystem Function in Alluvial Tailings after Biosolids and Lime Addition." *Journal of Environmental Quality* 34: 139-148.
- Chambers BJ, FA Nicholson, M Aitken, E Cartmell, and C Rowlands. 2003. "Benefits of Biosolids to Soil Quality and Fertility. *Water and Environment Journal* 17(3): 162-167

September 2015 * DRAFT – DO NOT QUOTE OR CITE *

- Calderón-Preciado, D, V Matamoros, and JM Bayona. 2011. "Occurrence and Potential Crop Uptake of Emerging Contaminants and Related Compounds in an Agricultural Irrigation Network." *The Science of the Total Environment* 412-413 (December 15): 14–9. http://www.ncbi.nlm.nih.gov/pubmed/22030249
- Canadian Council of Ministers of the Environment. 2009. The Biosolids Emissions of Assessment Model (BEAM): A Method for Determining Greenhouse Gas Emissions from Canadian Biosolids Management Practices. PN 1432. http://www.ccme.ca/assets/pdf/beam_final_report_1432.pdf
- Chambers BJ, FA Nicholson, M Aitken, E Cartmell, and C Rowlands. 2003. "Benefits of Biosolids to Soil Quality and Fertility. *Water and Environment Journal* 17(3): 162-167.
- Chaney, RL, J Ryan, G O'Connor. 1996. "Organic contaminants in municipal biosolids: Risk assessment, quantitative pathways analysis, and current research priorities." *Science of the Total Environment* 185: 187-216.

 http://www.researchgate.net/publication/223925289 Organic contaminants in municipal biosolids risk assessment quantitative pathways analysis and current research priorities
- Chaney, RL, JA Ryan, and SL Brown. 1999. "Environmentally acceptable endpoints for soil metals". pp. 111-155. *In* W.C. Anderson, R.C. Loehr and D. Reible (eds.) Environmental Availability of Chlorinated Organics, Explosives, and Metals in Soils. *American Academy of Environmental Engineering*, Annapolis, MD.
- Clark, BO and SR Smith. 2011. Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. *Environment Internationl* 37: 226-247. http://www.bibra-information.co.uk/site_files/Clarke%20%26%20Smith%202010.pdf
- Cortés, JM, E Larsson, and JA Jönsson. 2013. "Study of the Uptake of Non-Steroid Anti-Inflammatory Drugs in Wheat and Soybean after Application of Sewage Sludge as a Fertilizer." *The Science of the Total Environment* 449 (April 1): 385–9. http://www.ncbi.nlm.nih.gov/pubmed/23454699
- Dodgen, LK, J Li, D Parker, and JJ Gan. 2013. "Uptake and Accumulation of Four PPCP/EDCs in Two Leafy Vegetables." *Environmental Pollution (Barking, Essex : 1987)* 182C (July 30): 150–156. http://www.ncbi.nlm.nih.gov/pubmed/23911624
- Dolliver, H, K Kumar, and S Gupta. 2007. "Sulfamethazine Uptake by Plants from Manure-Amended Soil." *Journal of Environment Quality* 36 (4): 1224–1230. https://www.agronomy.org/publications/jeq/abstracts/36/4/1224
- Drury, B, J Scott, EJ Rosi-Marshall, JJ Kelly. 2013. "Triclosan Exposure Increases Triclosan Resistance and Influences Taxonomic Composition of Benthic Bacterial Communities." *Environmental Science & Technology* 47: 8923-8930. http://www.ncbi.nlm.nih.gov/pubmed/23865377
- Edwards, M, E Topp, CD Metcalfe, H Li, N Gottschall, P Bolton, W Curnoe, M Payne, A Beck, S Kleywegt, DR Lapen. 2009. "Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field" *Science of the Total Environment* 407: 4220-4230.

September 2015

- Eggen, T, TNAsp, K Grave, and V Hormazabal. 2011. "Uptake and Translocation of Metformin, Ciprofloxacin and Narasin in Forage- and Crop Plants." *Chemosphere* 85 (1): 26–33. http://www.ncbi.nlm.nih.gov/pubmed/21757221
- Eggen, T, ES Heimstad, AO Stuanes, and HR Norli. 2013. "Uptake and Translocation of Organophosphates and Other Emerging Contaminants in Food and Forage Crops." *Environmental Science and Pollution Research International* 20 (7) (July): 4520–31.

 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3695667&tool=pmcentrez&rendertype=abstract
- Fries, GF. 1996. "Ingestion of Sludge Applied Organic Chemicals by Animals." *The Science of the Total Environment* 185 (1-3) (June 21): 93–108. http://www.ncbi.nlm.nih.gov/pubmed/8643962
- Gottschall, N, E Topp, C Metcalfe, M Edwards, M Payne, S Kleywegt, P Russell, and DR Lapen. 2012. "Pharmaceutical and Personal Care Products in Groundwater, Subsurface Drainage, Soil, and Wheat Grain, Following a High Single Application of Municipal Biosolids to a Field." *Chemosphere* 87 (2): 194–203. http://www.sciencedirect.com/science/article/pii/S0045653511013877
- Hale, RC, MJ La Guardia, E Harvey, D Chen, TM Mainor, DR Luellen, and LS Hundal. 2012. "Polybrominated Diphenyl Ethers in U.S. Sewage Sludges and Biosolids: Temporal and Geographical Trends and Uptake by Corn Following Land Application." *Environmental Science & Technology* 46 (4) (February 21): 2055–63. http://www.ncbi.nlm.nih.gov/pubmed/22295899
- Harrison, EZ, SR Oakes, MHysell, and A Hay. 2006. "Organic Chemicals in Sewage Sludges." *The Science of the Total Environment* 367 (2-3) (August 31): 481–97. http://www.ncbi.nlm.nih.gov/pubmed/16750559
- Harrison, EZ, SR Oakes. 2002 "Investigation of Alleged Health Incidents Associated With Land Application of Sewage Sludges." *New Solutions* Vol. 12(4) 387-408. http://cwmi.css.cornell.edu/Sludge/Newsolutions.pdf
- Hartman WJ Jr. 1975. "An evaluation of land treatment of municipal wastewater and physical siting of facility installations". U.S. Department of the Army, Washington, DC
- Heidler, J & RU Halden. 2007. "Mass balance assessment of triclosan removal during conventional sewage treatment." *Chemosphere*, 66(2), 362–369. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16766013
- Herklotz, PA, P Gurung, B Vanden Heuvel, and CA Kinney. 2010. "Uptake of Human Pharmaceuticals by Plants Grown Under Hydroponic Conditions." *Chemosphere* 78 (11): 1416–1421. http://www.ncbi.nlm.nih.gov/pubmed/20096438
- Holling, CS, JL Bailey, BVanden Heuvel, and CA Kinney. 2012. "Uptake of Human Pharmaceuticals and Personal Care Products by Cabbage (Brassica Campestris) from Fortified and Biosolids-Amended Soils." *Journal of Environmental Monitoring* 14 (11) (November): 3029–36. http://www.ncbi.nlm.nih.gov/pubmed/23051741

- Holzem, RM, Stapleton, HM, and Gunch, CK. 2014. "Determining the Ecological Impacts of Organic Contaminants in Biosolids Using a High-Throughput Colorimetric Denitrification Assay: A Case Study with Antimicrobial Agents". *Environmental Science and Technology* Feb. 4, 2014.
- Jjemba, PK. 2002. "The Potential Impact of Veterinary and Human Therapeutic Agents in Manure and Biosolids on Plants Grown on Arable Land: a Review." *Agriculture, Ecosystems & Environment* 93 (1-3): 267–278. http://linkinghub.elsevier.com/retrieve/pii/S0167880901003504
- Karnjanapiboonwong, A, DA Chase, JE Cañas, WA Jackson, JD Maul, AN Morse, and TA Anderson. 2011. "Uptake of 17α-Ethynylestradiol and Triclosan in Pinto Bean, Phaseolus Vulgaris." *Ecotoxicology and Environmental Safety* 74 (5) (July): 1336–42. http://www.ncbi.nlm.nih.gov/pubmed/21513980
- Kinney, CA, ET Furlong, DW Kolpin, MR Burkhardt, SD Zaugg, SL Werner, JP Bossio, and MJ Benotti. 2008. "Bioaccumulation of Pharmaceuticals and Other Anthropogenic Waste Indicators in Earthworms from Agricultural Soil Amended with Biosolid or Swine Manure." *Environmental Science Technology* 42 (6): 1863–1870.
- Kinney, CA, ET Furlong, SD Zaugg, MR Burkhard, SL Werner, JD Cahill, and GR Jorgensen. 2006. "Survey of Organic Wastewater Contaminants in Biosolids Destined for Land Application." *Environmental Science Technology* 40 (23): 7207–7215.

