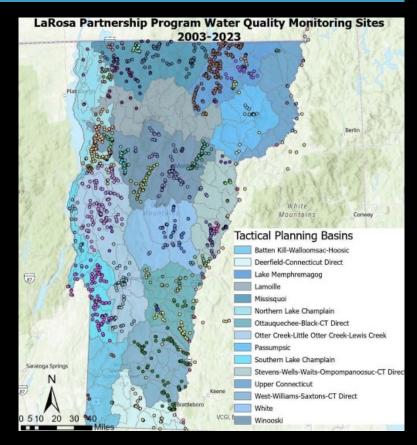

ANNUAL PARTNER TRAINING 2024

LAROSA PARTNERSHIP PROGRAM



Ē

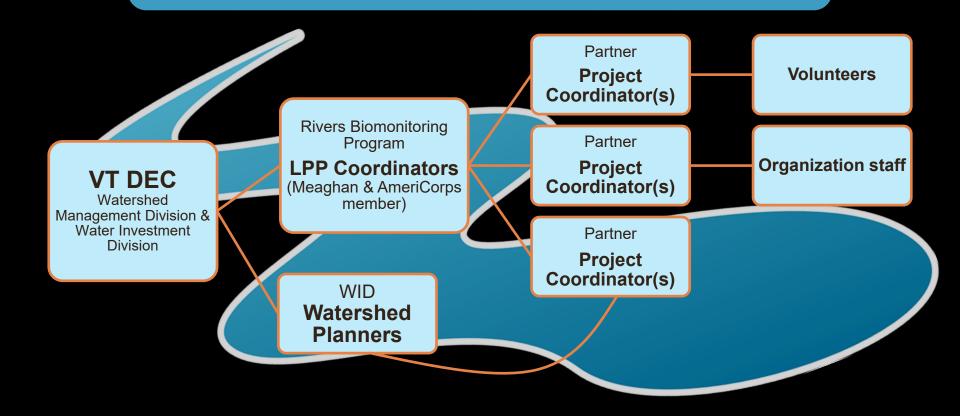
INTRODUCTIONS

AGENDA

9:00 - 9:109:10 - 9:159:15 - 9:309:30 - 10:0510:05 - 10:1510:15 - 10:5510:55 - 11:0511:05 - 11:1011:10 - 11:1511:15 - 11:25 11:25 - 12:00

Welcome & Introductions Program Communications, Overview, & Updates LPP Sample Plan Overview Sampling Procedures Break Flow Observations & Survey123 Sample Storage & Preservation Safety in the Field Break LPP Sample Analysis Results & Accessing Data Data Collection Purposes and Examples of Data Use

Thank You!



Program Updates

- ECO AmeriCorps member starting in May
- Jeff doing sample pickups
- Lake trib sites now part of the lakes Lay Monitoring Program (mostly)
- ✤ 20 participating partner groups; 13 lake trib LMP collaboration groups

✤ 226 LPP sites, 55 LMP collab sites, 5900 samples.

Program Structure

Total Phosphorus Total Nitrogen Chloride Flow Observations (level and type)

Set total biweekly sampling events

- Typically sample on the same day of week each sample period (groups with teams of volunteers may sample on multiple days)
- Sampling starts after Monday, April 15th
- Last sample before August 6th/8th

SAMPLING SCHEDULE

_

Dates	Event					
End of week of April 8 th	LPP staff deliver supplies to partners					
Monday, April 15 th	Sampling season begins					
End of April – Early August	 Biweekly sample pickups: Tuesday, April 30th and Thursday, May 2nd Tuesday, May 14th and Thursday, May 16th Tuesday, May 28th and Thursday, May 30th Tuesday, June 11th and Thursday, June 13th Tuesday, June 25th and Thursday, June 27th Tuesday, July 9th and Thursday, July 11th Tuesday, July 23rd and Thursday, July 25th Tuesday, August 6th and Thursday, August 8th 					

High Flow Sampling

- Aim for two targeted high flow sample events; may collect any day during any biweekly sample period
- Replaces regularly scheduled sample event only collect one set of samples per sample period (at all sites)
- May not be possible to coordinate with volunteers; do so if you can
- If can't, regular sampling likely to coincide with high flows throughout course of season

High Flow Sampling <

- When water levels are well above typical level of flow due to runoff from rainfall or snowmelt
- Water flowing faster and level usually close to or at "bankfull"
- Often noticeable turbidity from sediment transported by runoff
- Goal to capture the range of nutrient and Cl concentrations impacting the stream under different flow conditions

When do I collect high flow samples?

Typically need at least 0.5 to 1 inch of rain ✤ High flow events more common during spring don't wait until end of sampling season If in doubt, sample during any predicted rain event, you can try again if flows aren't high enough

If you already collected samples for a sampling period and a high flow event occurs later, **no need to collect more samples that sample period.**

If you reschedule a sample event to capture high flows but they don't occur, this is okay.

- Collect one set of samples per biweekly sample period whether high flow or not
- Aim for 2 high flow sample events (if you can)
- Collect at all sites even if only some experience high flows – don't skip samples (unless dry or dangerous/not accessible)
- Safety is top priority! Do not sample if dangerous

ANY QUESTIONS?

FIELD SAMPLING

Training Resources Equipment Sampling Procedures Duplicates Flow Observations

LaRosa Partnership Program Partner Guide

Air and Climate Land Waste Water Learn More, Do More

COMMISSIONER'S ONICE

Administration and Innovation

Air Quality and Climate

- Drinking Water and Groundwater
- Environmental Assistance

Environmental Enforcement

Geological Survey

Waste Management and Prevention

Water Investment

Watershed Management

Application, Permitting, and Compliance Forms

Protecting Vermont's Waters

Restoring Vermont's Waters

Business and Operations

CAFO

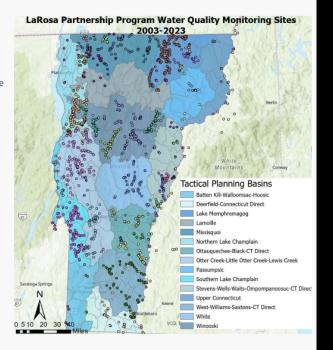
Lakes and Ponds

Monitoring and Assessment

Program Overview

Monitoring

Acid Rain


I his water quality sampling allows community members to engage with their local streams and rivers firsthand, learn about water quality issues and where they may be occurring, and identify areas in need of protection or remediation. Additionally, by improving the geographic extent and frequency of water chemistry monitoring, the data collected by the LPP partners strengthens the VT DEC's <u>Water Quality Database</u> and furthers the achievement of the VT DEC's water monitoring goals outlined in the <u>Water Quality Monitoring Program Strategy</u>.

PROGRAM ANNOUNCEMENTS

- Site nominations for the 2024 season are now closed. Final site lists will be released by the end of February.
- Access flow Survey123 submissions using the <u>LPP Flow Data Dashboard</u>. For guidance on how to use the Flow Data Dashboard, view the <u>Flow Data Dashboard video</u> <u>tutorial</u>.
- View two examples of outreach tools created by our partners using data collected through LPP:
 - South Chittenden River Watch (Lewis Creek Association) 2021-22 StoryMap
 - Friends of Little Averill 2022 StoryMap

<u>QUICK LINKS</u>

- <u>Frequently Asked Questions</u>
- LPP Partner Guide
- 2023 Interactive Map of Stream Sampling Sites
- PowerBI LPP Data Presentation Tool
- LPP Flow Data Dashboard / Flow Data Dashboard video tutorial
- Flow Observation Survey123 App Tutorial
- 2023 Annual Partner Training Slideshow presentation

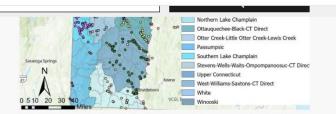
Air and Climate Land Waste Water

Learn More, Do More

- - **Business and Operations**

CAFO

- Lakes and Ponds
- Monitoring and Assessment
- Program Overview
- Monitoring
- Acid Rain
- Biomonitoring
- Fish Samples and Metrics
- Macroinvertebrates, Processing and Metrics
- **Special Studies**
- **Community Science**
- LaRosa Partnership Program
- Get Involved with LPP
- LPP Data & Reports
- Reports from LaRosa Partners
- LPP Newsletters
- LPP Training & Education
- LaRosa Partners Past & Present


- Frequently Asked Questions
- LPP Partner Guide
- 2023 Interactive Map of Stream Sampling Sites
- PowerBI LPP Data Presentation Tool
- LPP Flow Data Dashboard / Flow Data Dashboard video tutorial
- Flow Observation Survey123 App Tutorial
- 2023 Annual Partner Training Slideshow presentation

