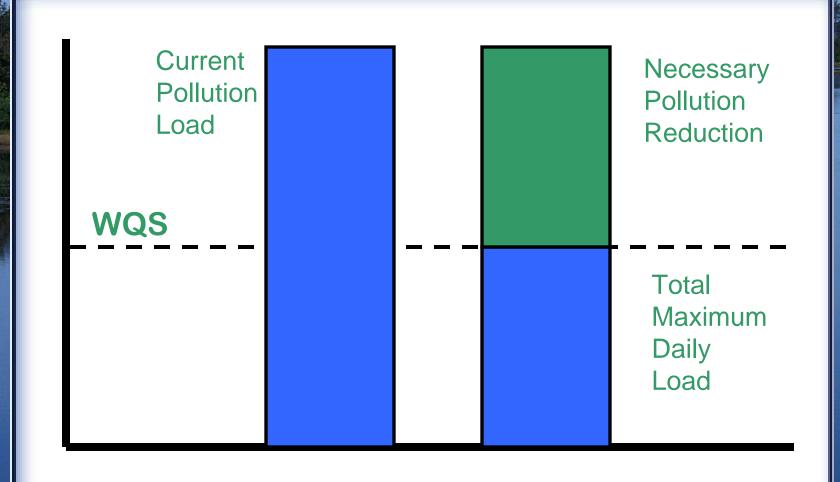
Lake Carmi Phosphorus TMDL

Public comment briefing

VT Agency of Natural Resources Department of Environmental Conservation Water Quality Division

> 9-11-2008 Franklin, VT

Informational Meeting


Describe TMDL and respond to questions

 NOT a hearing, comments need to be submitted in writing

What is a TMDL?

- Clean Water Act requirement for 303d listed impaired waters
 - establishes the allowable pollutant loading from all contributing sources at a level necessary to attain the applicable water quality standards.
 - Allocates that load among point and non-point sources
- Ultimately approved by EPA to ensure compliance with Federal Clean Water Act

What is a TMDL?

What is a TMDL?

Establishes a loading target - Science

Sets up implementation plan - Policy

Clean Water Act Requirements for TMDLs

- Waterbody, pollutant, sources, priority
- Water quality standards, targets
- Loading capacity
- Margin of safety
- Allocations
- Seasonal variation
- Reasonable assurances
- Public participation

Water Quality Standards & Targets

 Lake Carmi fails to provide for many aspects required in the WQS...impaired

 TMDL describes derivation of target phosphorus concentration and relationship to WQS

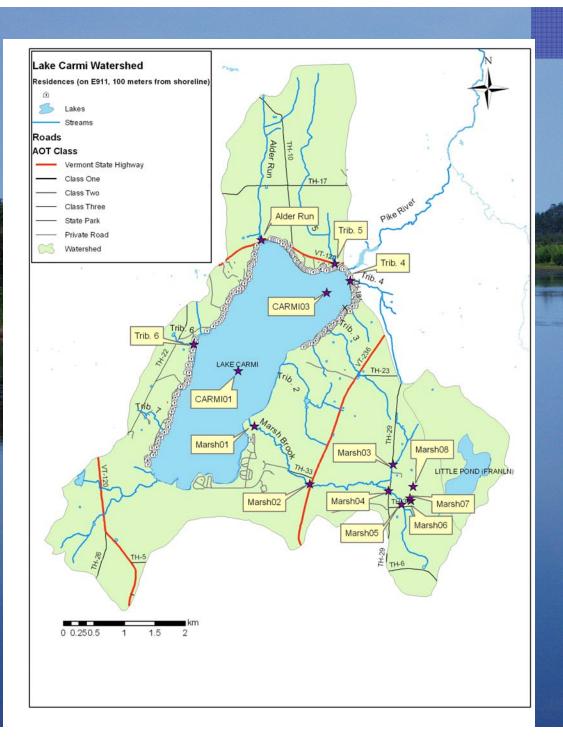
Loading Capacity

Greatest amount of a pollutant that a water can receive without violating water quality standards

