Dam Removal
Project Overview

Brian Graber
American Rivers

Vermont Project Manager Training
October 22, 2009
American Rivers
Thriving By Nature
More than 740 dams have been removed around the country
More than 13,126 dams in CT, RI, MA, VT, NH (databases)
Removing a dam seems like an intimidating process.
You'd like to manage a project
Goals:

1) Understand the dam removal process

2) Be able to scope out the components of a project
Understand the overall dam removal process and components
Dam Components

- Impoundment
- Spillway
- Sediment
- Gates
- Infrastructure
Determine the challenges specific to your project

- Sediment quantity
- Sediment quality
- Dam size
- Dam condition
- Impoundment size
- Impoundment shape
- Surrounding infrastructure
- Surrounding environment

The depth of analysis should reflect the scale of the project: make easy projects easy and complex projects complex.
Step 1: The dam owner must be on board with the project

Overall Process: Initial Reconnaissance
Several factors separate easy projects from difficult projects:

- Land ownership
- Current dam uses
- Public interest

Overall Process: Initial Reconnaissance
Several factors separate easy projects from difficult projects:

- Contaminants
- T & E species
- Infrastructure

Overall Process: Initial Reconnaissance
Funding hooks

Diadromous Fish
Brook Trout
Listed Species

Overall Process: Initial Reconnaissance
The project manager’s role is to coordinate
Expect that projects will take 3 years to complete

Year 1: Recon. and Prelim. Design

Year 2: Design and Permitting

Year 3: Implementation

Overall Process: Project Manager Role
Dam removal projects have several steps

1. Initial Reconnaissance
2. Fundraising
3. Preliminary/Concept Design
4. Community/Stakeholder Involvement
5. Permitting (and pre-permitting)
6. Engineering and Restoration Design
7. Construction
8. Monitoring

Who does the work?

Overall Process: Project Manager Role
The basic steps cover 4 major topics:

1. **Fundraising**
2. **Permitting**
3. **Social Issues**
4. **Design/Construction**

Overall Process: Project Manager Role
Consider long-term benefits vs. short-term impacts

Flow Regime

Water Quality

Continuity

Complexity
Removing the structure alone will provide most of the restoration

Overall Process: Long-Term Benefits/Short-Term Impacts
Some *short-term* impacts occur during construction.

- Sediment movement
- Construction access
- Habitat change

Overall Process: Long-Term Benefits/Short-Term Impacts
There are 3 potential long-term impacts if not managed well:

- Contaminants
- T & E species
- Infrastructure

Overall Process: Long-Term Benefits/Short-Term Impacts
Understand the components of designing a dam removal

<table>
<thead>
<tr>
<th>Data Collection/Surveying</th>
<th>Hydrology/Hydraulics</th>
<th>Sediment Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protecting Infrastructure</td>
<td>Species Protection</td>
<td>Site-Specific Issues</td>
</tr>
</tbody>
</table>
Data Collection and Surveying
Find existing data on the dam and the river

- Past Dam Inspections (state dam safety)
- FEMA - FIS, profiles, plans, and computer model (state, town library or engineer), or
 http://www.msc.fema.gov
- Aerial or orthophotographs (web or order)
 http://maps.google.com
 http://earth.google.com
- USGS topographic mapping
- Local topographic mapping (town, state, web)
- Sanborn mapping (commercial properties to 1867):
 http://www.edrnet.com/sanborn.htm
- Historic topo maps: http://historical.maptech.com
 For northeast:
 http://docs.unh.edu/nhtopos/nhtopos.htm
- Tax Assessors Mapping (town)
- Geological mapping
- GIS Data (town, region, or state)
- State Rare & Endangered Species Mapping
- Wetland Mapping
- EPA Watershed Mapping & Info
 http://www.epa.gov/surf/
- USGS Gauge Data (flow & sediment)
 http://water.usgs.gov/
- Additional Flow Data (state, web, ACOE, local group, old reports)
- Fisheries Data (state)
- Past Plans. (of dam, site, or nearby construction) (DOT, town engineer, state)
- Permit applications (town, state, feds, or web)
- Old Reports (environmental, historic, engineering, planning, state studies, etc.)
- Photographs (current and historic) (town, neighbors)
- Historic Records (town, state)
- FERC Reports: http://elibrary.ferc.gov
- Utility Information (town or state)
- Web pages for local recreation

Design Components: Data Collection/Surveying
Survey dam structure, longitudinal profile, cross sections, and sediment depths
Survey long profile through impoundment; survey cross sections to capture change

Design Components: Data Collection/Surveying
Hydrology/Hydraulics
What’s the difference between hydrology and hydraulics?

Hydrology:
Magnitudes and probabilities of flows

Hydraulics:
Depths and velocities of flows
Does your dam provide flood control? Probably not

No Flood Storage Potential: has full impoundment and constant flow over spillway

Flood Storage Potential: has storage volume and flow through a controlled outlet

Design Components: Hydrology/Hydraulics
What’s a HEC-RAS and when do you need one?

- Infrastructure protection
- To prove fish passage
- Post-project water levels for stakeholders
- Advanced sediment transport modeling
- To prove no flood control?

Design Components: Hydrology/Hydraulics
Sediment Management
Some general sediment thoughts

- Consider background yield
- Sediment can be beneficial or harmful
- Not all dams have a lot of sediment
- Not all sediment moves

Design Components: Sediment Management
Assess the quantity, particle sizes, quality, and potential mobility of impounded sediment.
The longitudinal profile is a fundamental sediment analysis tool.