GET INVOLVED

PROGRAM MODEL

TRAININGS & PROTOCOLS

DATA & REPORTS

NEWSLETTERS

An Official Vermont Government Website

✓ VERMONT

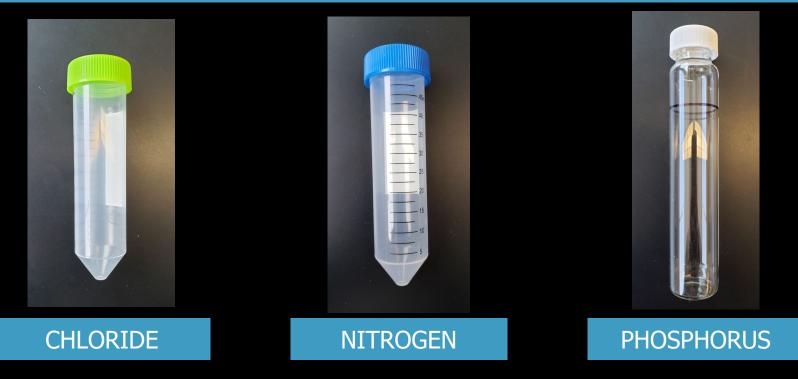
Air and Climate Land Waste Water Lea	rn More, Do More
Home	LPP Trainings & Protocols
About DEC	For a comprehensive suide on LDD are supervised at a local reference to 2024 LDD Partner Cuide. The Date of Cuide are side datailed information on
Contact Us	For a comprehensive guide on LPP program participation, please refer to the 2024 LPP Partner Guide. The Partner Guide provides detailed information on monitoring site selection and test parameters, sampling and quality assurance procedures, flow observations, and data access.
Commissioner's Office	LPP Parameters
Administration and Innovation	Chloride levels are on the rise in Vermont's waters. <u>Read our explanation</u> of the when, where, and why of chloride monitoring.
Air Quality and Climate	
Drinking Water and Groundwater	2023 Annual Partner Training & Orientation Slideshow presentation
Environmental Assistance	
Environmental Enforcement	Field Sampling
Geological Survey	Sulfuric acid <u>Safety Data Sheet</u>
Waste Management and Prevention	The <u>Addison County River Watch Collaborative</u> has created this video to demonstrate proper water quality sampling techniques:
Water Investment	Water Quality Sampling Video! Addison County River Watch Collaborative - WQ sampling 😋 A
Watershed Management	
Application, Permitting, and Compliance Forms	

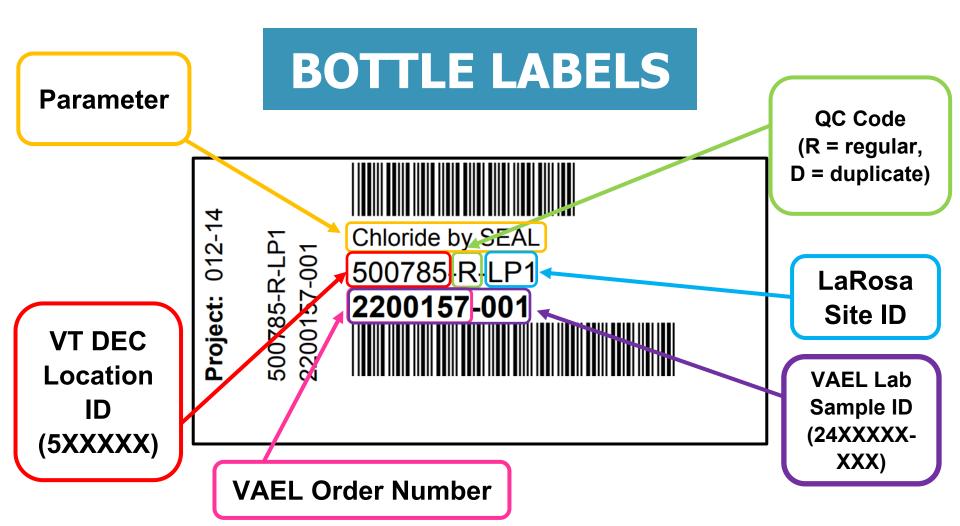
BOTTLES & PRE-PRINTED LABELS

SAMPLE RACKS

VAEL FIELD SHEETS

TN ACIDIFICATION KITS


SAMPLING CHECKLIST


RIVER DIPPERS

SAMPLE BOTTLES

HOW TO: LABEL BOTTLES

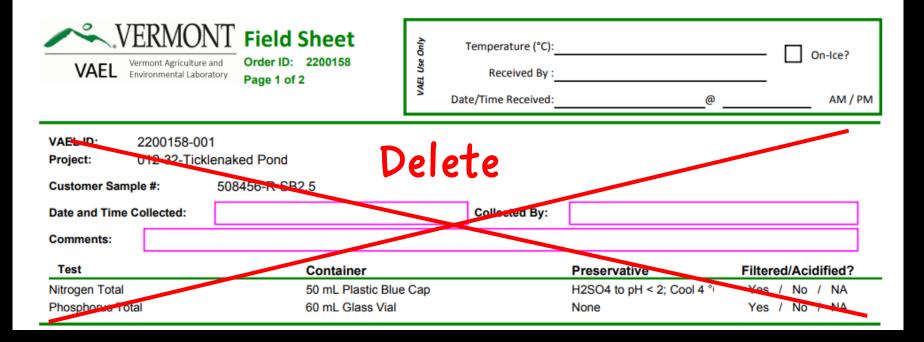
Apply all labels before you go out in the field!

Ensure bottles are **dry** before applying.

Place labels **vertically**.

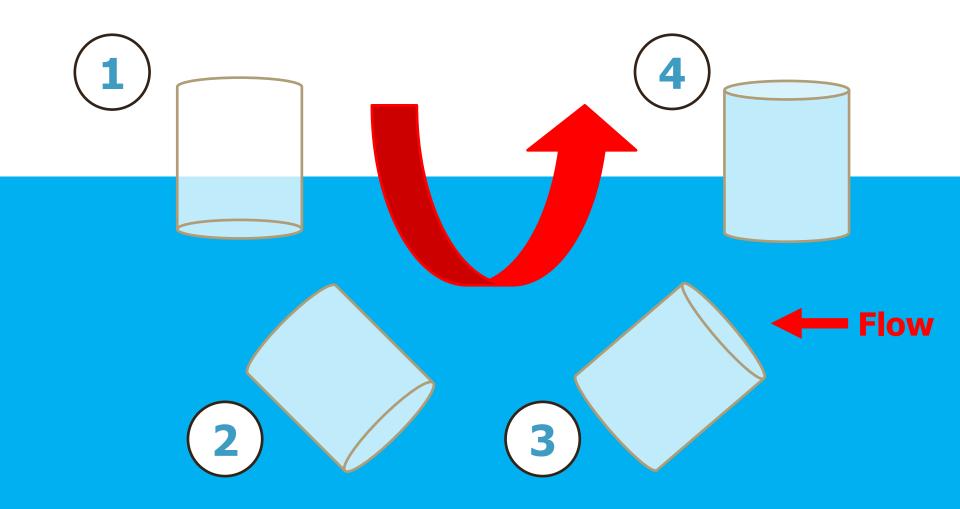
Place TP labels **below black line**.

HOW TO: VAEL FIELD SHEETS


VERMON VAEL Vermont Agriculture Environmental Labor		vaet use only Da	Temperature (°C): Received By : te/Time Received:	@	On-Ice? AM / PM			
VAEL ID: 2200158-001 Project: 012-32-Ticklenaked Pond Customer Sample #: 508456-R-SB2.5								
Date and Time Collected:	4/16/22 12:35pm		Collected By:	Meaghan Hickey				
Comments: TP bot	tle accidentally rinsed							
Test	Container			Preservative	Filtered/Acidified?			
Nitrogen Total Phosphorus Total	50 mL Plastic Blue 60 mL Glass Vial	Cap		H2SO4 to pH < 2; Cool 4 ° None	Yes / No / NA Yes / No / NA			

Always fill out date and time!

IF A SITE IS NOT SAMPLED


INDIVIDUAL SAMPLE NOT TAKEN

VAEL Vermont Agriculture a Environmental Labora		VAEL Use C	Temperature (°C): Received By : te/Time Received:	@	On-Ice? AM / PM
VAEL ID: 2200158-001 Project: 012-32-Tickle	enaked Pond				
Customer Sample #:	508456-R-SB2.5				
Date and Time Collected:			Collected By:		
Comments: TP bott	le broken/leaked				
Test	Container			Preservative	Filtered/Acidified?
Nitrogen Total	50 mL Plastic Blue	e Cap		H2SO4 to pH < 2; Cool 4 °	Yes / No / NA
Phosphoras Total	00 mL Olass Vial			None	Yes / No / NA

INSTREAM BOTTLE GRAB

- 1. Wade into the center of the stream's flow.
- 2. Wait for **disturbed sediment to flow downstream**
- 3. Always face upstream.
- 4. Rinse **TN** and **CI** plastic bottles with stream water **3 times**.
- 5. Do **not rinse TP** glass bottle.
- Dip bottles midway between the surface and the bottom in a Ushaped motion.

Do **NOT** sample if:

- Dry or stream is stagnant puddle
- So low you can't sample without disturbing sediment need 3-4 inches
- Flows are too swift and/or deep to sample safely (unless you have a river dipper)
- Flow is backing up from larger water bodywalk upstream until no longer backing up

Rinse TN and Cl bottles **Rinse 3 times each**

DO NOT RINSE TP bottles.