 http://www.ncbi.nlm.nih.gov/pubmed/17180968
- Kipper, K, KHerodes, M Lillenberg, L Nei, E Haiba, and SV Litvin. 2010. "Plant Uptake of Some Pharmaceuticals Commonly Present in Sewage Sludge Compost." 2nd International Conference on Chemical Biological and Environmental Engineering (ICBEE 2010): 261–264.
- Kjeldsen, P, MA Barlaz, AP Rooker, A Baun, A Ledin and TH Christensen. 2002. "Present and Long-Term Composition of MSW Landfill Leachate: A Review. *Critical Reviews in Environmental Technology* 32(4):297-336.
- Kolpin, DW, ET Furlong, MT Meyer, EM Thurman, SD Zaugg, LB Barber, HT Buxton. 2002. "Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. *Environmental Science Technology*, 36: 1202-1211.
- Kumar, K, SC Gupta, SK Baidoo, Y Chander, and CJ Rosen. 2005. "Antibiotic Uptake by Plants from Soil Fertilized with Animal Manure." *Journal of Environmental Quality* 34 (6): 2082–2085. http://www.ncbi.nlm.nih.gov/pubmed/16221828
- Langdon, KA, M St J Warne, RJ Smernik, A Shareef, and RS Kookana. 2012. "Field Dissipation of 4-Nonylphenol, 4-t-Octylphenol, Triclosan and Bisphenol A Following Land Application of Biosolids." *Chemosphere* 86 (10) (March): 1050–8. http://www.ncbi.nlm.nih.gov/pubmed/22196087
- Lapen, DR, E Topp, CD Metcalfe, H Li, M Edwards, N Gottschall, P Bolton, W Curnoe, M Payne, A Beck, 2008. "Pharmaceutical and personal care products in tile drainage following land application of liquid municipal biosolids". *Science of the Total Environment* 399, 50–65.

September 2015

- * DRAFT DO NOT QUOTE OR CITE *
- Leu, S-Y, L Chan, and MK Stenstrom. 2012. "Toward Long Solids Retention Time of Activated Sludge Processes: Benefits in Energy Saving, Effluent Quality, and Stability." *Water Environment Research* 84 (1): 42–53. http://www.ingentaconnect.com/content/wef/wer/2012/00000084/00000001/art00006
- Lorber, M. 2008. "Exposure of Americans to polybrominated diphenyl ethers". *Journal of Exposure Science & Environmental Epidemiology* 18(1): 2-19. http://www.ncbi.nlm.nih.gov/pubmed/17426733
- Macherius, A, T Eggen, WG Lorenz, T Reemtsma, U Winkler, and M Moeder. 2012. "Uptake of Galaxolide, Tonalide, and Triclosan by Carrot, Barley, and Meadow Fescue Plants." *Journal of Agricultural and Food Chemistry* 60 (32) (August 15): 7785–91. http://www.ncbi.nlm.nih.gov/pubmed/22813076
- Macherius, A, T Eggen, W Lorenz, M Moeder, J Ondruschka, and T Reemtsma. 2012. "Metabolization of the Bacteriostatic Agent Triclosan in Edible Plants and Its Consequences for Plant Uptake Assessment." *Environmental Science Technology* 46: 10797–804.
- Moss, LH, E Epstein, T Logan, SD Frank and K Scott. 2002. "Evaluating Risks and Benefits of Soil Amendments Used in Agriculture." Water Environment Research Foundation (WERF) Report: 99-PUM-1RD. ISBN: 9781843396512.
- National Research Council (NRC). 1996. *Use of Reclaimed Water and Sludge in Food Crop Production*, Washington DC: National Academy Press. http://www.nap.edu/catalog.php?record_id=5175
- National Research Council (NRC). 2002. "Biosolids Applied to Land: Advancing Standards and Practices." Washington, DC: The National Academies Press. http://www.casaweb.org/documents/2014/2002-national-academy-of-science-biosolids report.pdf
- North East Biosolids and Residuals Associateion (NEBRA). 2007. A National Biosolids Regulation, Quality, End Use and Disposal Survey. Final Report. July 20, 2007.
- Overcash, M and D Pal. 1979. Design of land treatment systems for industrial wastes. Ann Arbor Sci., Ann Arbor, MI.
- Overcash, M, RC Sims, JL Sims, and JKC Nieman. 2005. "Beneficial Reuse and Sustainability: The Fate of Organic Compounds in Land-Applied Waste." *Journal of Environmental Quality* 34 (1): 29–41. http://www.ncbi.nlm.nih.gov/pubmed/15647532
- Pannu, MW, GS Toor, GA O'Connor, and PC Wilson. 2012. "Toxicity and Bioaccumulation of Biosolids-Borne Triclosan in Food Crops." *Environmental Toxicology and Chemistry / SETAC* 31 (9) (September): 2130–7. http://www.ncbi.nlm.nih.gov/pubmed/22761010
- Pepper, IL, H Zerzghi, JP Brooks, and CP Gerba. 2008. "Sustainability of Land Application of Class B Biosolids." *Journal of Environmental Quality* 37 (5 Suppl): S58–67. http://www.ncbi.nlm.nih.gov/pubmed/18765778

September 2015

- Pepper, IL, JP Brooks, RG Sinclair, PL Gurian, CP Gerba. 2010. Pathogens and Indicators in United States Class B Biosolids: National and Historic Distributions. *Journal of Environmental Quality* 39: 2185-2190.
- Phillips, P & A Chalmers. 2009. "Wastewater Effluent, Combined Sewer Overflows, and Other Sources of Organic Compounds to Lake Champlain." *Journal of the American Water Resources Association*, 45(1), 45–57.
- Phillips, PJ, AT Chalmers., JL Gray, DW Kolpin, WT Foreman, & GR Wall. 2012. "Combined Sewer Over flows: An Environmental Source of Hormones and Wastewater Micropollutants." Environmental Science and Technology 46: 5336-5343.
- Rideout, K, and K Teschke. 2004. "Potential for Increased Human Foodborne Exposure to PCDD/F When Recycling Sewage Sludge on Agricultural Land." *Environmental Health Perspectives* 112 (9) (April 26): 959–969. http://www.ehponline.org/ambra-doi-resolver/10.1289/ehp.6802
- Roberts, P., JP Roberts, and DL Jones. 2006. "Behaviour of the Endocrine Disrupting Chemical Nonylphenol in Soil: Assessing the Risk Associated with Spreading Contaminated Waste to Land." *Soil Biology and Biochemistry* 38 (7) (July): 1812–1822. http://linkinghub.elsevier.com/retrieve/pii/S0038071706000599
- Rossi-Marshall, D, DW Kincaid, HA Bechtold, TV Royer, M Rojas, JJ Kelly. 2013. "Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms." *Ecological Applications* 23(3): 583-593.
- Rusin, PA, SL Maxwell, JP Brooks, CP Gerba, IL Pepper. 2003. "Evidence for the absence of *Staphylococcus aureus* in land applied biosolids." *Environmental Science & Technology* 37(18): 4027-30.http://www.ncbi.nlm.nih.gov/pubmed/14524431
- Ryan, JA, WR Berti, SL Brown, SW Casteel, RL Chaney, M Doolan, P Grevatt, JG Hallfrisch, M Maddaloni, D Mosby. 2004. "Reducing children's risk to soil lead: summary of a field experiment." *Journal of Environmental Science and Technology* 38(1):18A-24A.
- Sabourin, L, A Beck, PW Duenk, S Kleywegt, DR Lapen, H Li, CD Metcalfe, M Payne, and E Topp. 2009. "Runoff of Pharmaceuticals and Personal Care Products Following Application of Dewatered Municipal Biosolids to an Agricultural Field." *Science of the Total Environment* 407: 4596–4604.
- Sabourin, L, P Duenk, S Bonte-Gelok, M Payne, DR Lapen, and E Topp. 2012. "Uptake of Pharmaceuticals, Hormones and Parabens into Vegetables Grown in Soil Fertilized with Municipal Biosolids." *The Science of the Total Environment* 431 (August 1): 233–6. http://www.ncbi.nlm.nih.gov/pubmed/22687432
- Scandura and Sobsey. 1997. "Viral and bacterial contamination of groundwater from on-site sewage treatment systems". *Water Science & Technology* 35(11-12): 141-146. http://www.sciencedirect.com/science/article/pii/S0273122397002497