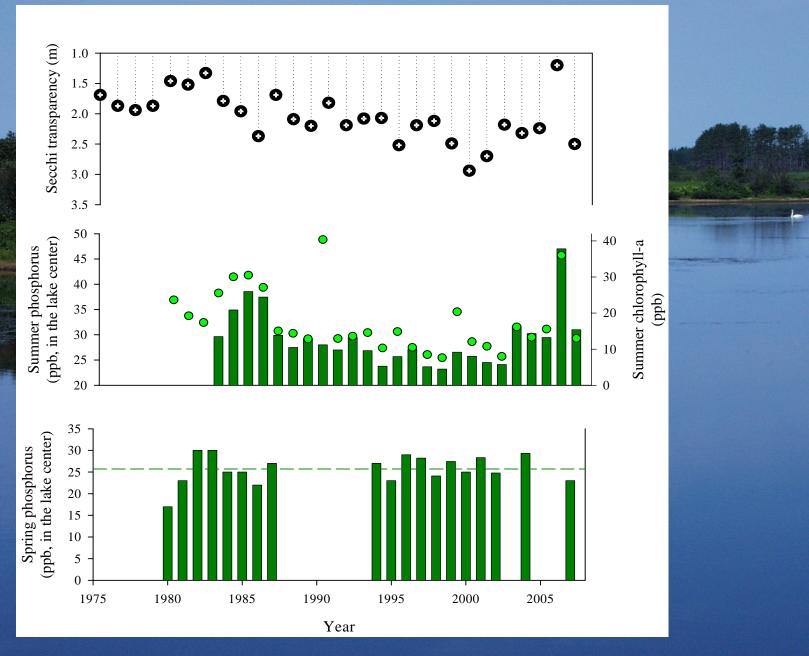
 Analysis provides the link between loading and WQS

Margin of Safety

 Accounts for uncertainty that the total loading capacity will attain WQS

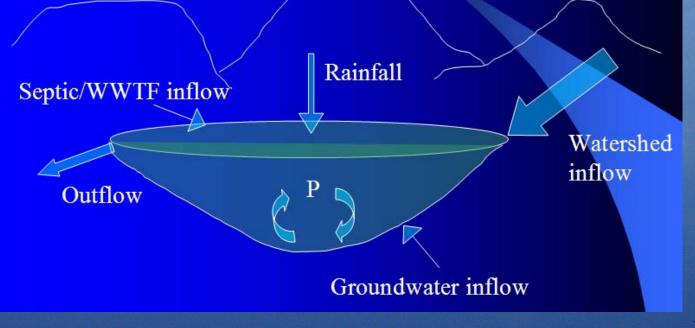

Can be either implicit or explicit

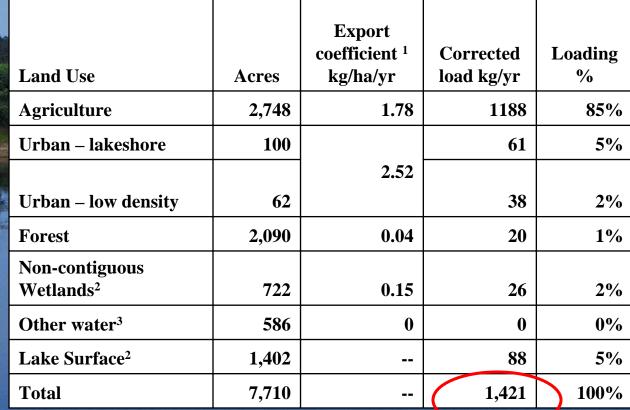
Pollutant Allocations


 TMDL must allocate between point sources (WLA) and nonpoint sources (LA)

TMDL = WLA + LA + MOS

Long history of algae blooms
This algae results from excessive phosphorus loading from the watershed
In-lake algae conditions vary along a north-south axis. Things are worst in the NE cove.