RIVER DIPPER

Store in plastic bag when not in use

- Rinse the river dipper bottle 3x with river water
- Use the pole to reach out into center of the stream flow, dip **upstream** using the same **U-shaped motion**

RIVER DIPPER

- Use the river water in the river dipper to rinse the sample bottle and cap (if rinsing is required) 3x
 - a. Do not rinse TP bottles.
 - b. Can refill river dipper container as needed
- Pour water from the river dipper into the sample bottle to the designated fill line

- Pour off samples to required volume before capping
- Carefully flick bottle to
 remove small amounts of water
- If you over pour off a TP sample below fill line, do <u>not</u> redo sample!
 - Fill cap with sample water to pour into sample bottle
 - Can redo for TN/Cl

• Fill TN and Cl to 50mL line

ANY QUESTIONS?

REVIEW - TRUE OR FALSE

1. All parameters can be sampled using the same bottles.

2. Always face upstream when sampling.

3. Total phosphorus bottles must be rinsed three times.

TRUE

REVIEW - TRUE OR FALSE

1. Bottle dippers or buckets must be rinsed three times before sampling.

2. If you pour off a TP sample below the fill line, you must redo the whole sample.

3. If you only have a bit of water left in your bottle dipper or bucket, you should still fill a sample partway. TRUE

FALSE

FALSE

REVIEW - TRUE OR FALSE

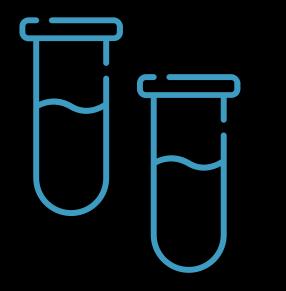
1. You should dump sample rinsing water downstream

2. You accidentally get some sedimentfrom the stream bed in a TN sample.You should leave the sample as is andmake a note on the field sheet.

For TN, you should dump out the sample and retake it, because the sediment could introduce excess TN. It would essentially be an extra rinse. No need to make a note. **For TP, redo the sample and make a note**.

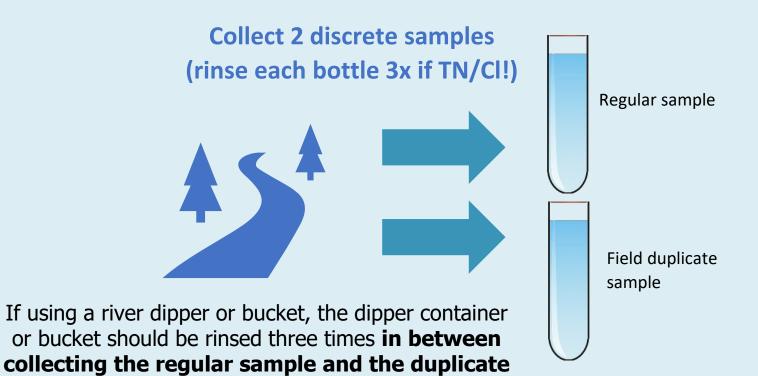
QAQC

- Site Visits
- *** Field Duplicates**



SITE VISITS

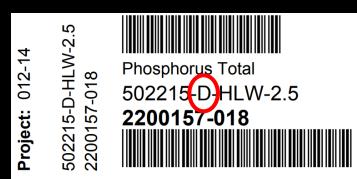
- Review sampling protocol, field sheets, flow observations, and sample preservation
- Get to know partners and their sites
- Provide or receive any assistance or feedback
- Take samples for additional data or quality assurance



FIELD DUPLICATES

- Sample immediately after regular samples using the same sampling procedure (including rinsing)
- Used to identify issues with sample collection, including contamination
- 10% all samples, preassigned by LPP staff, highlighted in yellow
- Cannot be skipped, and should be taken at assigned sites

FIELD DUPLICATES



FIELD DUPLICATES

Labeled with "D" instead of "R"

Highlighted in yellow

At end of VAEL order

ANY QUESTIONS?

1. Field duplicate bottles should be collected regular samples.

a At the same time as

2. When sampling field duplicates with a river dipper, the dipper collection container should be

3. Field duplicates can be taken at any site.

BREAK

FLOW OBSERVATIONS

FLOW LEVEL - LOW

Low - conditions are low relative to the entire range of flows experienced at site

- Generally occur during late winter and summer
- Streambed typically partially dry with gravel bars exposed
- May be possible to walk along the dry edge of streambed

FLOW LEVEL - MODERATE

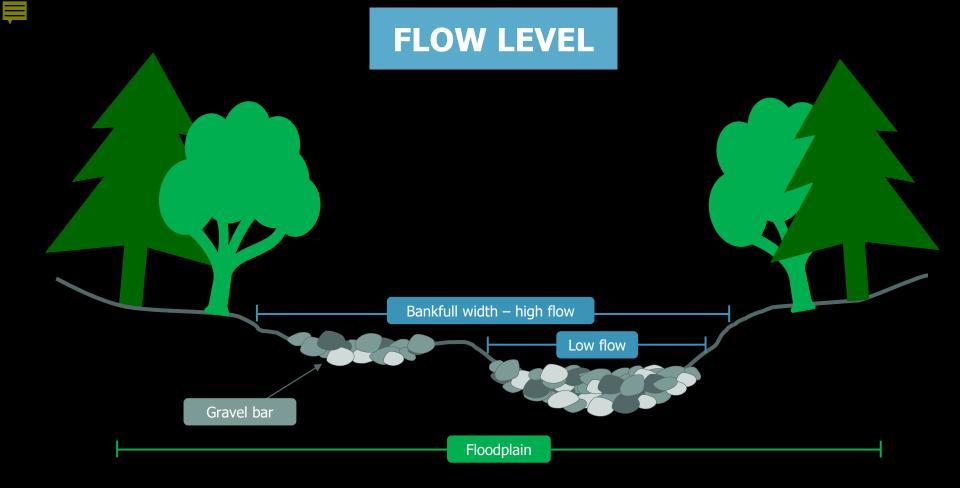
Moderate - mid-level streamflow conditions; most typical flows experienced

- Can occur any time of year
- Majority of stream bed is underwater but not up to top of stream bank
- May also occur when flow speed is very slow even if water level is at the top of stream bank

FLOW LEVEL - HIGH

High - Stream is well above a typical level of flow

- Generally occur during spring and fall, but can occur due to rainfall any time of year
- Stream is full from bank to bank but not spilling onto floodplain


FLOW LEVEL - FLOOD

Flood – Stream exceeds bankfull and accesses the floodplain

- Generally occur less than 5% of time
- Also indicated by submergence or active transport of terrestrial and woody vegetation

Do not sample during flood conditions due to safety concerns

ANY QUESTIONS?

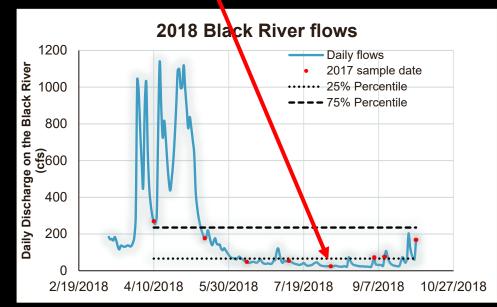
LOW, MODERATE, HIGH, OR FLOOD?

MODERATE

LOW, MODERATE, HIGH, OR FLOOD?

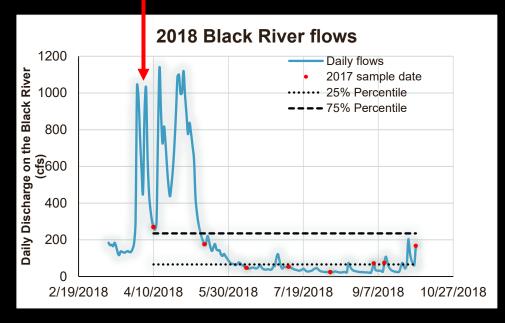
HIGH

LOW, MODERATE, HIGH, OR FLOOD?



FLOOD

MODERATE


FLOW TYPE – BASE

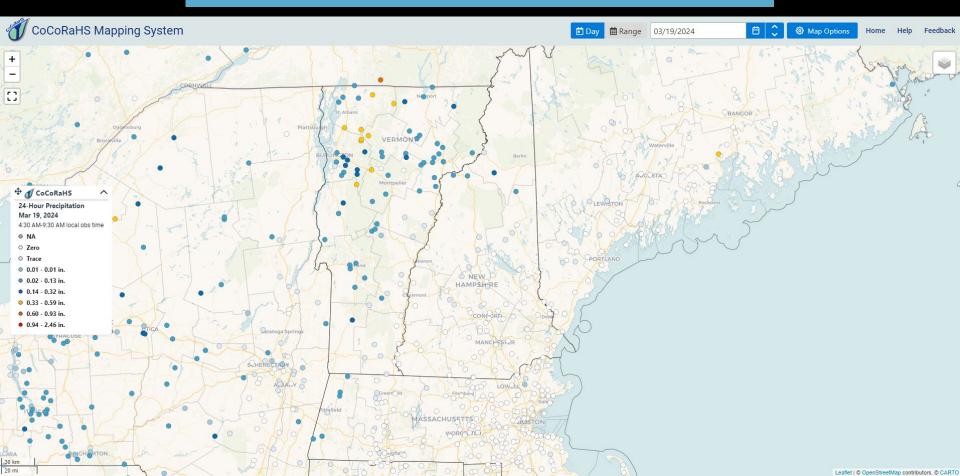
- Water level is relatively constant and not rising or falling
- Subsurface flows account for almost all water reaching streams
- Typically co-occur with low and moderate flow levels, but not under flood levels

FLOW TYPE - FRESHET

- Water level is actively rising or falling in response to a rain event or snowmelt
- Water can be turbid due to stormwater runoff and resuspension of stream bed sediments
- Can co-occur with all flow levels

FLOW TYPE - HYDRO

- Water level is rapidly rising or falling solely due to the release of water from an upstream dam
- Indicated by a rise in streamflow with no recent precipitation or snow melt and no similar rises on local stream gauges
- Check the watershed protection layer on the ANR atlas to identify dams and when they are operated for electricity generation



FLOW TYPE – NO FLOW

- Indicates that stream is completely dry or flow levels are so low it is more of a stagnant, mud puddle
- Do not collect sample high likelihood of contamination from sediment
- Fill out Survey123 form for site and select "no flow" option for flow type/level
- Only use "no flow" if did not sample, not to describe slow flow

CoCoRaHS Precipitation Data

TURBIDITY

ANY QUESTIONS?