September 2015

- Schiffman, SS, JM Walker, P Dalton, TS Lorig, JH Raymer, D Shusterman and CM Williams. 2004. "Potential Health Effects of Odor from Animal Operations, Wastewater Treatment, and Recycling of Byproducts." *Journal of Agromedicine* 9(2): 397-403.
- Snyder, EH, and GA O'Connor. 2013. "Risk Assessment of Land-Applied Biosolids-Borne Triclocarban (TCC)." *The Science of the Total Environment* 442 (January 1): 437–44. http://www.ncbi.nlm.nih.gov/pubmed/23183124
- Snyder, EIH, GA O'Connor, and DC McAvoy. 2011. "Toxicity and Bioaccumulation of Biosolids-Borne Triclocarban (TCC) in Terrestrial Organisms." *Chemosphere* 82 (3) (January): 460–7. http://www.ncbi.nlm.nih.gov/pubmed/21035164
- Southworth, RM. 1995. "The Part 503 Land Application Pollutant Limits for Arsenic." U.S. Environmental Protection Agency, Washington, DC. http://www.casaweb.org/documents/2011/part-503-land-application-limits-arsenic.pdf
- Specter, M. (1992, June 29). Ocean Dumping Is Ending, but Not Problems; New York Can't Ship, Bury or Burn Its Sludge, but No One Wants a Processing Plant. *New York Times*. Retrieved from: http://www.nytimes.com/1992/06/29/nyregion/ocean-dumping-ending-but-not-problems-new-york-can-t-ship-bury-burn-its-sludge.html?pagewanted=all&src=pm
- Trapp, S, and T Eggen. 2013. "Simulation of the Plant Uptake of Organophosphates and Other Emerging Pollutants for Greenhouse Experiments and Field Conditions." *Environmental Science and Pollution Research International* 20 (6) (June): 4018–29. http://www.ncbi.nlm.nih.gov/pubmed/23212267
- U.N. Human Settlements Programme and Greater Moncton Sewerage Commission. 2008. "Global Atlas of Excretia, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource."

 http://esa.un.org/iys/docs/san_lib_docs/habitat2008.pdf
- U.S. Census Bureau, Housing and Household Economic Statistics Division, Last Revised: October 31, 2011. http://www.census.gov/hhes/www/housing/census/historic/sewage.html
- U.S. Department of Agriculture (USDA). 2009. 2007 Census of agriculture. AC-07-A-51. Volume 1. USDA, National Agricultural Statistics Service. Geographic Area Series, Washington, DC. http://www.agcensus.usda.gov/Publications/2007/Full Report/usv1.pdf
- U.S. Environmental Protection Agency (EPA). 1993. Standards for the Use or Disposal of Sewage Sludge Title 40 of the Code of Federal Regulations (CFR) Part 503. http://yosemite.epa.gov/r10/water.nsf/NPDES+Permits/Sewage+S825/\$FILE/503-032007.pdf
- U.S. Environmental Protection Agency (EPA). 1994. *A Plain English Guide to the EPA Part 503 Biosolids*, Washington, DC: USEPA Office of Wastewater Management. EPA-832-R-93-003 http://water.epa.gov/scitech/wastetech/biosolids/503pe_index.cfm

September 2015

- U.S. Environmental Protection Agency (EPA). 1995. A Guide to the Biosolids Risk Assessments for the EPA Part 503 Rule, Washington, DC: USEPA Office of Wastewater Management. EPA-832-B-93-005. http://water.epa.gov/scitech/wastetech/biosolids/503rule_index.cfm
- U.S. Environmental Protection Agency (EPA). 2003. EPA Makes Final Decision on Dioxin in Sewage Sludge used in Land Applications. Press Release, 10/17/2003. http://yosemite.epa.gov/opa/admpress.nsf/b1ab9f485b098972852562e7004dc686/209dab87e1b0a8b785256dc20050c977?OpenDocument
- U.S. Environmental Protection Agency (EPA). 2003b. December 24, 2003 letter to Joseph Mendelson, III, Legal Director, Center for Food Safety regarding Petition Seeking an Emergency Moratorium on the Land Application of Sewage Sludge, dated October 7, 2003 from G. Tracy Mehan, III, Assistant Administrator, EPA Office of Water, Washington DC.
- U.S. Environmental Protection Agency (EPA). 2009. Occurrence of Contaminants of Emerging Concern in Wastewater From Nine Publically Owned Treatment Works. August 2009. EPA-821-R-09-009.
- U.S. Environmental Protection Agency (EPA). 2009b. Targeted National Sewage Sludge Survey Sampling and Analysis Technical Report. January 2009. EPA-822-R-08-016.
- U.S. Environmental Protection Agency (EPA). 2010. Treating Contaminants of Emerging Concern -A Literature Review Database. August 2010. EPA-820-R-10-002.
- U.S. Environmental Protection Agency (EPA). 2012. Water: Sewage Sludge (Biosolids), Frequently Asked Questions. http://water.epa.gov/polwaste/wastewater/treatment/biosolids/genqa.cfm
- U.S. Environmental Protection Agency (EPA). 2013. Literature Review of Contaminants in Livestock and Poultry Manure and Implications for Water Quality. Office of Water (4304T). EPA 820-R-13-002. July 2013. http://water.epa.gov/scitech/cec/upload/Literature-Review-of-Contaminants-in-Livestock-and-Poultry-Manure-and-Implications-for-Water-Quality.pdf
- Viau, E, K Bibby, T Paez-Rubio, and J Peccia. 2011. "Toward a Consensus View on the Infectious Risks Associated with Land Application of Sewage Sludge." *Environmental Science & Technology* 45 (13) (July 1): 5459–69. doi:10.1021/es200566f. http://www.ncbi.nlm.nih.gov/pubmed/21644497
- Vermont Public Interest Research Group (VPIRG). June 1999. "On the Ground" http://www.vpirg.org/download/1999%20June%20Toxic%20Sludge%20report.pdf
- Water Environment Federation (WEF). 2004. History of Biosolids. Fact Sheet. http://www.wef.org/Biosolids/page.aspx?id=7514&ekmensel=c57dfa7b_123_0_7514_2
- Wild, SR, SJ Harrad, and KC Jones. 1994. "The Influence of Sewage Sludge Applications to Agricultural Land on Human Exposure to Polychlorinated Dibenzo-p-Dioxins (PCDDs) and -Furans (PCDFs)." *Environmental Pollution (Barking, Essex : 1987)* 83 (3) (January): 357–69. http://www.ncbi.nlm.nih.gov/pubmed/15091742

September 2015

- Wong, K, T Harrigan, and I Xagoraraki. 2012. "Leaching and Ponding of Viral Contaminants Following Land Application of Biosolids on Sandy-Loam Soil." *Journal of Environmental Management* 112 (December 15): 79–86. http://www.ncbi.nlm.nih.gov/pubmed/22885066
- u, C, AL Spongberg, JD Witter, MFang, and KP Czajkowski. 2010. "Uptake of Pharmaceutical and Personal Care Products by Soybean Plants from Soils Applied with Biosolids and Irrigated with Contaminated Water." *Environmental Science Technology* 44 (16): 6157–6161. http://www.ncbi.nlm.nih.gov/pubmed/20704212
- Wu, C, AL Spongberg, JD Witter, and BB Maruthi Sridhar. 2012. "Transfer of Wastewater Associated Pharmaceuticals and Personal Care Products to Crop Plants from Biosolids Treated Soil." *Ecotoxicology and Environmental Safety* 85 (November): 104–9. http://www.ncbi.nlm.nih.gov/pubmed/22921256
- Yager, TJB, ET Furlong, DW Kolpin, CA Kinney, SD Zaugg, MR Burkhardt. 2014. "Dissipation of Contaminants of Emerging Concern in Biosolids Applied to Nonirrigated Farmland in Eastern Colorado". *Journal of the American Water Resource Association* 50(2): 343-357.
- Yang, Y-Y, JL Gray, ET Furlong, JG Davis, RC Revello, and T Borch. 2012. "Steroid Hormone Runoff from Agricultural Test Plots Applied with Municipal Biosolids." *Environmental Science & Technology* 46 (5) (March 6): 2746–54. http://www.ncbi.nlm.nih.gov/pubmed/22283735

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table A-1: Xenobiotic organic compounds in landfill leachates (Kjeldsen et al. 2002)

Compound	Concentration Range (µg/l)
Aromatic hydrocarbons	
benzene	0.2 - 1630
toluene	1 - 12300
xylene	0.8 - 3500
ehtylbenzene	0.223
trimethylbenzenes	0.3 - 250
n-propylbenzene	0.3 - 16
t-butylbenzene	2.1 - 21
o-ethyltoluene	0.5 - 46
m-ethyltoluene	0.3 - 21
p-ethyltoluene	0.2 - 10
naphthalene	0.1 - 260
париталене	0.1 - 200
Halogenated hydrocarbons	
chlorobenzene	0.1 - 110
1,2-dichlorobenzene	0.1 - 32
1,3-dichlorobenzene	5.4 - 19
1,4-dichlorobenzene	0.1 - 26
1,2,3-trichlorobenzene	BQL
1,2,4-trichlorobenzene	4.3
hexachlorobenzene	0.025 - 10
1,1-dichloroethane	0.6 - 46
1,2-dichloroethane	<6
1,1,1-trichloroethane	0.1 - 3810
1,1,2-trichloroethane	2.5 - 16
1,1,2,2-tetrachloroethane	BQL
trans-1,2-dichloroethylene	1.6 - 6582
cis-1,2-dichloroethylene	1.4 - 470
trichloroethylene	0.5 - 750
tetrachloroethylene	0.1 - 250
dichloromethane	1 - 827
trichloromethane	1 - 70
carbontetrachloride	4 - 9
Phenols	
phenol	0.6 - 1200
ethylphenols	<300
cresols	1 - 2100
bisphenol A	200 - 400
3,5-dimethylphenol	
2,5-dimethylphenol	0.7 - 27.3
	0.4 - 4.5
2,4-dimethy;phenol	0.1 - 12.5
3,4-dimethylphenol	0.03 - 10.4
2,6-dimethylphenol	0.3 - 1.9
2-methoxyphenol	BQL