What are the current phosphorus loads to Lake Carmi?

Phosphorus in watersheds

Phosphorus loads – land export

1)Coefficients taken from Troy et al., 2007.

2)Direct deposition of phosphorus to contiguous wetlands and the lake surface was calculated using the approach of the Lake Champlain TMDL (VTDEC and NYSDEC, 2002).

3)Direct deposition of phosphorus to non-contiguous ponds and tributaries was considered negligible.

Phosphorus loads – septic

Low	Most likely	High			
2 kg/yr	15 kg/yr	49 kg/yr			

Assumptions:

- 206 camps
- 3 persons/camp
- ½ year occupancy for these 3 persons
- 3.3 g / person / day P "produced."

Phosphorus loads – internal

and the second second	Method	Kg P/yr		
	1. From a complete mass budget	-154 kg		
	2. From growing season in situ phosphorus increases	254		
	3. From in situ phosphorus increases in the fall	1011		
	4. From phosphorus release rate and anoxic area, using most likely p release rates	191		
	Mean for methods 1,2, and 4	97		

Phosphorus loads - Carmi State Park WWTF

- Recirculating textile filter for effluent treatment,
- Storage in a lagoon
- Spray disposal
- Not a point source...this is an indirect discharge
- Estimated discharge as
 - Daily flow x operation days x max. measured groundwater P

15,500 gal/day x 120 days x 215 μg/L P x 3.81x10-9 = <u>1.5 kg/yr</u>

Phosphorus loads – summary

	Source of phosphorus load	Value used to calculate this TMDL (kg/yr)
and the second second	Watershed tributaries ¹	1,421
	Septic loads	15
A DESTRUCTION	Internal loads	97
	Load from Lake Carmi State Park WWTF ²	2
	Total annual load	1,535

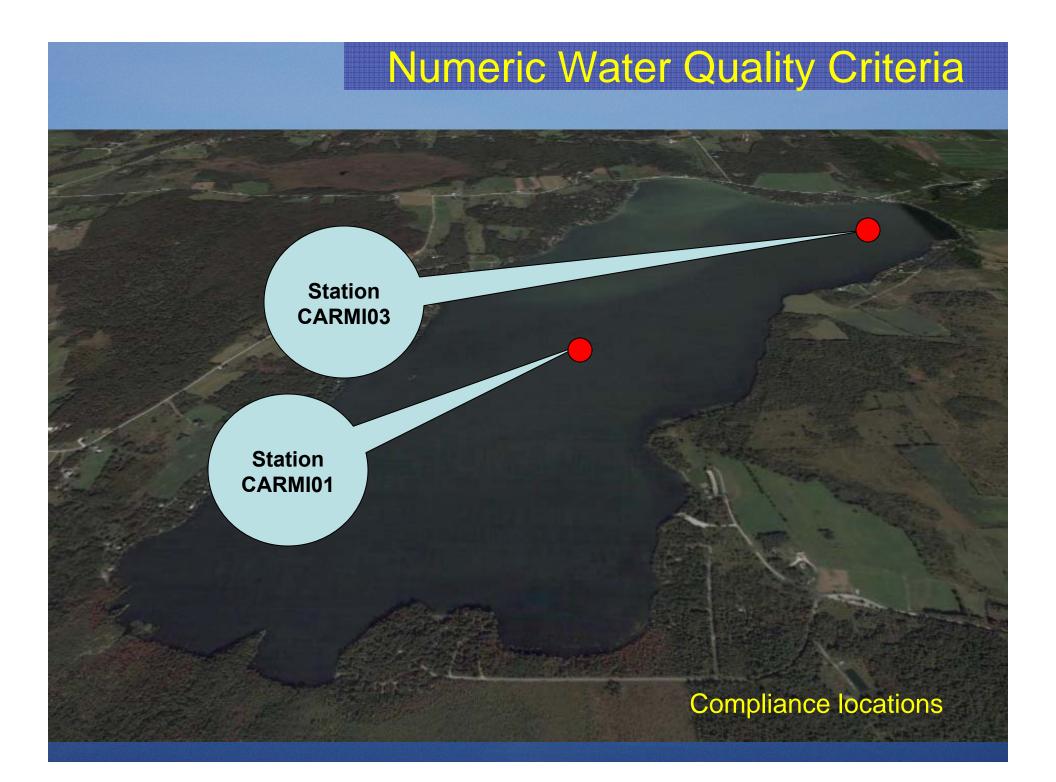
- 1) Includes 88 kg phosphorus delivered directly to the lake surface from atmospheric deposition
- 2) This WWTF is permitted as an indirect discharge using a leachfield design. As such, it is being treated as part of the non-point source load in the TMDL.