1. During a freshet, the water level can rise in response to ______.

a a rain event

b snowmelt

both a and b

2. You collected your first sample on April 17th. A rain event is predicted on April 30th (your next sample pick up is May 2nd). Should you go out and collect a sample?

a Yes! Capture that high flow event!

- Yes, but only collect at the sites where flows are high
 - No, you already collected your samples for that sample period

3. Should you collect a sample if your site looks like this?

YES

a

4. Should you collect a sample if your site looks like this?

NO

5. Should you collect a sample if your site looks like this?

a

6. Should you collect a sample if your site looks like this?

Trick question!

Yes, but not here. Site is probably influenced by lake; move upstream

NO

7. Should you collect a sample if your site looks like this?

Sample below dam if can

NO

a

8. Should you collect a sample if your site looks like this?

NO

9. Should you collect a sample if your site looks like this?

Do not sample due to dangerous conditions

NO

а

Survey123 Flow Data Survey

S ArcGIS Survey123	- 0	×
× LaRosa Partnership Program	Û	× =
Complete one survey for every flow observation site and event. For a refresher on <u>here</u> .	procedures, <u>click</u>	
Sampler name First and last		
Partner *		
		\sim
Site *		
Date & time * If you are not completing this at the time of sampling, you will need to change the date/time		
🛅 Friday, March 22, 2024	└ 4:22 PM	\otimes
Sample location		
		\checkmark

SURVEY123 APP

- Free and no account needed
- More user-friendly design
- Works on smartphones, computers, and tablets
- Useable offline/no cell service required
- View/edit past submissions
- Can copy submissions into new survey

Survey123 Flow Data Survey

LaRosa Partnership Program

Complete one survey for every flow observation site and event. For a refresher on procedures, <u>click here</u>.

Sampler name

First and last

Partner*

•

Site*

-Please select-

Date & time*

If you are not completing this at the time of sampling, you will need to change the date/time

3/22/2024

() 04:36 PM

Sample location

SURVEY123 APP

https://arcg.is/1PXuTe0

Open Survey

 123 app
 Click "Continue without signing in"

- 1. Click the QR code symbol next to search bar
- 2. Align QR code with camera

2:04	í na k	Q 4G€,	d 🗎
<	My Survey123	J.	Ξ
<u> </u>	earch	(

Need to load LPP Flow Data Survey into app **online** <u>once</u> at beginning of season!

3. Click **"Open in** Survey123 field app"

https://arcg.is/1PXuTe0

SURVEY123

on computers!

3. Click **"LPP** Flow Data"

4. Click "Collect"

9:0		요 오 밖
<	My Survey123	r.
_	Q, Search	

LPP Flow Data

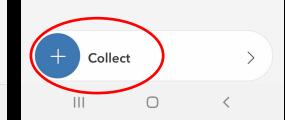
Ш

 \cap

LAROSA PARTNERSHIP PROGRAM

9:10

al 🗎

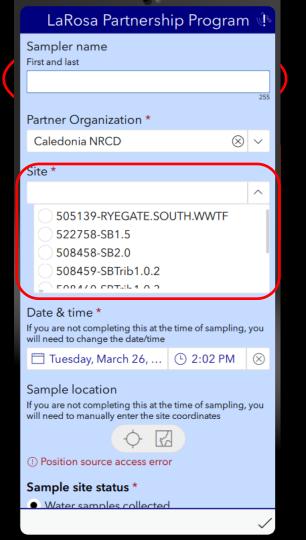

Owner: cleanwatervt Created: 3/22/22 11:03 AM Modified: 3/23/22 9:09 AM

😥 📲 🖻 🗢 419 🗐 💼

اللأعم

The LaRosa Partnership Program relies on partners' flow observations to better understand LPP water chemistry data. Flow is an essential observation during the collection of water samples from rivers and streams. The water quality of a river or stream can change dramatically during and immediately following a precipitation or snow melt event. It is important to consider the concentration of a parameter and the duration of flow conditions at the time of sample collection. Thank you for sending in your flow observations.

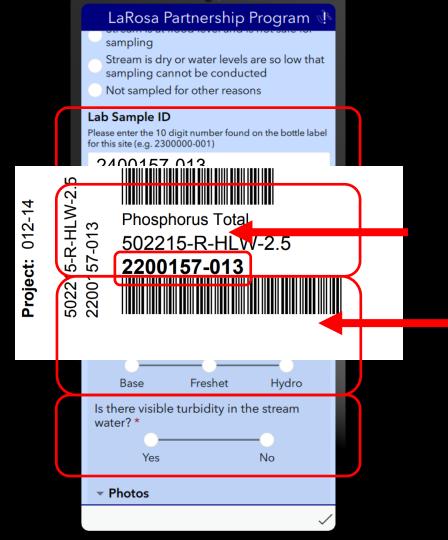
LPP Flow Data


Please fill out the survey once per site for every sampling event, regardless of whether the site was sampled.

LaRosa Partnership Program	હોં			
Complete one survey for every sampling site and sampling event (even if you did not collect a water sample).				
Sampler name First and last				
Partner Organization *				
	\sim			
Site *				
	\sim			
Date & time * If you are not completing this at the time of sampling, will need to change the date/time	you			
🛅 Tuesday, March 26, 🕒 2:02 PM	\otimes			
Sample location If you are not completing this at the time of sampling, will need to manually enter the site coordinates	you			
① Position source access error				
Sample site status *				
Water samples collected				
Stream is at flood level and is not safe fo sampling	or			
	/			

- 5. Type in sampler name
- 6. Choose partner name
- 7. Choose site name

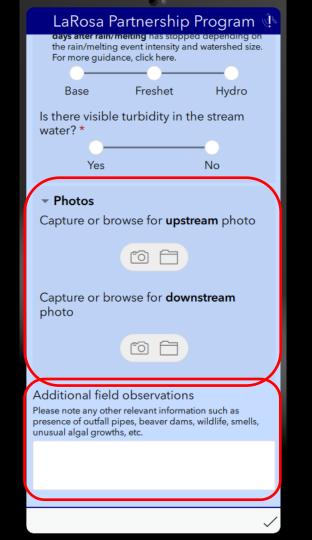
Site names for your organization will be prepopulated based on the chosen partner name


- 8. Location, date and time prepopulate automatically
- Select site status will auto-populate certain fields based on response