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table A-1 (Continued):

2,3-dichlorophenol	0.03 - 1.6
4-chlorophenol	0.03 - 1.0
4-chloro-m-cresol	1.2 - 10.2
3,5-dichlorophenol	0.08 - 0.63
2,3,4,6-tetrachlorophenol	0.079 - 3
Allewholough	
Alkylphenols	6.3 - 7
nonylphenol	0.5 - 7
nonylphenol monocarboxylate	0.5 - 5
Pesticides	
Ametryn	0.12
AMPA	3.8 - 4.3
Atrazine	0.16
Bentazon	0.3 - 4
Chloridazon	1.6
Chlorpropham	26
Dichlobenil	0.1 - 0.3
Fenpropimor	0.1
Glyphosphate	1.7 - 27
Hexazinon	1.3
Hydroxyatrizine	0.7 - 1.7
Hydroxysimazin	0.6 - 1.7
Isoproturon	1.2
Lindane	0.025 - 0.95
Mecoprop	0.38 - 150
MCPA	0.2 - 9.1
Propaxuron	2.6
Simazine	2.3
Tridimefon	2.1
4-CPP	15 - 19
2,4-D	1.0 - 5
2,4,5-T	BQL
2,4-DP	0.3 - 5.2
2,6-DCPP	0.7 - 1.3
Phthalates	1
monomethyl phthalate	1
dimethyl phthalate	0.1 - 7.7
diethyl phthalate	0.1 - 660
methyl-ethyl phthalate	20 - 340
mono-(2-ethylhexyl) phthalate	4 - 14
di-(2-ethylhexyl) phthalate	0.6 - 236
monobutyl phthalate	4 - 16
di-n-butyl phthalate	0.1 - 70
di-isobutyl phthalate	3 - 6
mono-benzyl phthalate	6 - 16
butylbenzyl phthalate	0.8 - 8
dioctyl phthalate	1 - 6

September 2015

2 - 14000

1.1

0.8 - 35

0.5 - 1.6

* DRAFT – DO NOT QUOTE OR CITE *

Table A-1 (Continued):

dimethoxymethane

MTBE

styrene

phthalic acid

Aromatic sulfonates naphthalene-1-sulfonate 506 - 616 naphthalene-2-sulfonate 1143 - 1188 naphthalene-1,5-disulfonate 2.5 - 51 naphthalene-1,6-disulfonate 366 - 397 naphthalene-2,7-disulfonate 129-145 2-aminonapthalene-4,8-disulfonate 73-109 p-toluenesulfonate 704-1084 **Phosphonates** 1.2 - 360 tri-n-butylphosphate triethylphosphate 15 Miscellaneous acetone 6 - 4400 2(3H)-benzothiazolone 10 - 50 camphor 20.6 - 255.2 cumen 0.3 - 7.4fenchone 7.3 - 83tetrahydrofuran 9 - 430 indane 0.2 - 20methylethylketone 110 - 6600 methyl-isobutylketone 1.1 - 176

BQL = detected below quantification limit

September 2015

Table A-2: Concentration of selected contaminants in leachate from a Vermont landfill (National Landfill Leachate Study, USGS, June 2012)

Compound	Concentration (μg/l)
	0.86
10-hydroxy-amitriptyline 19-norethindrone	
abacavir	0.68 BDL
acetaminophen	59.12
aciclovir	13.27
albuterol	0.12
alprazolam	BDL
amitriptyline	BDL
amphetamine	6.26
antipyrene	1.98
atenolol	4.57
atrazine	1.08
benzotriazole methyl-1H	11.77
benztropine	BDL
betamethasone	BDL
bupropion	BDL
caffeine	2.74
carbamazepine	2.18
carisoprodol	2.94
chlorpheniramine	0.09
cimetidine	2.92
cis-diltiazem	BDL
citalopram	BDL
clonidine	BDL
cocaine	BDL
codeine	0.28
cotinine	43.32
dehydronifedipine	1.30
delta9tetrahydrocannabinol	BDL
desvenlafaxine	2.61
dextromethorphan	0.08
diazepam	BDL
diphenhydramine	0.08
duloxetine	BDL
erythromycin	0.09
esomeprazole	BDL
ezetimibe	BDL
fadrozole	0.38
famotidine	BDL
fenofibrate	BDL
fexofenadine	
	0.48
fluconazole	2.49
fluoxetine	BDL
fluticasone	BDL
fluvoxamine	0.08
glipizide	BDL
glyburide	BDL
hydrocodone	BDL
hydrocodone-D3	0.08

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table A-2 (Continued):

hydrocortisone	BDL
hydroxyzine	BDL
iminostilbene	BDL
ketoconazole	BDL
lamivudine	0.47
lidocaine	128.63
loperamide	BDL
loratadine	0.08
lorazepam	25.68
meprobamate	1.12
metaxalone	0.76
metformin	0.91
methadone	BDL
methocarbamol	2.35
methotrexate	BDL
metoprolol	1.31
morphine	0.38
nadolol	1.15
N-desmethyldiltiazem	0.26
nevirapine	BDL
nicotine	194.45
nizatidine	BDL
nordiazepam	BDL
norfluoxetine	BDL
norfluoxetine-D6	0.09
norverapamil	BDL
orlistat	BDL
oseltamivir	0.17
oxazepam	3.59
oxycodone	BDL
paraxanthine	1.59
paroxetine	BDL
penciclovir	1.54
pentoxyfylline	1.03
phenazopyridine	BDL
phendimetrazine	0.48
phenytoin	5.14
piperonylbutoxide	0.09
prednisolone	23.02
prednisone	BDL
promethazine	BDL
propanolol	BDL
propoxyphene	BDL
pseudoephederine	40.86
quinine	BDL
rac-cis-N-desmethylsertraline	BDL
raloxifene	25.59
ranitidine	0.34
sertraline	BDL
sitagliptin	BDL
sulfadimethoxine	85.53

WASTEWATER TREATMENT SLUDGE AND SEPTAGE MANAGEMENT IN VERMONT September 2015 * DRAFT – DO NOT QUOTE OR CITE *

Table A-2 (Continued):

sulfamethizole	BDL
sulfamethoxazole	BDL
tamoxifen	BDL
temazepam	BDL
theophylline	1.71
thiabendazole	1.62
tiotropium	BDL
tramadol	1.75
triamterene	0.07
trimethoprim	BDL
valacyclovir	0.48
venlafaxine	1.72
verapamil	BDL
warfarin	0.12
	0.12

BDL = below detection limit

September 2015

Table A-3: Concentration of selected parameters in leachate from a Vermont landfill (DEC Wastewater Management Program Compliance Files, 2014)