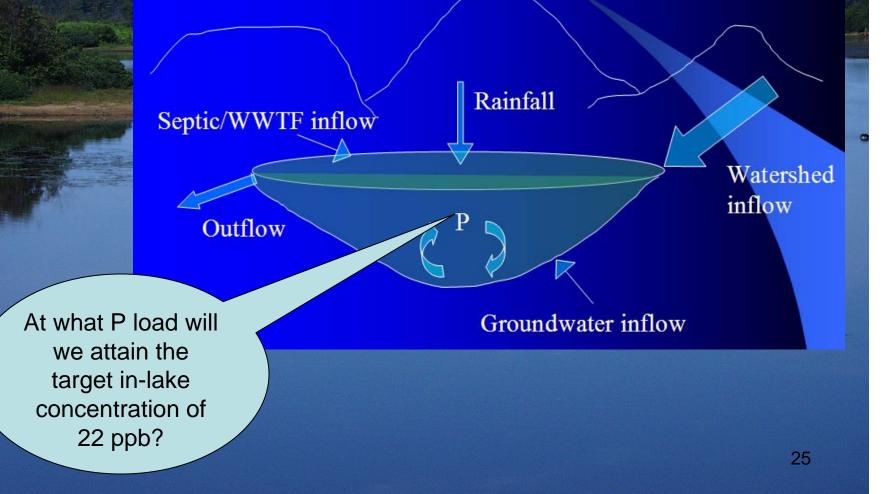

Numeric Water Quality Criteria

All waters - general policy

(...)

In all waters, total phosphorous loadings shall be limited so that they will not contribute to the acceleration of eutrophication or the stimulation of the growth of aquatic biota in a manner that prevents the full support of uses. (...)


This needs to be translated into a number, so we can determine how much P load reduction is necessary


Numeric Water Quality Criteria

Numeric Water Quality Criteria

- Compliance with the target will be measured at both the central monitoring station, and the NE Cove monitoring station.
- Lake Carmi will be considered to meet Water Quality Standards when spring total phosphorus concentrations of 22 ppb are attained at both of these stations.

Phosphorus in watersheds

Process

 Create a model that accurately predicts inlake P from P loads

 Use that model to run "what-if" scenarios to determine at what loads P targets will be attained.

Modeling in-lake P concentration from loads

Lake phosphorus model Mean 2007 GSM* TP: 28 ppb Mean ANN** TP: 26 ppb	Total P (predicted), ppb	Range of prediction	Model prediction type
Nurnberg, 1984 Oxic	27	12-43	ANN
Vollenweider, 1982 Shallow Lake/Res.	29	12-49	ANN
Rechow, 1977 water load < 50m/year	35	17-51	GSM
Vollenweider, 1982 Combined OECD	35	15-60	ANN

*GSM: Growing season mean phosphorus

**ANN: Annual mean phosphorus, calculated by WILMS as the average of spring total phosphorus and GSM

"What-if" scenarios predict load to attain 22 ppb

Lake Phosphorus Model	Modeled starting concentration (ppb)	Current load (kg/yr)	Total loading capacity (kg/yr)	Load reduction required (kg)	Final concentration (ppb)
Nurnberg, 1984 Oxic	27	1,535	1,168	367	22
Vollenweider, 1982 Shallow Lake/Res.	29	1,535	1,056	479	22
Rechow, 1977 water load<50m/year	35	1,535	960	575	22
Vollenweider, 1982 Combined OECD	35	1,535	924	611	22
Average			1,027	508	