K EaRosa Partnership Program () () Site * Date & time * If you are not completing this at the time of sampling, you will need to change the date/time Tuesday, March 26, 2024 () () 1:59 PM Sample location If you are not completing this at the time of sampling, you will need to manually enter the site coordinates () 44.197°N 72.494°W ± 40.0 m () () () 44.197°N 72.494°W ± 40.0 m () () </th <th>2:25 🕇</th> <th></th> <th>••1</th> <th>LTE</th> <th>124</th>	2:25 🕇		••1	LTE	124	
Date & time * If you are not completing this at the time of sampling, you will need to change the date/time □ Tuesday, March 26, 2024 ① 1:59 PM ③ 0 Sample location If you are not completing this at the time of sampling, you will need to manually enter the site coordinates ○ 44.197°N 72.494°W ± 40.0 m ○ 44.197°N 72.494°W ± 40.0 m ○ Sample site status * ● Water samples collected Stream is at flood level and is not safe for sampling Sitream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons	\times L	.aRosa Partnership P	rogram	in the second	Ш	
If you are not completing this at the time of sampling, you will need to change the date/time Tuesday, March 26, 2024 1:59 PM Sample location If you are not completing this at the time of sampling, you will need to manually enter the site coordinates 44.197°N 72.494°W ± 40.0 m • 44.197°N 72.494°W ± 40.0 m • Water samples collected Stream is at flood level and is not safe for sampling • Stream is at flood level and is not safe for sampling • Stream is at flood level and is not safe for sampling • Stream is at flood level and is not safe for sampling • Not sampled for other reasons	Site *					
If you are not completing this at the time of sampling, you will need to change the date/time Tuesday, March 26, 2024 1:59 PM Sample location If you are not completing this at the time of sampling, you will need to manually enter the site coordinates 44.197°N 72.494°W ± 40.0 m • 44.197°N 72.494°W ± 40.0 m • Water samples collected Stream is at flood level and is not safe for sampling • Stream is at flood level and is not safe for sampling • Stream is at flood level and is not safe for sampling • Stream is at flood level and is not safe for sampling • Not sampled for other reasons						
 Tuesday, March 26, 2024 1:59 PM Sample location If you are not completing this at the time of sampling, you will need to manually enter the site coordinates 44.197°N 72.494°W ± 40.0 m 44.197°N 72.494°W ± 40.0 m 44.197°N 72.494°W ± 40.0 m Water samples collected Stream is at flood level and is not safe for sampling Stream is at flood level and is not safe for sampling Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons 		-	sampling,	you wi	ill	
 1:59 PM Sample location If you are not completing this at the time of sampling, you will need to manually enter the site coordinates 44.197°N 72.494°W ± 40.0 m 44.197°N 72.494°W ± 40.0 m Water samples collected Stream is at flood level and is not safe for sampling Stream is at flood level and is not safe for sampling Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons 				_		
If you are not completing this at the time of sampling, you will need to manually enter the site coordinates 44.197°N 72.494°W ± 40.0 m Sample site status * Water samples collected Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons				\otimes	C	
 Additional status and the site coordinates 44.197°N 72.494°W ± 40.0 m 44.197°N 72.494°W ± 40.0 m Sample site status * Water samples collected Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons 	Sample loc	ation				
 Sample site status * Water samples collected Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons 				you wi	ill	
 Sample site status * Water samples collected Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons 	· . 44.197	°N 72.494°W ± 40.0 m			\otimes	
 Water samples collected Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons 	5	0				
Stream is at flood level and is not safe for sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons	Sample site	e status *				
sampling Stream is dry or water levels are so low that sampling cannot be conducted Not sampled for other reasons						
Sampling cannot be conducted Not sampled for other reasons			not safe	for		
Lab Sample ID	Not sar	npled for other reason	S			
	Lab Sample					

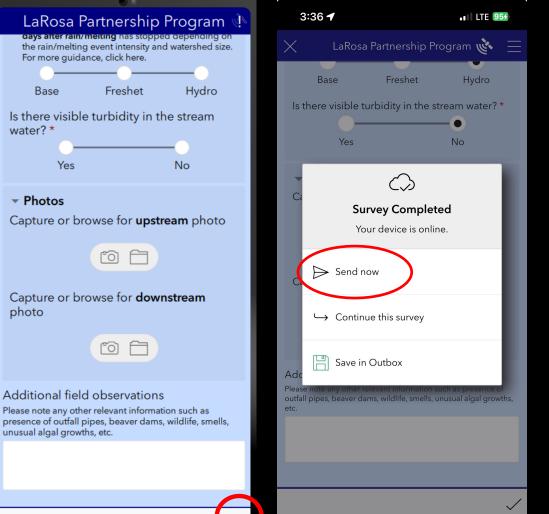
10.Type Lab Sample ID – bolded on sample label (24XXXX-XXX)

11.Choose flow observations



12. Take upstream & downstream photos

13.Note anything relevant to sampling or unusual, potential sources of error, field observations


Finished?

14. Click ✓ atbottom right

(Keyboard may hide 🗸


press "done" or "return")

15. If online, click"Send now"

16. If offline, click "Save in Outbox"

SUBMIT FLOW SURVEY

Always remember to check your outbox after returning from the field!

<	My Survey123	میں میں	\equiv
	Search		
PART	ROSA NERSHIP OGRAM		
LPP FI	ow Data		

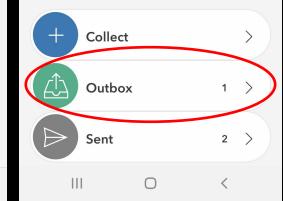
9:12

Ш

迎戦國令大會

LAROSA PARTNERSHIP PROGRAM

9:12


Owner: cleanwatervt Created: 3/22/22 11:03 AM Modified: 3/23/22 9:09 AM

迎戦國令大會

اللأع

The LaRosa Partnership Program relies on partners' flow observations to better understand LPP water chemistry data. Flow is an essential observation during the collection of water samples from rivers and streams. The water quality of a river or stream can change dramatically during and immediately following a precipitation or snow melt event. It is important to consider the concentration of a parameter and the duration of flow conditions at the time of sample collection. Thank you for sending in your flow observations.

LPP Flow Data

SUBMIT FLOW SURVEY

Click on Outbox.

Send remaining submissions.

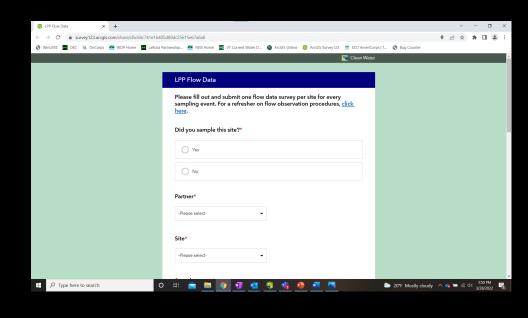
9:12		(Q) NI 🖻 오	¥∎	3:46 🔅	$\odot \odot$			ë all 💼
<	LPP Flow D	Data 🔌	\equiv	<		Outbox		ولأنج
LARO PARTNEP PROGR	Created	cleanwatervt J: 3/22/22 11:03 / d: 3/23/22 9:09 /				45-SPRING 2200000-(1/22		···
observations to Flow is an esser water samples f a river or stream immediately fol is important to o and the duratio	thership Program relie better understand LP ntial observation durir from rivers and stream n can change dramati lowing a precipitatior consider the concentr n of flow conditions a nk you for sending in y	P water chemistry ng the collection of is. The water qual cally during and or snow melt eve ation of a parame t the time of samp	/ data. of ity of ent. It eter ble					
+ 0	Collect		>					
	Dutbox	1	>					
⊳ s	Sent	2	>		st	Map	£ Seno	

111

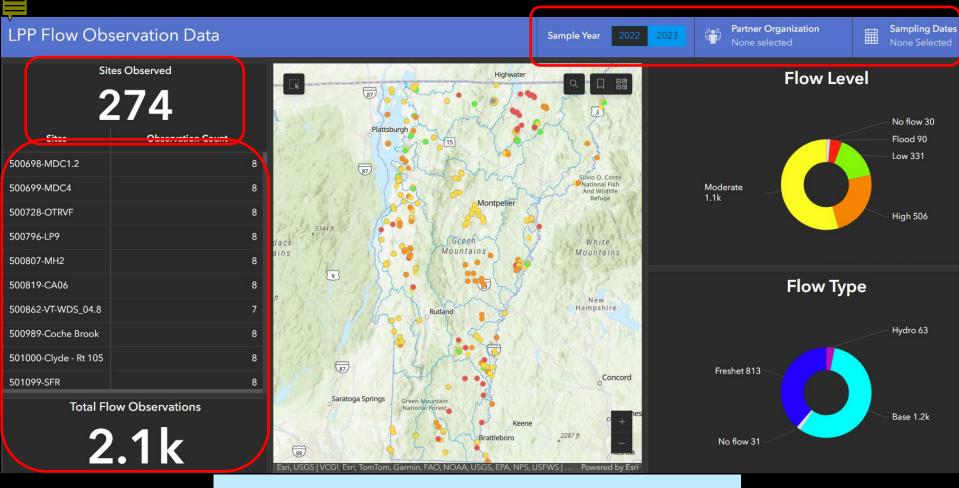
Ш

 \bigcap

<


If uncomfortable using devices in field, flow data can be submitted from home via app or browser

Must record flow observations in field using paper.


After returning from sampling, **complete survey with field notes** following the same directions in previous slides using computer app, phone app, or webform.

Always correct the date and time.

Upstream and downstream photos **not required**.

https://arcg.is/1PXuTe0

LPP Flow Data Dashboard

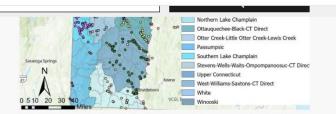
Air and Climate Land Waste Water

Learn More, Do More

- - **Business and Operations**

CAFO

- Lakes and Ponds
- Monitoring and Assessment
- Program Overview
- Monitoring
- Acid Rain
- Biomonitoring
- Fish Samples and Metrics
- Macroinvertebrates, Processing and Metrics
- **Special Studies**
- **Community Science**
- LaRosa Partnership Program
- Get Involved with LPP
- LPP Data & Reports
- Reports from LaRosa Partners
- LPP Newsletters
- LPP Training & Education
- LaRosa Partners Past & Present


- Frequently Asked Questions
- LPP Partner Guide
- 2023 Interactive Map of Stream Sampling Sites
- PowerBI LPP Data Presentation Tool
- LPP Flow Data Dashboard / Flow Data Dashboard video tutorial
- Flow Observation Survey123 App Tutorial
- 2023 Annual Partner Training Slideshow presentation

GET INVOLVED

PROGRAM MODEL

TRAININGS & PROTOCOLS

DATA & REPORTS

NEWSLETTERS

ANY QUESTIONS?