						Pag	ge 2 of 7		
			Laborator	y Report	DATE REP	ORTED:	02/26/20)14	
CLIENT: PROJECT:				AND SOURCE STATE S	WORK ORDER: DATE RECEIVED:	1402-0 02/06	2249 5/2014		_
001 Site:	Combined AST				Date Sampled:	2/6/14	Time:	9:05	7
Parameter	12	Result	Units	Method	d Analysis D	ate/Time	Lab/Tech	NELAC	Qual.
BOD-5day		2,100	mg/L	SM20 521	10B 2/6/14	16:06	W JSS	A	
Chloride		1,700	mg/L	EPA 300	.0 2/7/14		W CM	A	
COD		4900	mg/L	Hach 800			N JGM	A	
TKN		990	mg/L	EPA 351			N CAL	A	
Arsenic, Total		0.41	mg/L	EPA 200			W RGT	N	
Cadmium, Total	4	< 0.008	mg/L	EPA 200			W RGT	A	
Chromium, Total		0.23	mg/L	EPA 200			W RGT	A	
Copper, Total		< 0.080	mg/L,	EPA 200			W RGT	A	
Lead, Total		< 0.080	mg/L	EPA 200			W RGT	N	
Mercury, Total		< 0.0002	mg/L	EPA 245.			W CM	A	
Molybdenum, Total		< 0.080	mg/L	EPA 200.			W RGT	A	
Nickel, Total		0.42	mg/L	EPA 200.			WRGT	A	
Selenium, Total		< 0.004	mg/L	SM20 311	30 1995 FNF 19		W AWM	A	
Sodium, Total		1280	mg/L	EPA 200.			W RGT	A	
Zinc, Total		1.3	mg/L	EPA 200.			W RGT	A	
Volatile Organic Co	mpounds			2111200	2710711		11 101	Α.	
Dichlorodifluorome		< 100	ug/L	EPA 8260	C 2/18/14		W MHM	Α	
Chloromethane		< 60.0	ug/L	EPA 8260			W MHM	N	
Vinyl chloride		< 40.0	ug/L	EPA 8260			W MHM	A	
Bromomethane		< 100	ug/L	EPA 8260			W MHM	A	
Chloroethane		< 100	ug/L	EPA 8260			W MHM	A	
Trichlorofluorometh	ane	< 40.0	ug/L	EPA 8260			W MHM	A	
Diethyl ether		< 100	ug/L	EPA 8260			W MHM	N.	
1,1-Dichloroethene		< 20.0	ug/L	EPA 8260			W MHM	A	
Acetone		4,870	ug/L	EPA 8260			W MHM	A	
Carbon disulfide		< 100	ug/L	EPA 8260			W MHM	A	
Methylene chloride		< 100	ug/L	EPA 8260			W MHM	A	
t-Butanol		1,700	ug/L	EPA 82600			W MHM	N	QA-
Methyl-t-butyl ether	(MTBE)	< 40.0	ug/L	EPA 82600			W MHM	A	QA-
trans-1,2-Dichloroeti		< 20.0	ug/L	EPA 82600			W MHM	A	
Di-isopropyl ether (I		< 40.0	ug/L	EPA 82600			W MHM	N	
1,1-Dichloroethane	,	< 20.0	ug/L	EPA 82600			W MHM	A	
Ethyl-t-butyl ether (H	ETBE)	< 40.0	ug/L	EPA 82600			W MHM	N	
2-Butanone		5,760	ug/L	EPA 82600			W MHM	A	
2,2-Dichloropropane		< 40.0	ug/L	EPA 82600			W MHM	N	
cis-1,2-Dichloroether		< 20.0	ug/L	EPA 82600			W MHM	N	
Bromochloromethane		< 40.0	ug/L	EPA 82600			W MHM	N	
Chloroform		< 20.0	ug/L	EPA 82600			W MHM	A	
Tetrahydrofuran	**	2,620	ug/L	EPA 82600			W MHM	U	
1,1,1-Trichloroethane		< 20.0	ug/L	EPA 82600			W MHM	A	
Carbon tetrachloride		< 20.0	ug/L	EPA 82600			W MHM	A	
1,1-Dichloropropene		< 20.0	ug/L	EPA 82600			W MHM	N	
Benzene		< 20.0	ug/L	EPA 8260C			W MHM	A	
t-Amylmethyl ether (TAME)	< 40.0	ug/L	EPA 8260C			W MHM	N	
1,2-Dichloroethane	a d	< 20.0	ug/L	EPA 8260C			W MHM	A	
Trichloroethene		< 20.0	ug/L	EPA 8260C			W MHM	A	35
		50						0.7075	

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

Table A-3 (continued):

Page 3 of

	Laboratory Report	DATE REPORTED: 02/26/2014	
CLIENT:		VORK ORDER: 1402-02249	
PROJECT:	D	ATE RECEIVED: 02/06/2014	=
001 Site: Combined AST		Date Sampled: 2/6/14 Time: 9:05	
Parameter Result	Units Method	Analysis Date/Time Lab/Tech NELA	C Qua
1,2-Dichloropropane < 40.	ug/L EPA 8260C	2/18/14 W MHM A	
Dibromomethane <40.			
Bromodichloromethane < 10.0		2/18/14 W MHM A	
cis-1,3-Dichloropropene < 20.0			
4-Methyl-2-pentanone (MIBK) < 200		2/18/14 W MHM N	
Toluene 25.4	ug/L EPA 8260C	2/18/14 W MHM A	
trans-1,3-Dichloropropene < 40.0		2/18/14 W MHM A	
1,1,2-Trichloroethane < 20.6			
Tetrachloroethene < 20.0			
1,3-Dichloropropane < 20.0	-		
2-Hexanone < 200	-		
Dibromochloromethane < 40.0	S		
1,2-Dibromoethane <20.0	2		
Chlorobenzene <20.0	ě		
Ethylbenzene < 20.0			
1,1,1,2-Tetrachloroethane <40.0			
Xylenes, Total <40.0			
Styrene < 20.0			
Bromoform < 40.0		2/18/14 W MHM A	
sopropylbenzene <20.0		2/18/14 W MHM A	
1,1,2,2-Tetrachloroethane < 40.0		2/18/14 W MHM A	
Bromobenzene <20.0		2/18/14 W MHM N	
n-Propylbenzene < 20.0		2/18/14 W MHM A	
,2,3-Trichloropropane <40.0	-	2/18/14 W MHM N	
2-Chlorotoluene < 20.0		2/18/14 W MHM N	
,3,5-Trimethylbenzene <20.0		2/18/14 W MHM A	
-Chlorotoluene <20.0	9	2/18/14 W MHM N	
-Butylbenzene < 20.0		2/18/14 W MHM A	
,2,4-Trimethylbenzene <20.0	9	2/18/14 W MHM A	
-Butylbenzene < 20.0		2/18/14 W MHM N	
I-Isopropyltoluene < 20.0	ug/L EPA 8260C	2/18/14 W MHM A	
,3-Dichlorobenzene <20.0	ug/L EPA 8260C	2/18/14 W MHM A	
,4-Dichlorobenzene < 20.0	ug/L EPA 8260C	2/18/14 W MHM A	
a-Butylbenzene < 40.0	ug/L EPA 8260C	2/18/14 W MHM A	
,2-Dichlorobenzene <20.0	ug/L EPA 8260C	2/18/14 W MHM A	
,2-Dibromo-3-Chloropropane < 40.0	ug/L EPA 8260C	2/18/14 W MHM A	
,2,4-Trichlorobenzene <40.0	ug/L EPA 8260C	2/18/14 W MHM A	
,3,5-Trichlorobenzene <40.0	ug/L EPA 8260C	2/18/14 W MHM N	
Hexachlorobutadiene < 10.0	ug/L EPA 8260C	2/18/14 W MHM N	
Naphthalene <40.0	ug/L EPA 8260C	2/18/14 W MHM A	
,2,3-Trichlorobenzene <40.0	ug/L EPA 8260C	2/18/14 W MHM N	
Surr. 1 (Dibromofluoromethane) 96	% EPA 8260C	2/18/14 W MHM N	
Surr. 3 (4-Bromofluorobenzene) 101	% EPA 8260C	2/18/14 W MHM N	
Surr. 2 (Toluene d8) 99	% EPA 8260C	2/18/14 W MHM N	
Jnidentified Peaks 7	EPA 8260C	2/18/14 W MHM U	
EPA 8270C Semi-VOA			

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

Table A-3 (continued):

					Page 4 of 7		
		Laboratory	Report	DATE REPOR		/2014	
		Laboratory	Report	DATE REPOR	TED: 02/20	72014	
CLIENT: PROJECT;		1		ORK ORDER: 1 TE RECEIVED:	02/06/2014		_
001 Site: Combined AST				Date Sampled: 2	/6/14 Time	: 9:05	1
Parameter	Result	Units	Method	Analysis Date			Qual.
Extraction EPA 3510C	Extracted		EPA 3510C	2/12/14	W FA	A A	
N-Nitrosodimethylamine	< 200	ug/L	EPA 8270D	2/21/14	W EEF		
Pyridine	< 200	ug/L	EPA 8270D	2/21/14	W EEF	A	
Aniline	< 200	ug/L	EPA 8270D	2/21/14	W EEP		
Bis(2-chloroethyl)ether	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	100
1,2-Dichlorobenzene	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	· A	
1,3-Dichlorobenzene	< 40.0	ug/L	EPA 8270d	2/21/14	W EEP	A	
1,4-Dichlorobenzene	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
Benzyl alcohol	< 400	ug/L	EPA 8270D	2/21/14	W EEP	N	
Bis(2-chloroisopropyl)ether	< 200	ug/L	EPA 8270D	2/21/14	W EEP	N	
N-Nitrosodi-n-propylamine	< 200	ug/L	EPA 8270D	2/21/14	W EEP	A	
Hexachloroethane	< 100	ug/L	EPA 8270D	2/21/14	W EEP	Α	
Nitrobenzene	< 100	ug/L	EPA 8270D	2/21/14	W EEP	Α	
N-Nitrosopiperidine	< 200	ug/L	EPA 8270D	2/21/14	W EEP	N	
Isophorone	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	Α	
Bis(2-chloroethoxy)methane	< 100	ug/L	EPA 8270D	2/21/14	W EEP		
1,2,4-Trichlorobenzene	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP		
Naphthalene	46.4	ug/L	EPA 8270D	2/21/14	W EEP		
4-Chloroaniline	< 100	ug/L	EPA 8270D	2/21/14	W EEP		
Hexachlorobutadiene	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	
N-Nitrosodi-n-butylamine	< 100	ug/L	EPA 8270D	2/21/14	W EEP	N	
2-Methylnaphthalene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
1-Methylnaphthalene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	U	
Hexachlorocyclopentadiene	< 400	ug/L	EPA 8270D	2/21/14	W EEP	A	
2-Chloronaphthalene	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
1-Chloronaphthalene	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	N	
2-Nitroaniline	< 400	ug/L	EPA 8270D	2/21/14	W EEP	N	
Dimethyl phthalate	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	
2,6-Dinitrotoluene	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	
Acenaphthylene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
3-Nitroaniline	< 100	ug/L	EPA 8270D	2/21/14	W EEP	N	
Acenaphthene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
Dibenzofuran	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	N	
2,4-Dinitrotoluene	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	
1-Naphthylamine	< 200	ug/L	EPA 8270D	2/21/14	W EEP	N	
2-Naphthylamine	< 200	ug/L	EPA 8270D	2/21/14	W EEP	N	
Fluorene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
Diethyl phthalate	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	
4-Chlorophenyl phenyl ether	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
4-Nitroaniline	< 400	ug/L	EPA 8270D	2/21/14	W EEP	N	
N-Nitrosodiphenylamine	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	
Azobenzene	< 100	ug/L	EPA 8270D	2/21/14	W EEP	U	
4-Bromophenyl phenyl ether	< 40.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
Hexachlorobenzene	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A	
Phenanthrene	22.6	ug/L	EPA 8270D	2/21/14	W EEP	N	
Anthracene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A	
	- 2010	-B				0.500	