Ox Pasture Brook Longitudinal Profile - 8/22/06

Design Components: Sediment Management
Test sediment for contaminants and compare to ecological and human risk thresholds

- Complete ‘due diligence’
- Assess quantity of sediment
- Collect sediment cores (not grabs)
- Test for organics and heavy metals
- Compare test concentrations to human risk and ecological thresholds

Design Components: Sediment Management
There are several approaches to managing clean sediment (depending on quantity and particle sizes)

- Natural erosion
- Sediment removal (dredging)
- Stabilize in place
 - Open dam gates
 - Remove dam slowly
 - Remove dam in stages
- Combined approaches
There are fewer approaches to managing contaminated sediment

- Management options
 - Remove and dispose
 - Isolate and cap

- If contaminant management is necessary, can greatly add to cost of project

- Conundrum: dams are not good hazardous waste containment facilities
Protecting Infrastructure
Consider whether any infrastructure is at risk

Design Components: Protecting Infrastructure

- Bridges
- Retaining walls
- Utilities
Look in and along impoundment and in the dam for at-risk bridges, retaining walls, or utilities.

Design Components: Protecting Infrastructure
Management approaches: always consider if infrastructure can be moved first; next consider direct stabilization.
Species Protection and Additional Restoration (beyond structure removal)
Identify if species of concern could be affected by dam removal

- Contact the Nongame and Natural Heritage Program

- Maps are available at: (http://maps.vermont.gov/imf/sites/anr_natresviewer/jsp/launch.jsp)
Manage for Aquatic Species

- Time the removal
- Manage sediment
- Relocate species
- Monitor during construction

Design Components: Species Protection/Restoration
Revegetate and consider multiple species and multiple life stages in additional restoration plans.
Dam uses can often be replaced

Design Components: Site-Specific Issues
Other site-specific issues:

well impacts, ice jams, parks, walking trails, renderings, etc.
You now have the basis for writing a scope of work

<table>
<thead>
<tr>
<th>Data Collection/Surveying</th>
<th>Hydrology/Hydraulics</th>
<th>Sediment Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protecting Infrastructure</td>
<td>Species Protection</td>
<td>Site-Specific Issues</td>
</tr>
</tbody>
</table>
Understand the components of (de)construction
First, slowly drain the impoundment
There are several approaches to removing a structure:

- **Explosives**
- **Heavy Machinery**
- **By Hand**
We almost never use explosives in the northeast.
Most commonly a backhoe with a hydraulic hammer will breach one side and then move across.
We have also used more careful construction approaches.
Dam RemovalClearinghouse:
http://www.lib.berkeley.edu/WRCA/damremoval/index.html
Initial Reconnaissance: Is My Project Easy or Complex?
<table>
<thead>
<tr>
<th>Dam name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshfield-8 Dam</td>
<td>Winooski River, Marshfield, VT</td>
</tr>
</tbody>
</table>

| Dam owner | Land ownership around impoundment |

| Ecological benefits | Community benefits |

Initial Recon: Marshfield-8 Dam
<table>
<thead>
<tr>
<th>Existing dam uses</th>
<th>Infrastructure issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rare species</td>
<td>Sediment quality</td>
</tr>
<tr>
<td>Community concerns</td>
<td>Funding possibilities</td>
</tr>
<tr>
<td>Dam name</td>
<td>Location</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Swanton Dam</td>
<td>Missisquoi River, Swanton Village, VT</td>
</tr>
</tbody>
</table>

| Dam owner | Land ownership around impoundment |

<table>
<thead>
<tr>
<th>Ecological benefits</th>
<th>Community benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing dam uses</td>
<td>Infrastructure issues</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Rare species</td>
<td>Sediment quality</td>
</tr>
<tr>
<td>Community concerns</td>
<td>Funding possibilities</td>
</tr>
</tbody>
</table>
Developing a Scope of Work
Consultant Hiring Process

One approach:
• Simple bid request
 – Express goals of project, but not details
 – Consultants give details in their proposal

• Detailed scope of work
 – Negotiated between hiring entity and consultant
 – Covers both hiring entity and consultant for exact performance
Scope of Work Potential Topics

• Data Collection
• Survey and Mapping
• Sediment Assessment
• Hydrology/Hydraulics
• Structure Removal
• Channel/Riparian Restoration
• Species Assessment/Protection
• Site-specific Issues
• Monitoring
• Drawings
• Permitting
• Reports
• Meetings

Developing a Scope of Work: Marshfield-8 Dam
Developing a Scope of Work: Marshfield-8 Dam
Scope of Work Potential Topics

- Data Collection
- Survey and Mapping
- Sediment Assessment
- Hydrology/Hydraulics
- Structure Removal
- Channel/Riparian Restoration
- Species Assessment/Protection
- Site-specific Issues
- Monitoring
- Drawings
- Permitting
- Reports
- Meetings

Developing a Scope of Work: Swanton Dam
Things that Go Wrong
(And How to Make Them Go Right)
What to Look for in a Consultant

• Integration of skills
 – Engineering, geomorphology, ecology (and experience with this integration)
 – Permitting
 – Presentation skills
 – Responsiveness and project management
 – No one firm is truly good at all of these

• Consider requiring subconsultants
A Traditional Engineering Approach
Blending Skills: Engineers, Geomorphologists, Biologists
Remove the full vertical extent of the dam (and as much of the lateral extent as possible)
Construction oversight is critical
Be cautious/skeptical with structural approaches