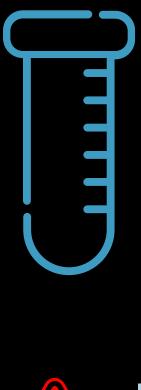
SAMPLE PRESERVATION

TOTAL NITROGEN

TN/Cl have hold time of **28 days, TP 21 days**

Store in sample rack in order

Keep in a safe placelabel TN as hazardous


- Store TN samples on ice or refrigerated after collecting
 - Acidify TN samples within **24 hours**

TP and Cl

Do not need to be kept cold or acidified

NITROGEN ACIDIFICATION

- Read Safety Data Sheet & sign safety agreement.
- Wear provided disposable gloves and safety glasses when handling acid. Tie back long hair and remove baggy clothing.
- DO NOT put gloved hands near eyes or mouth.
- **DO NOT acidify in the field**. Choose a safe location near sink.
- If you spill the acid, absorb with paper towel and dispose in plastic bag. Wash area of spill with soap and water.
- If you spill acid on skin or clothes, **remove clothing**, **rinse** with water for 15 min & contact medical professional.

Acidification should only be performed by project coordinators or volunteers that have been approved and trained by LPP staff.

ACIDIFICATION PROCEDURE

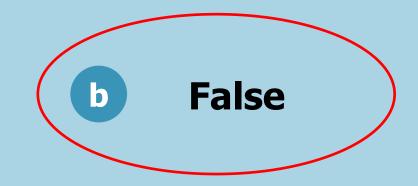
1. Put on **safety goggles** and **gloves**

- 2. Choose a safe location near sink (no pets or children)
- 3. Secure samples in test tube rack
- 4. Uncap all samples prior to opening acid
- 5. Open acid dropper & dispense **2 drops** in each sample
- 6. Immediately recap the acid dropper and replace in secondary container
- 7. Cap the acidified samples and **gently invert** 5x to mix
- Carefully remove gloves so as not to touch exterior side of glove with bare hands and dispose in a safe container – do not reuse gloves!
- 9. Store samples in fridge/on ice & wash hands

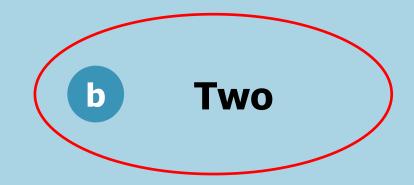
ANY QUESTIONS?

1. Nitrogen must be acidified within _____ hours of sample collection.

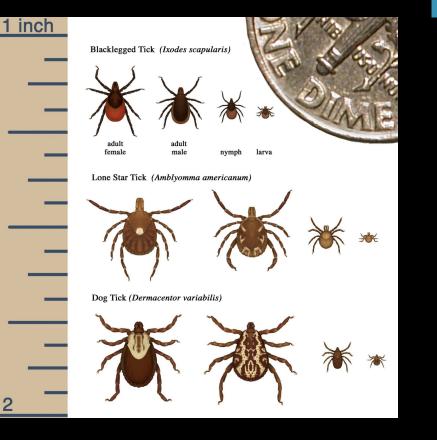
2. TP, TN, and Cl have hold times of



3. All volunteers can perform nitrogen acidification.



4. How many drops of sulfuric acid are required to acidify one nitrogen sample?


SAFETY IN THE FIELD

- Carry a cell phone, sample with a partner, and let someone know where you are, when you intend to return, and what to do if you do not return on time.
- Honor private property rights. Never cross a landowner's property without permission.
- Never wade in swift or high water. Do not monitor if the stream is at flood stage.
- ✤ If possible, have a first aid kit and medical form for each volunteer.
- Be aware of the nearest hospital and how to get there.
- Listen to weather reports. Never monitor if severe weather is predicted.
- Do not walk on unstable stream banks.
- Be aware of wildlife, insects, and skin irritating plants.

TICK SAFETY

POISON PARSNIP POISON IVY

BREAK

- Will be emailed PDF copies of raw data from VAEL
- Takes about a month from sample receipt
 - These data have not gone through the full QAQC process and should not be shared with the public

VAEL Vermont Agric Environmental

Sample ID: 50194	5-R-WRCasellas		VAEL Sample ID:	2301426-001	
Collected On:	08/23/23 09:30	Matrix:	Water		
Collected By:	Shawn White	Received On:	08/24/23 12:31		
Sample Comments:	:				
Analyte	Method	Sample Result	Anal. Date	Rem	Comments
Chloride	SM 4500-CI- E	10.3 mg/L	08/30/23 12:58		
Total Nitrogen	VAEL SOP SM 4500-N C	0.29 mg-N/L	09/08/23 10:12		
Total Phosphorus	VAEL SOP SM 4500-P H	16.8 µg P/L	09/13/23 13:37		

Should skim PDFs for suspect data:

- Check for extreme values (freshet runoff events often cause higher values for TP and TN and lower CI)
- Wildly **differing duplicate samples** beyond 30% difference
- Don't forget to check for missing flow survey submissions in Flow Dashboard!

Consistent anomalies in data may indicate improper sampling methods or contamination & should be addressed ASAP

ACCESSING LPP DATA

An Official Vermont Government Website

Restoring Vermont's Waters

Monitoring and Assessment

Fish Samples and Metrics Macroinvertebrates, Processing and

Community Science LaRosa Partnership Program Get Involved with LPP LPP Data & Reports Reports from LaRosa Partners LPP Newsletters

Program Overview

Business and Operations

Lakes and Ponds

Monitoring

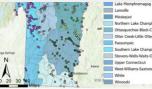
Acid Rain Biomonitoring

Metrics **Special Studies**

CAFO

Air and Climate Land Waste Water Learn More, Do More

QUICK LINKS


- Frequently Asked Questions
- LPP Partner Guide
 - 2023 Interactive Map of Stream Sampling Sites
 - PowerBI LPP Data Presentation Tool
 - LPP Flow Data Dashboard / Flow Data Dashboard video tutorial
 - Flow Observation Survey123 App Tutorial
 - 2023 Annual Partner Training Slideshow presentation

GET INVOLVED

PROGRAM MODEL

Northern Lake Champlain Ottauquechee-Black-CT Direct Otter Creek-Little Otter Creek-Lewis Creek Southern Lake Champlain Stevens-Wells-Waits-Ompompanoosuc-CT Direc Upper Connecticut West-Williams-Saxtons-CT Direct

NERMONT

TRAININGS & PROTOCOLS

NEWSLETTERS

VAEL

LPP Training & Education LaRosa Partners Past & Present

Program Model

DATA & REPORTS

Air and Climate Land Waste Water Learn More, Do More

ANR Flood Recovery Resources

Find updates and information on the recent flood.

Home

About DEC

Contact Us

Commissioner's Office

Administration and Innovation

Air Quality and Climate

Drinking Water and Groundwater

Environmental Assistance

Environmental Enforcement

Geological Survey

Waste Management and Prevention

Water Investment

Watershed Management

Application, Permitting, and Compliance Forms

Protecting Vermont's Waters

Restoring Vermont's Waters

Business and Operations

V-IWIS VERMONTINIBERATED WEDENSEEDINIORAATECK SYSTEM

VERMONT INTEGRATED WATERSHED INFORMATION SYSTEM

PARTNER REPORTS

ANR ATLAS

LPP Data & Reports

LPP Flow Data Dashboard - a presentation of all flow observation submissions by year displayed on a graphic with a list of sampling sites, a map of the flow observation locations, and flow level/type pie charts.

LPP Power BI Data Presentation - a visual presentation of historic LPP data created by VT DEC staff. The presentation includes dot plots and box plots of water chemistry data, flow observations, and land use data.

Monitoring Site Details Report - an IWIS database report where you can view and export LPP monitoring site names and details by organization. The sites are listed under the new naming conventions introduced with the 2021 program redesign.

Water Chemistry Data Report - an IWIS database report where you can query watershed associations' data by site and export it. This data has been thoroughly reviewed.