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table A-3 (continued):

www.borine.com		Laboratory F	Report	DATE REPORTED:	02/26/20)14
CLIENT: PROJECT:	pl		ORK ORDER: 1402-0 TE RECEIVED: 02/06	2249 5/2014		
001 Site: Combined AST				Date Sampled: 2/6/14	Time: 9	9:05
arameter	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC
arbazole	< 100	ug/L	EPA 8270D	2/21/14	W EEP	N
i-n-butylphthalate	< 200	ug/L	EPA 8270D	2/21/14	W EEP	Α
luoranthene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	Α
enzidine	< 200	ug/L	EPA 8270D	2/21/14	W EEP	Α
vrene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A
utyl benzyl phthalate	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A
enzo(a)anthracene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A
hrysene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A
3'-Dichlorobenzidine	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A
is(2-ethylhexyl)phthalate	< 200	ug/L ug/L	EPA 8270D	2/21/14	W EEP	A
· · · · · ·	< 100		EPA 8270D	2/21/14	W EEP	N
i-n-octylphthalate enzo(b)fluoranthene	< 20.0	ug/L ug/L	EPA 8270D	2/21/14	W EEP	A
	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A
enzo(k)fluoranthene	< 20.0	ug/L ug/L	EPA 8270D	2/21/14	W EEP	A
enzo(a)pyrene	< 20.0		EPA 8270D	2/21/14	W EEP	A
deno(1,2,3-cd)pyrene		ug/L				
benzo(a,h)anthracene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A
enzo(g,h,i)perylene	< 20.0	ug/L	EPA 8270D	2/21/14	W EEP	A
neno1	182	ug/L	EPA 8270D	2/21/14	W EEP	Α
Chlorophenol	< 100	ug/L	EPA 8270D	2/21/14	W EEP	Α
Methylphenol (o-cresol)	< 100	ug/L	EPA 8270D	2/21/14	W EEP	A
&4-Methylphenol (m&p-cresol)	2,420	ug/L	EPA 8270D	2/25/14	W EEP	Α
resols, Total	2,420	ug/L	EPA 8270D	2/25/14	W EEP	Α
Nitrophenol	< 200	ug/L	EPA 8270D	2/21/14	W EEP	Α
4-Dimethylphenol	< 100	ug/L	EPA 8270D	2/21/14	W EEP	Α
4-Dichlorophenol	< 100	ug/L	EPA 8270D	2/21/14	W EEP	Α
6-Dichlorophenol	< 100	ug/L	EPA 8270D	2/21/14	W EEP	N
Chloro-3-methylphenol	< 200	ug/L	EPA 8270D	2/21/14	W EEP	A
4,5-Trichlorophenol	< 200	ug/L	EPA 8270D	2/21/14	W EEP	Α
4,6-Trichlorophenol	< 200	ug/L	EPA 8270D	2/21/14	W EEP	Α
4-Dinitrophenol	< 400	ug/L	EPA 8270D	2/21/14	W EEP	Α
Nitrophenol	< 200	ug/L	EPA 8270D	2/21/14	W EEP	A
6-Dinitro-2-methylphenol	< 400	ug/L	EPA 8270D	2/21/14	W EEP	Α
entachlorophenol	< 200	ug/L	EPA 8270D	2/21/14	W EEP	Α
aP Toxic Equiv. Quotient	< 46.2	ug/L	EPA 8270D	2/21/14	W EEP	U
N Surr, 1 Nitrobenzene-d5	75	%	EPA 8270D	2/21/14	W EEP	N
N Surr.2 2-Fluorobiphenyl	81	%	EPA 8270D	2/21/14	W EEP	N
N Surr.3 Terphenyl-d14	95	%	EPA 8270D	2/21/14	W EEP	N
cid Surr.1 2-Fluorophenol	40	%	EPA 8270D	2/21/14	W EEP	N
cid Surr.2 Phenol-d8	29	%	EPA 8270D	2/21/14	W EEP	N
cid Surr.3 Tribromophenol	109	%	EPA 8270D	2/21/14	W EEP	N
nidentified Peaks	> 10		EPA 8270D	2/21/14	W EEP	U
Total Value Committee		***************************************			020200000000000000000000000000000000000	
002 Site: Trip Blank				Date Sampled: 2/3/14	Time: 11	1:05

Volatile Organic Compounds

September 2015

Table A-4: Concentration (µg/l) of Emerging Contaminants by Leachate Age (Andrews et al. 2012)

Compound	>25 Year Burial	3-16 Year Burial	<5 Year Burial
3-methyl-1h-indole	0.242	0.12*	< 0.04
3-beta-coprostanol	<2	10.41*	13.41*
cholesterol	<2	9.42*	15.7*
beta-sistosterol	<2	17.7*	35.8*
4-t-octylphenol	1.24*	0.486*	0.463*
acetophenone	< 0.649	0.516*	0.906*
benzophenone	< 0.216	0.807*	1.07*
camphor	114*	1.55*	98.8*
d-limonene	0.245*	0.302*	<1.75
fluoranthene	< 0.04	0.273*	< 0.04
isoborneol	0.903	< 1.13	< 5.26
cumene	0.945*	3.48*	2.06*
p-cresol	51.2*	35.2*	< 0.18
tri(2-butoxyethyl) phosphate	2.43*	1.34*	2.54*
tri(dichloroisopropyl) phosphate	0.195	< 0.12	< 0.1
tributyl phosphate	2.25*	2.04*	1.83*
triphenyl phosphate	0.249	< 0.12	< 0.12
1-methylnapthalene	1.59	1.45*	0.728*
2,6-dimethylnapthalene	0.572	0.426*	< 0.12
2-methylnapthalene	2.25	1.9*	1.02*
anthracene	0.271	0.286*	< 0.04
naphthalene	9.53	9.91*	9.07*
phenanthrene	0.215	0.338*	< 0.04
pyrene	< 0.04	0.174*	< 0.04
1,4-dichlorobenzene	2.11*	4.41*	24*
anthraquinone	0.26	0.271*	0.702*
carbaryl	0.942*	< 0.61	< 0.726
n,n-dimethyl-meta-toluamide (DEET)	52.6*	43.7*	52.8*

^{* =} estimated concentration, detected below quantification limit

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table A-5: Vermont Biosolids Management Statistics for 2014

Management Option	In-State (wet tons) ¹	Out-of-State (wet tons) ¹	Total (wet tons) ¹	Percent of Total	Percent Managed
Beneficial Uses:					
Land Application	6,400	0	6,400	10.8%	
EQ Biosolids	5,547	16,747	22,294	37.4%	
Subtotal	11,947	16,747	28,694		48.2%
Non-Beneficial Uses:					
Landfill	29,880	0	29,880	50.2%	
Incineration ²	0	960	960	1.6%	
Subtotal	29,880	960	30,840		51.8%
Total:	41,827	17,707	59,534	100%	100%
Total In & Out of State	70.3%	29.7%			

 $^{^{1}}$ All amounts of biosolids reported to DEC are converted to dry tons and converted to wet weight assuming 15% solids (dry tons x 0.15 = wet tons), which is generally the percent solids that can qualify to be landfilled.

² Please note that nearly all biosolids sent to incinerators are in liquid form and the actual weight is greater than that in this table.