Allocating the total loading capacity

 The Total Loading Capacity is divided into three components:

- Margin of Safety
- Wasteload Allocation (point sources of P)
- Load Allocation (non-point sources of P)

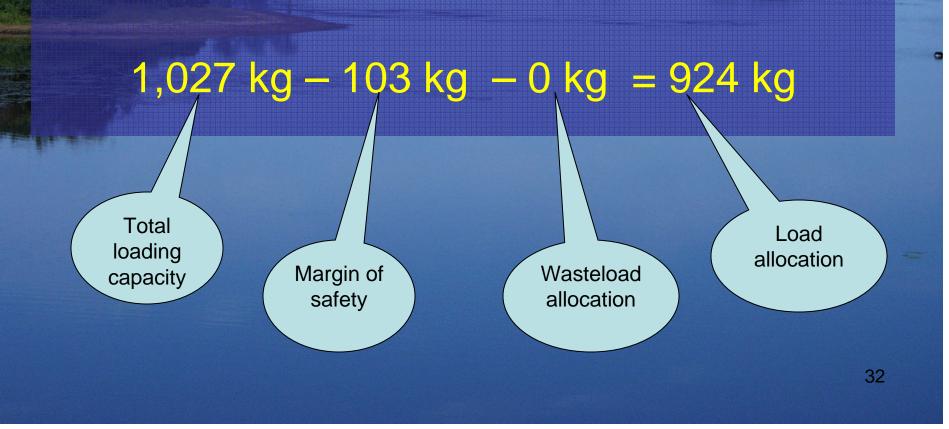
Margin of Safety

Margin of safety is explicit
DEC has selected a 10% of the Total Loading Capacity as a margin to ensure compliance with the target concentration

1,027 kg * 0.1 = 103 kg

Wasteload Allocation

No Point Source discharges exist currently.


Therefore, no wasteload allocation is provided in this TMDL.

 Any new point source discharges will require reopening of this TMDL.

0 kg

Non-point Source Load Allocation

 Load allocation is remainder of the total loading capacity:

7. Total Maximum Daily Load

TMDL Component	kg/yr	
Current load	1,535	
Wasteload allocation	0	
Load allocation	924	
Margin of safety	103	
Total loading capacity	1,027	
Load reduction required	611	40%

Implications on regulated activities and future growth

<u>WWTF:</u> reopen TMDL to create wasteload allocation

 <u>Stormwater construction & multi-sector permits</u>: allowable under TMDL if all conditions of permit are met

 <u>Stormwater operational permits</u>: allowable under TMDL, incorporated into LA Implications on regulated activities and future growth (con't) Large / medium farm operation permits: allowable under TMDL if all permit conditions are met

Future growth: incorporated into LA

Comment Submittal Info

- Deadline: September 26, 2008
- Written comments only
- Email to: <u>tim.clear@state.vt.us</u>
- Send to:

VT Department of Environmental Conservation Water Quality Division 103 South Main Street Waterbury, VT 05671-0408 Attention: Tim Clear

For TMDL documents and info: <u>www.vtwaterquality.org</u>

Implementation plan

Plan is predicated on four objectives:

- 1) Complete execution of the Action Plan.
- Adherence of watershed residents and businesses to applicable State regulations pertaining to septic design and maintenance, and State enforcement of these regulations.
- Enforcement of Accepted Agricultural Practices, requirements for best management practice implementation, and comprehensive nutrient management planning.
- 4) Enforcement of Accepted Management Practices for Logging jobs in Vermont, and permitting of heavy forest cuts as required by 10 V.S.A. 83 §2625.