MONITORING SITE DETAILS REPORT

IWIS							
Partner ID Addison County River Watch							
[4 4 1 of 1 ▷	▶I Fin	d Next 🛛 🔍 🗸 🤇	٩		lancasi.		
Partner ID	Location Name	Latitude l	ongitude	Town	Location Description	Sampled Years	
502217-HGB-1.7	Hogback Brook	44.22197	-73.07215	Starksboro	Parsonage Rd in Starksboro, fork right after bridge, Runcie residence. Wetland is behind house/pasture, through woods. Jim and Chris Runcie contact (802) 453-4603 "site ID corrected 7/09 from 632	2013	
508522-HK-0.8	High Knob Brook	44.21814	-73.05061	Starksboro	Above Freedom Access Road	2013, 2022	
506486-HLB-0.8	Hillsboro Brook	44.21062	-73.02887	Starksboro	Rt 116 to Hillsboro Rd. Follow rd to end where bridge is washed out. Sampled DS of bridge, below confluence of 2 small streams.	2013, 2022	
502215-HLW-2.5	Hollow Brook	44.29321	-73.05408	Hinesburg	Located on Hollow Rd. rotational probabilistic site, FW08VT042	2013, 2022	
523105-LCC0.3	Lewis Creek Trib	44.27080	-73.06750	Starksboro	Drainage with beaver activity meeting main stem of Lewis Creek amid bracket monitoring project.	2021	
523107-LCCM	Lewis Creek Trib	44.27100	-73.07120	Starksboro	Mouth of the tributary, below where the two above drainages come together, just before they enter Lewis Creek, between River Miles 14 and 15.	2021	
523106-LCCS0.1	Lewis Creek Trib	44.27120	-73.07060	Starksboro	Drainage coming directly from the vicinity of a farm amid a bracket monitoring project.	2021	
515954-LCHLW0.1	Hollow Brook	44.27550	-73.07660	Starksboro	Hollow Brook at Confl w/ Lewis	2017, 2018, 2019, 2021	
500680-LCHLW1.0	Hollow Brook	44.28370	-73.07244	Hinesburg	Approximatly 50 m downstream fromTyler Rd bridge	2003, 2004, 2005, 2017, 2018, 2019, 2021, 2022	
506209-LCR0.3	Lewis Creek	44.24847	-73.27436	Ferrisburgh	Boat Access upstream of Hawkins Bay; Capture drainage below VTDEC LTM station at Greenbush Rd	2018, 2019	
500673-LCR14	Lewis Creek	44.27702	-73.08154	Monkton	At Tyler Bridge Rd Crossing RM14	2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2021	
521586-LCR14.3	Lewis Creek	44.27530	-73.07690	Starksboro	Just above confluence of Hollow Brook	2017, 2018, 2019, 2021	
515955-LCR15	Lewis Creek	44.27080	-73.07150	Starksboro	Just above Clifford stabilized crossing	2017, 2018, 2019, 2021	
500674-LCR15.6	Lewis Creek	44.26144	-73.06641	Starksboro	At Kelly farm RM 15.6	2003, 2004, 2005	
515956-LCR16	Lewis Creek	44.25560	-73.07040	Starksboro	LaRue bridge crossing	2017, 2018, 2019, 2021	
500675-LCR17.2	Lewis Creek	44.24430	-73.06409	Starksboro	At Ballpark rec field RM 17.2	2003, 2004, 2005, 2006, 2007, 2008, 2012, 2013, 2018	
502598-LCR18.6	Lewis Creek	44.22900	-73.06180	Starksboro	At Lewis Creek Farm Footbridge below farm	2008, 2012, 2013	
500676-LCR19.5	Lewis Creek	44.22380	-73.06332	Starksboro	At Parsonage Rd Bridge	2003, 2004, 2005, 2006, 2007, 2008, 2012, 2013	
508500-LCR26.5	Lewis Creek	44.20256	-73.01862	Starksboro	Above Gorge	2013	
507896-LCR27.8	Lewis Creek	44.19533	-73.05180	Starksboro	Hillsboro Road in Starksboro Valley	2012, 2013, 2022	

WATER CHEMISTRY DATA REPORT

IWIS

Start Date	1/	1/1965	End Date 3/11/2022								View	View Report	
Characteristic Dissolved Phosphorus, E. Coli Bacter 👻 Columns Start Time, Location ID, LaRosa Site 💌													
Partner Code Addison County River Watch													
I ↓ ↓ 1 of 2 ? ▶ ▶ I Find Next ↓ €													
						Dissolved Phosphorus	E. Coll Bacteria	Total Nitrate/Nitrite Nitrogen	Total Nitrogen	Total Phosphorus	Total Suspended Solids	Turbidity	
Visit ≎ Date		Location ‡ ID	La Rosa 🛟 Site ID	Location Name ‡	Depth (m)	ug/l	#/100ml	mg/l	mg/l	ug/l	mg/l	NTU	
6/25/2003		500681	LFB2.5	Beaver Branch	0.2		42.8			90			
6/25/2003		500680	LCHLW1.0	Hollow Brook	0.2		16						
6/25/2003		500682	LFR0	Lemonfair River	0.2		98.5			350			
6/25/2003		500683	LFR1.2	Lemonfair River	0.2		145			610			
6/25/2003		500684	LFR12	Lemonfair River	0.2		219			280			
6/25/2003		500685	LFR15.8	Lemonfair River	0.2		114			390			
6/25/2003		500686	LFR20.2	Lemonfair River	0.2		27.2						
6/25/2003		500687	LFR23.9	Lemonfair River	0.2		93.3			230			
6/25/2003		500689	LFR29.3	Lemonfair River	0.2		517			370			
6/25/2003		500690	LFR3.7	Lemonfair River	0.2		387			380			
6/25/2003		500691	LFR6.7	Lemonfair River	0.2		90.9			440			
6/25/2003		500673	LCR14	Lewis Creek	0.2		260			14			
6/25/2003		500674	LCR15.6	Lewis Creek	0.2		153			13			
6/25/2003		500675	LCR17.2	Lewis Creek	0.2		137			9			
6/25/2003		500676	LCR19.5	Lewis Creek	0.2		74			8			

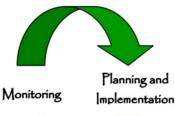
ANY QUESTIONS?

Program Purpose & Goals

Goal: Provide meaningful water quality data for both the Vermont Department of Environmental Conservation (VT DEC) and partner organizations through community science

•

•


Purpose: Improve understanding of water quality conditions in VT streams across a spatial and temporal basis; fill data gaps and strengthen database

Purpose: Assist partners, their communities, and local, state, and federal governments in **stream conservation**, **protection**, and **remediation efforts**, effective **resource allocation**, watershed **planning**, etc.

Goal 1: To monitor and assess the physical, chemical and biological condition of Vermont's surface waters to maintain, protect, enhance and restore their integrity and uses.

Objectives

- Determine the status and trends in the condition of Vermont's waterbodies.
- B. Determine if surface waters are meeting the Vermont Water Quality Standards.
- C. Use probability assessments to provide an understanding of statewide surface water conditions.
- Learn what stressors threaten the integrity and uses of Vermont waters.
- E. Adapt monitoring efforts to identify and track pollutants in addition to emerging stressors.
- F. Respond to public complaints and emergency situations regarding Vermont surface waters.
- G. Evaluate effectiveness of management actions and

g

Goal 2: To interpret, analyze and communicate monitoring and assessment results within the Agency of Natural Resources and outside groups to support the development of good management decisions for Vermont surface waters.

Objectives

- A. Expand accessibility and use of water quality assessments within the ANR, by other state and federal entities, and by the general public.
- B. Provide information to support and evaluate Agency and Department planning, management and regulatory programs, including the development of environmental indicators.
- C. Communicate, collaborate and coordinate on a regular basis with organizations, agencies, municipalities, and the general public to assure complementary monitoring programs.

Program Purpose & Goals

Goal: Provide meaningful water quality data for both the Vermont Department of Environmental Conservation (VT DEC) and partner organizations through community science

•••

•

- Purpose: Improve understanding of water quality conditions in VT streams across a spatial and temporal basis; fill data gaps and strengthen database
- **Purpose**: Assist partners, their communities, and local, state, and federal governments in **stream conservation**, **protection**, **and remediation efforts**, effective **resource allocation**, watershed **planning**, etc.
- **Purpose**: Further the **achievement of the VT DEC's water monitoring goals** outlined in the Water Quality Monitoring Program Strategy

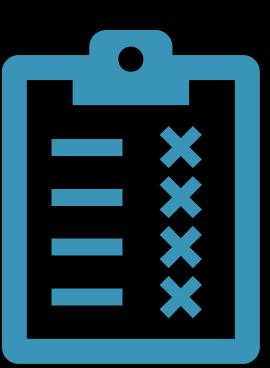
LPP Monitoring Matrix

Outlines current overarching state monitoring priorities

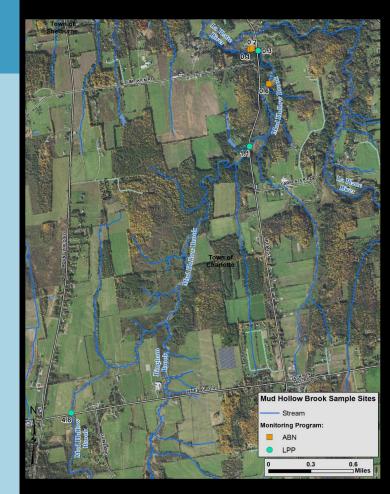
Partner groups (with help of watershed planners) nominate sites with specific monitoring priorities that fit under the umbrella of matrix categories

LPP Monitoring Matrix

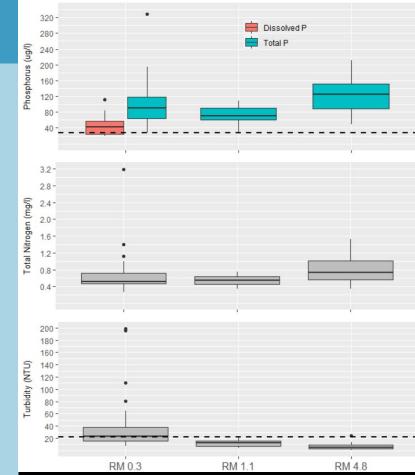
- 1. Characterize conditions upstream of **wastewater treatment facilities**
- 2. Assess **lake tributary** contribution to nutrient and chloride loading in lakes
- 3. Identify potentially high-quality waters
- 4. Identify **stressed or impaired waters** and/or refine the extent and/or source of the stressor
- 5. Evaluate the effectiveness of **remediation efforts**


How Does VT DEC Use LPP Data?