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table A-6: Vermont Septage Management Statistics for 2014

Management	In-State	Out-of-State	Total	Percent	Percent
Option	(gallons)	(gallons)	(gallons)	of Total	Managed
Beneficial Uses:					
Land Application ¹	8,523,129	748,652	9,271,781	19.7%	_
EQ Biosolids ²	1,599,630	7,354,156	8,953,786	19.0%	_
Subtotal	10,122,759	8,102,808	18,225,567		38.7%
Non-Beneficial Uses:					
Landfill ³	26,184,613	11,380	26,195,993	55.6%	_
Incineration	0	2,667,792	2,667,792	5.7%	_
Subtotal	26,184,613	2,679,172	28,863,785		61.3%
Total:	36,307,372	10,781,980	47,089,352	44%	100%
Percent of Total			"		
In & Out of State	77.1%	22.9%			

 $^{^{1}}$ Septage that is directly land applied or disposed at a WWTF that land applies biosolids

² Septage that is directly treated in an EQ process or disposed at a WWTF that produces EQ biosolids

³ Solids from dewatered septage that are disposed at a landfill or disposed at a WWTF that landfills biosolids.

September 2015
* DRAFT – DO NOT QUOTE OR CITE *

Table A-7: Information Regarding Cited Radionuclides

Isotope	Half-life	Exposure Media	Source	Origin
Be-7	53.22 days	Groundwater	Natural	Cosmic radiation
Bi-214	19.9 months	Groundwater	Natural	Uranium decay
I-131	8.0 days	Medical	Manmade	Manufactured
K-40	$1.25 \times 10^9 \text{ years}$	Groundwater/soil	Natural	Primordial
Pb-212	10.6 hours	Soil	Natural	Thorium decay
Pb-214	26.8 months	Soil	Natural	Uranium decay
Ra-226	1600 years	Groundwater/soil/air	Natural	Uranium decay
Ra-228	5.75 years	Groundwater/soil/air	Natural	Uranium decay
Sr-89	50.5 days	Soil/air/medical	Manmade	Manufactured/nuclear
				weapons fallout
Th-228	1.91 years	Soil/groundwater	Natural	Thorium decay
T1-201	73 hours	Medical	Manmade	Manufactured

September 2015

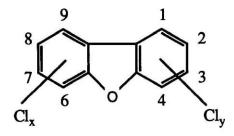
* DRAFT – DO NOT QUOTE OR CITE *

APPENDIX 5

Table A-8: 2005 World Health Organization Toxic Equivalency Factors (TEFs)


CONGENER WHO 2005 TEF

chlorinated dibenzo-p-dioxins	
2,3,7,8-TCDD	1.0
1,2,3,7,8-PeCDD	1.0
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.0003
chlorinated dibenzofurans	
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.03
2,3,4,7,8-PeCDF	0.3
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,6,7,8-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,6,7,8,9-HpCDF	0.01
OCDF	0.0003
non-ortho substituted PCBs	
3,3'4,4'-tetraCB (PCB77)	0.0001
3,4,4',5-tetraCB (PCB 81)	0.0003
3,3',4,4',5-pentaCB (PCB126)	0.1
3,3',4,4',5,5'-hexaCB (PCB169)	0.03
mono-ortho substituted PCBs	
2,3,3',4,4'-pentaCB (PCB 105)	0.00003
2,3,4,4',5-pentaCB (PCB 114)	0.00003
2,3',4,4',5-pentaCB (PCB 118)	0.00003
2',3,4,4',5-pentaCB (PCB 123)	0.00003
2,3,3',4,4',5-hexaCB (PCB 156)	0.00003
2,3,3',4,4',5'-hexaCB (PCB 157)	0.00003
2,3',4,4',5,5'-hexaCB (PCB 167)	0.00003
2,3,3',4,4',5,5'-heptaCB (PCB 189)	0.00003


TEQ concentrations are calculated by multiplying the concentration of each PCDD/PCDF/PCB congener by its corresponding TEF and then summing the resulting numbers. TEQ concentrations are typically expressed as "parts per trillion TEQ".

T = tetra (4 Cl atoms at numbered positions)
Pe = penta (5 Cl atoms at numbered positions)
Hx = hexa (6 Cl atoms at numbered positions)
Hp = hepta (7 Cl atoms at numbered positions)
O = octa (8 Cl atoms at numbered positions)

Dibenzo-p-dioxin molecule

Dibenzofuran molecule

Biphenyl molecule

(Cl)_n 5 6 6 5' (Cl)_n 0.00003

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

Table A-9: U.S. States Ceiling Concentrations for Land Applied Non-EQ Biosolids

STATE		NON	-EQ BIO	SOLIDS (CEILING	G CONC	ENTRA'	TIONS (F	ederal: 5	503.13 – Ta	ble 1)
SIAIE	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	OTHER
503.13 – Table 1	75	85		4300	840	57	75	420	100	7500	
Alabama	75	85		4300	840	57	75	420	100	7500	
Alaska	41	39	1200	1500	300	17	75	420	100	2800	
Arizona	75	85	3000	4300	840	57	75	420	100	7500	
Arkansas	75	85		4300	840	57	75	420	100	7500	
California	75	85		4300	840	57	75	420	100	7500	
Colorado	75	85		4300	840	57	75	420	100	7500	
Connecticut	75	85		4300	840	57	75	420	100	7500	
Delaware	75	85	3000	4300	840	57	75	420	100	7500	
Florida	75	85		4300	840	57	75	420	100	7500	
Georgia	75	85		4300	840	57	75	420	100	7500	
Hawaii	20	15	200	1500	300	10	15	100	25	2000	
Idaho	75	85	3000	4300	840	57	75	420	100	7500	
Illinois 1	75	85		4300	840	57	75	420	100	7500	
Indiana	75	85		4300	840	57	75	420	100	7500	
Iowa	75	85		4300	840	57	75	420	100	7500	
Kansas	75	85		4300	840	57	75	420	100	7500	
Kentucky	75	85		4300	840	57	75	420	100	7500	
Louisiana	75	85		4300	840	57	75	420	100	7500	PCB: 10
Maine ²	41	39	3000	1500	300	10	75	420	100	2800	TCDD/F ²
Maryland	75	85		4300	840	57	75	420	100	7500	PCB: 10
Massachusetts	75	85	1000	4300	840	57	75	420	100	7500	PCB: 10
Michigan	75	85		4300	840	57	75	420	100	7500	
Minnesota	75	85		4300	840	57	75	420	100	7500	
Mississippi	75	85		4300	840	57	75	420	100	7500	
Missouri	75	85	3000	4300	840	57	75	420	100	7500	
Montana	75	85	1	4300	840	57	75	420	100	7500	
Nebraska	75	85		4300	840	57	75	420	100	7500	
Nevada	75	85		4300	840	57	75	420	100	7500	
New Hampshire	32	14	1000	1500	300	10	35	200	28	2500	PCB: 1 TCDD/F ⁴
New Jersey	75	85		4300	840	57	75	420	100	7500	
New Mexico	75	85		4300	840	57	75	420	100	7500	
New York	41	21	1000	1500	300	10	40	200	100	2500	
North Carolina	75	85		4300	840	57	75	420	100	7500	
North Dakota	75	85		4300	840	57	75	420	100	7500	
Ohio	75	85		4300	840	57	75	420	100	7500	
Oklahoma	75	85		4300	840	57	75	420	100	7500	
Oregon	75	85		4300	840	57	75	420	100	7500	
Pennsylvania	75	85		4300	840	57	75	420	100	7500	PCB: 8.6
Rhode Island	75	85		4300	840	57	75	420	100	7500	
South Carolina	75	85		4300	840	57	75	420	100	7500	
South Dakota	75	85		4300	840	57	75	420	100	7500	
Tennessee	75	85		4300	840	57	75	420	100	7500	
Texas	75	85		4300	840	57	75	420	100	7500	
Utah	75	85		4300	840	57	75	420	100	7500	
Vermont	15	21	1000	1500	300	10	75	420	100	2800	PCB: 10
Virginia	75	85		4300	840	57	75	420	100	7500	· · · ·
Washington	75	85		4300	840	57	75	420	100	7500	
West Virginia	75	85		4300	840	57	75	420	100	7500	
Wisconsin	75	85		4300	840	57	75	420	100	7500	
Wyoming	75	85		4300	840	57	75	420	100	7500	

September 2015

Table A-10: U.S. States Concentration Limits for EQ Biosolids

COTA TOTA		EQ	BIOSO	LIDS C	ONCE	NTRAT	ION L	IMITS	(Federal	: 503.13	- Table 3)
STATE	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	OTHER
503.13 - Table 3	41	39		1500	300	17		420	100	2800	
Alabama	41	39		1500	300	17		420	100	2800	
Alaska	41	39	1200	1500	300	17	75	420	100	2800	
Arizona	41	39	3000	1500	300	17	75	420	100	2800	
Arkansas	41	39		1500	300	17		420	100	2800	
California	41	39		1500	300	17		420	100	2800	
Colorado	41	39		1500	300	17		420	100	2800	
Connecticut	41	39		1500	300	17		420	100	2800	
Delaware	41	39	1200	1500	300	17	18	420	36	2800	
Florida	41	39		1500	300	17		420	100	2800	
Georgia	41	39		1500	300	17		420	100	2800	
Hawaii	20	15	200	1500	300	10	15	100	25	2000	
Idaho	41	39	1200	1500	300	17		420	100	2800	
Illinois 1	41	39		1500	300	17		420	100	2800	
Indiana	41	39		1500	300	17	75	420	100	2800	
Iowa	41	39		1500	300	17		420	100	2800	
Kansas	41	39		1500	300	17	75	420	100	2800	
Kentucky	41	39		1500	300	17	75	420	100	2800	
Louisiana	41	39		1500	300	17		420	100	2800	PCB: 10
Maine	41	39	3000	1500	300	10	75	420	100	2800	TCDD/F ²
Maryland	41	39		1500	300	17		420	100	2800	
Massachusetts	41	14	1000	1000	300	10	25	200	100	2500	Boron: 300 PCB: 2
Michigan	41	39		1500	300	17	75	420	100	2800	
Minnesota	41	39		1500	300	17	75	420	100	2800	
Mississippi 3	41	39		1500	300	17	18	420	36	2800	
Missouri	41	39	1200	1500	300	17		420	100	2800	
Montana	41	39		1500	300	17		420	100	2800	
Nebraska	41	39		1500	300	17		420	100	2800	
Nevada	41	39		1500	300	17		420	100	2800	
New Hampshire	10	10	160	1000	270	7	18	98	18	1780	PCB: 1 TCDD/F ⁴
New Jersey	41	39		1500	300	17	75	420	100	2800	
New Mexico	41	39		1500	300	17		420	100	2800	
New York	41	10	1000	1500	300	10	40	200	100	2500	
North Carolina	41	39		1500	300	17		420	100	2800	
North Dakota	41	39		1500	300	17		420	100	2800	
Ohio	41	39		1500	300	17		420	100	2800	
Oklahoma	41	39		1500	300	17		420	100	2800	
Oregon	41	39		1500	300	17		420	100	2800	
Pennsylvania	41	39		1500	300	17		420	100	2800	PCB: 4
Rhode Island	41	39		1500	300	17		420	100	2800	
South Carolina	41	39		1500	300	17		420	100	2800	
South Dakota	41	39		1500	300	17		420	100	2800	
Tennessee	41	39		1500	300	17		420	100	2800	
Texas	41	39		1500	300	17		420	100	2800	
Utah	41	39		1500	300	17		420	100	2800	
Vermont	15	21	1000	1500	300	10	75	420	100	2800	PCB: 10
Virginia	41	39		1500	300	17		420	100	2800	
Washington	41	39		1500	300	17		420	100	2800	
West Virginia	41	39		1500	300	17		420	100	2800	
Wisconsin	41	39		1500	300	17		420	100	2800	
Wyoming	41	39		1500	300	17		420	100	2800	

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

FOOTNOTES: Tables A-9 and A-10

all standards are in units of (mg/kg, dry wt.) unless otherwise noted in a footnote below blank cells = no standard established under Part 503 or by the State normal font = State standard the same as 503.13 Table 1 or Table 3 *bold italic font* = State standard different than or in addition to 503.13 Table 1 or Table 3

¹ Illinois:

Employs the 503 limits as screening standards, but regulates based on site specific APLR and CPLR limits.

² Maine:

Standards are based on monthly average concentrations.

Maine also employs screening standards for Non-EQ biosolids (lower than the ceiling concentration limits) which if exceeded mandate the implementation of additional land application site management practices.

TCDD/F: <27 ppt TEQ - no restrictions, 27 - 250 ppt TEQ - additional management practices and site title recording requirements apply, >250 ppt TEQ - prohibited.

³ Mississippi:

For EQ, biosolids must first meet the standards cited in Table A-8. Secondly, if the biosolids exceed any of the following contaminant concentrations: As: 10, Ba: 200, Cd: 2, Cr: 10, Pb: 10, Hg: 0.4, Se: 2, Ag: 10 - the biosolids must be subjected to and pass a TCLP analysis for the contaminant(s) exceeded.

⁴ New Hampshire:

10 ppt TEQ for 2,3,7,8 TCDD and 2,3,7,8 TCDF individually, 27 ppt TEQ total for all congeners of TCDD and TCDF with an assigned TEF.

September 2015

* DRAFT – DO NOT QUOTE OR CITE *

APPENDIX 7

Table A-9: Regulatory Limits for Agricultural Use in Selected Nations and Provinces

COUNTRY/PROVINCE	REGULATORY LIMIT FOR AGRICULTURAL USE (mg/kg, dry wt.)											
	As	Ba	Cd	Co	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn
Australia (Class 1)	20		3		100	100	150	1		60	3	200
Australia (Class 2)	60		20		500	2500	420	15		270	50	2500
Brazil	41	1300	39		1000	1500	300	17	50		100	2800
Bulgaria	30		30		500	1500	1000	16		300		3000
Canada - British Colombia	75		20	150	1060	2200	500	5	20	180	14	1850
Canada - New Brunswick			20			888	56	3.1	7.6	26.4	4.2	588
Canada - Ontario	170		34	340	2800	1700	1100	11		420		4200
Canada - Quebec (Class 1)	13		3	34	210	400	150	0.8	5	62	2	700
Canada - Quebec (Class 2)	40		10	150	1060	1000	300	4	20	180	14	1850
Canada - Saskatchewan	75		20	150	1060	760	500	5	20	180	14	1850
Canada (Class A)	13		3	34	210	400	150	0.8	5	62	2	700
China	75	150	5		600	800	300	5		100		2000
Czech Republic	30		5		200	500	200	4		100		2500
Finland	25		1.5		300	600	100	1		100		1500
Germany			10		900	800	900	8		200		2500
Hungary	75		10	50	1000	1000	750	10	20	200	100	2500
Italy			20			1000	750	10		300		2500
Japan	50		5		500		100	2		300		
Jordan (Type 1)	41		40		900	1500	300	17	75	300	100	1800
Jordan (Type 2)	75		40		900	3000	840	57	75	400	100	4000
Jordan (Type 3)	75		85		3000	4300	840	57	75	420	100	7500
Mexico	41		39		1200	1500	300	17		420		2800
Netherlands	15		1.25		75	75	100	0.75		30		300
New Zealand (Grade A)	20		3		600	100	300	1		60		300
New Zealand (Grade B)	30		10		1500	1250	300	7.5		135		1500
Norway			2		100	650	80	3		50		800
Russia	10		15		500	750	250	7.5		200		1750
Slovakia	20		10		1000	1000	750	10		300		2500
Slovenia	20		0.5		40	30	40	0.2		30		100
South Africa (Class A)	40		40		1200	1500	300	15		420		2800
Switzerland			5	60	500	600	500	5	20	80		2000
Turkey			40		1200	1750	1200	25		400		4000
Vermont	15		21		1200	1500	300	10	75	420	100	2800

blank cells = no regulatory standard adopted

Source: U.N. - Human Settlements Programme and Greater Moncton Sewerage Commission (2008). "Global Atlas of Excretia, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource".

September 2015

* DRAFT - DO NOT QUOTE OR CITE *

APPENDIX 8

<u>Acronym</u> <u>Definition</u>

ADI Acceptable Daily Intake

ANR Vermont Agency of Natural Resources ANSI American National Standards Institute

APLR Annual Pollutant Loading Rate
BOD Biochemical Oxygen Demand
CDC Centers for Disease Control

CEC Contaminants of Emerging Concern
CFR Code of Federal Regulations
CPLR Cumulative Pollutant Loading Rate
CSWD Chittenden Solid Waste District

CWA Clean Water Act

DAFM Vermont Department of Agriculture, Food & Markets (now VAAFM)

DEC Vermont Department of Environmental Conservation

EDC Endocrine Disrupting Compound EQ Exceptional Quality (biosolids)

FTE Full Time Equivalents

ISCORS Interagency Steering Committee on Radiation Standards

MDL Method Detection Limit

NEBRA North East Biosolids and Residuals Association

NOAEL No Observable Adverse Effect Level

NPDES National Pollutant Discharge Elimination System

NRC National Research Council

NSF National Sanitation Foundation (now NSF International)
OECA EPA's Office of Enforcement and Compliance Assistance

PAH Polyaromatic Hydrocarbon

PBDE Polybrominated Diphenyl Ether (flame retardants)

PCB Polychlorinated Biphenyl

PCDD/PCDF Polychlorinated Dibenzodioxin/dibenzofuran (dioxins)

PEC EPA's Pathogen Equivalency Committee
PFRP Process to Further Reduce Pathogens
PPCP Pharmaceutical and Personal Care Products
PSRP Process to Significantly Reduce Pathogens
TCLP Toxicity Characteristic Leaching Procedure

TEF Toxic Equivalency Factor
TEQ Toxic Equivalents
TMDL Total Maximum Daily Load

TNSSS Targeted National Sewage Sludge Survey
USDA United States Department of Agriculture
USEPA (EPA) United States Environmental Protection Agency
VAAFM Vermont Agency of Agriculture, Food & Markets

VAR Vector Attraction Reduction VDOH Vermont Department of Health

VSWMR Vermont Solid Waste Management Rules

WEP Water Extractable Phosphorus

WERF Water Environment Research Foundation

WWTF Wastewater Treatment Facility