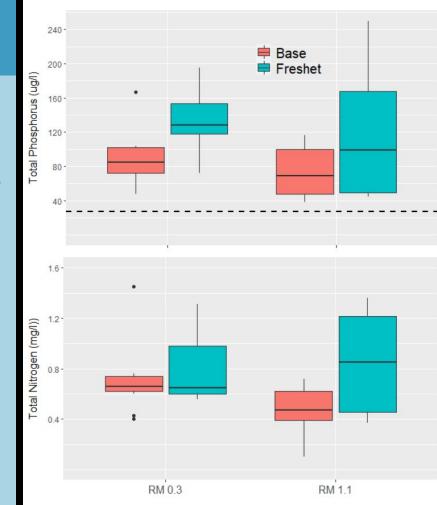
- 1. Wastewater Treatment Facility permitting
- 2. Lake Watershed Action Plans (LWAP)
- 3. Screen for high quality waters
- 4. Support/screening for waters to be listed as impaired on EPA's 303(d) list
- 5. Project effectiveness


VT Impaired Waters List

- Impaired by one or more pollutants if does not meet Water Quality Standards
- Involves collection, analysis, and evaluation of water quality monitoring data and other info
 - Mainly use chemical, physical, and/or biological data collected using standardized protocols
- Requires development and implementation of Total Maximum Daily Load (TMDL) plan designed to achieve Water Quality Standards
- Submit every 2 years to Environmental Protection Agency



- Entire stream recommended for aquatic biota impairment by biomonitoring team (ABN)
- Organic matter pollution and nutrient enrichment primary cause of biological degradation



2004-08, LPP collected turbidity, chloride, total nitrogen, and dissolved and total phosphorus at river mile (RM) 0.3, 1.1, & 4.8

 2021-23, LPP collected TP, TN, and Cl with flow
 observations at RM 0.3 & 1.1

"Dozens of water quality samples collected by the ABN and LPP over the last 20 years at multiple stations have shown highly elevated nutrient concentrations with total phosphorus exceeding the WWMG nutrient criteria of 27 µg/L in every instance."

ABN macroinvertebrate, fish, chemistry, and habitat data at river mile 0.1 (2009, 2021)

 ABN water quality (3x- summer '23) and macroinvertebrate data at river mile 0.2 & 0.6 (fall 2023)

 Macroinvertebrates failed to meet Water Quality Standards

Kate Kelly

Program Manager Lewis Creek Association

Ben Copans

Watershed planner for the Passumpsic River, Upper Connecticut River, and Lake Memphremagog watersheds

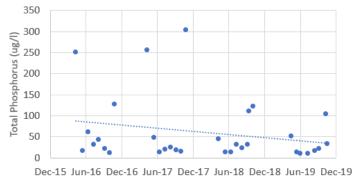
VT DEC Water Investment Division

Watershed planner use of LaRosa Data in coordination with LaRosa groups.

- Planners can support LaRosa groups in prioritizing sampling sites based on our WQ knowledge, and in some cases can support data analysis
- Planners work with partners to use data to guide project identification, and implementation priorites.
- Where feasible, planners can advise groups how to best support the evaluation of project effectiveness.

Evaluating BMP effectiveness is challenging

- Requires:
 - a substantial source of pollution
 - Must be able to be effectivly reduced through a best management practice (BMP) supported by the farmer
 - water flows into a small enough stream where the impact of this change has the potential to be measured (Generally above a 50% reduction).
- The Orleans County NRCD works directly with farmers in the Lake Memphremagog watershed
 - To identify and then address nutrient sources
 - Monitoring results and do statistical analysis
 - Present information to the farmer to guide work and demonstrate impacts.
- The Caledonia County NRCD has done similar work in the Ticklenaked Pond Watershed



Monitoirng set up

- Use students T-Test or nonparametric test
- Pre vs post below BMP

or

 Pre vs post difference between above and below BMP Tice Mill phosphorus concentrations over time

- Tice Mill data alone only suggest a 50% chance reductions are true ie. not statistically significant.
- Lower site shows nearly a 99% chance of reductions comparing to pre vs post over the fall.
- The difference between the upper and lower sites in fall pre vs post BMP shows a 99.97% chance that there is a reduction over time by nearly 85%.
- This reinforces that the closer sites are to BMPs the better but above and below sites provides the best chances of showing improvements with limited data.

Installing Livestock Exclusion Best Management Practices Reduces Phosphorus

PROBLEM:

The Morin farm is in the town of Holland within the Steams Brook watershed. Steams Brook flows northeasterly and is listed on the VT Dept of Environmental Conservation 2016 stressed waters list for agricultural and gravel road runoff and morphological instability. Steams Brook drains to Quebec's Lake Massawippi which has elevated levels of phosphorus.

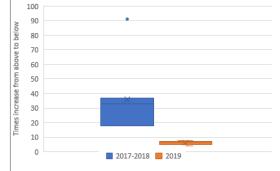
The cordination efforts of Orleans County Natural Resources Conservation District (NRCO) and other partners focused efforts have improved water quality conditions by implementing best management practices throughout the watershed.

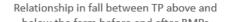
Elevated levels of phosphorus in the unnamed waterway that runs through the Morin farm were discovered by the Orleans County Conservation District through the LaRosa Volunteer Water Quality Monitoring program. Samples were collected 8 times per year including 2 rain events in 2017, 2018 and 2019 at two locations, above and below the farm.

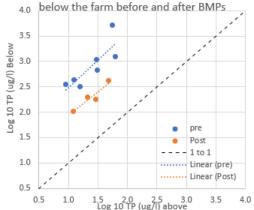
Andre Morin bought his 116-acre home farm from his parents in 1992, who had purchased it in 1984. In 2016, he started working with the Vermont Land Trust and the Vermont Housing & Conservation Board to place a permanent conservation easement on his farm.

In 2016, Andre also voluntarily agreed to participate in the Orleans County Conservation District's monitoring program to determine the effectiveness of BMPs as they were implemented. As part of this cooperative monitoring effort, elevated levels of **phosphorus** in the unnamed waterway that runs through the Morin farm were discovered by the OCNRCD through the VT DEC LaRosa Volunteer Water Quality Monitoring program.

In 2019, with funding from the VT Agency of Agriculture, Food and Markets' BMP program, Andre completed a new barn yard project for a heavy use area adjacent to the waterway running through the farm. He also installed exclusion fencing, alternative watering, stream crossings and laneway projects with funding from the OCNRCD USDA Regional Conservation Partnership Program to bring the farm into compliance with the RAPs.


The installation of these BMPs in summer of 2019 appears to have dramatically reduced the phosphorus loading from the farmstead and pasture areas. Analysis suggests that there was an 85% reduction in phosphorus levels.


Andre sold his cows in the winter of 2020 because of his personal health limitations but his brother John will continue to use the facilities, pastures and crop fields so the



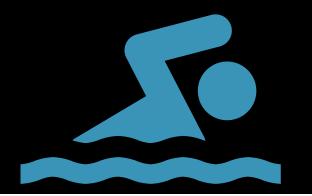
For additional information contact: VTDEC Watershed Coordinator, Ben Copans 802 751 2610 Orleans County NRCD Manager, Sarah Damsell 802 334 6090x 7008

Times increase from above to below the farm in all before and after BMPs during late summer/fall

This analysis has been helpful in many ways,

- 1. Providing data to farmers to motivate action.
- 2. To compare water quality improvements with tracking.
- 3. To identify situations where the BMP's didn't solve the problem.
- 4. Field observations provide useful informaiton
- 5. To tell success stories that help to build support for this work.

ANY QUESTIONS?


Wastewater Treatment Facility Sampling

- Characterizes upstream conditions of wastewater discharge receiving waters
- Used to calculate (along with effluent and biomonitoring data) downstream conditions
- Determines if WWTF is meeting water quality standards
- Very useful for informed WWTF permitting

Lake Watershed Action Plans

- Assessment and planning tool used to identify greatest threats to a lake ecosystem
- Clarify how land uses are impacting water resources and priorities for addressing water quality concerns
- LWAP includes:
 - assessment of shoreland, tributaries, and hydrologically connected roads
 - identification of sources of nutrient and sediment runoff within watershed and threats to wildlife
 - prioritization and ranking of the severity of identified sources of pollution and impacts
 - recommendations for restoration and protection

In Progress Lake Watershed Action Plans

DEC Funded LWAPs

- Maidstone Lake, Maidstone
- Lake Fairlee, Fairlee
- Lake Willoughby, Westmore
- Shadow Lake, Glover
- Lake Morey, Fairlee

LCBP Funded LWAPs

- Caspian Lake, Greensboro
- Keelor Bay, South Hero
- Lake Iroquois, Hinesburg
- Lake St. Catherine, Poultney
- Fairfield Pond, Fairfield