
Vermont Inland Lakes Lay Monitoring Program Report 1979 - 2013

State of Vermont **Agency of Natural Resources Department of Environmental Conservation** Watershed Management Division Lakes and Ponds Program Montpelier, Vermont

2013

VERMONT LAY MONITORING REPORT

Prepared by

Bethany Sargent Environmental Scientist

AGENCY OF NATURAL RESOURCES DEPARTMENT OF ENVIRONMENTAL CONSERVATION WATERSHED MANAGEMENT DIVISION LAKES AND PONDS PROGRAM

> 1 National Life Drive, Main 2 Montpelier, Vermont 05620-3522 (802) 828-1535 www.watershedmanagement.vt.gov

The Vermont Department of Environmental Conservation is an equal opportunity agency and offers all persons the benefits of participating in each of its programs and competing in all areas of employment regardless of race, color, religion, sex, national origin, age, disability, sexual preference, or other non-merit factors.

This document is available upon request in large print, braille or audio cassette.

VT Relay Service for the Hearing Impaired 1-800-253-0191 TDD>Voice - 1-800-253-0195 Voice>TDD

ACKNOWLEDGMENTS

2013 marked the Lay Monitoring Program's 35th year. Throughout that history hundreds of volunteers have sampled 92 lakes and ponds – an incredible effort that clearly demonstrates the passion Vermonters feel for these remarkable resources. In 2013 alone, Lay Monitors donated more than 800 hours of their time to make over 650 sampling trips, continuing a strong legacy of citizen science. Thank you for putting your values to work, offering your time and resources to track the health of Vermont lakes.

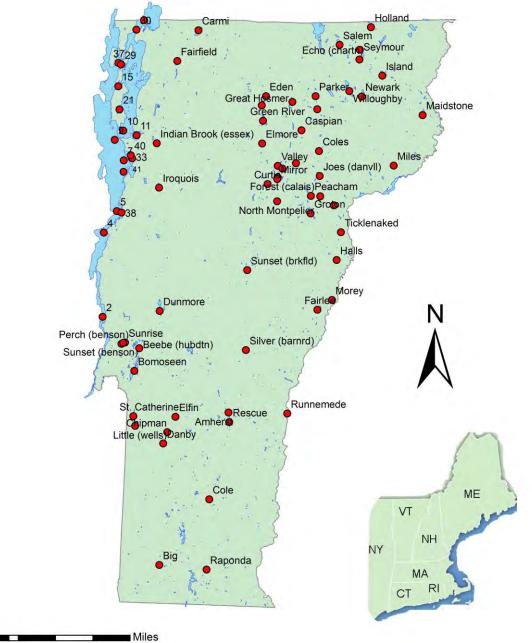
Thank you as well to Tina Centofante, who dove into the Lay Monitoring Program with such energy and enthusiasm, bringing with her a great depth of knowledge and experience in water quality monitoring. We are excited to welcome her back to the program in 2014.

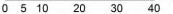
I am also grateful for Amy Picotte's support, guidance, and expertise, having led the Lay Monitoring Program for two decades. Thank you for being an excellent teacher and mentor.

And finally, thank you to Alison Farnsworth, Megan Phillips, Dan McAvinney, Dan Needham, Michael Tefft, and the seasonal staff at the Department of Environmental Conservation Lab, who processed thousands of chlorophyll-a and phosphorus samples through the summer.

CONTENTS

Map of 2013 Inland Lakes and Lake Champlain Stations	1
Introduction	2
LMP Update	3


SECTION 1. Discussion of Lay Monitoring Data


The Parameters the LMP Uses to Measure Water Quality	5
Sampling Overview	10
Sampling Procedures	10
Long-Term Mean Graphs of Secchi Water Clarity, Chlorophyll-a, Total Phosphorus	12
Relationship Graphs of Total Phosphorus, Chlorophyll-a and Secchi Water Clarity	15
Lay Monitoring Data Analysis	17
Eutrophication and Trophic State	19
Summary of How the Data are Used	26

SECTION 2. 2013 Lay Monitoring Lakes

Lay Monitoring Lakes Sampled in 2013 How Lay Monitoring Data is Displayed	
APPENDIX 1. 1979 - 2013 Participation	144
APPENDIX 2. Glossary	16;

2013 Vermont Lay Monitoring Program Lake Sampling Sites

INTRODUCTION

The Vermont Lay Monitoring Program (LMP) is a citizen participation program in which volunteers are trained and equipped to conduct periodic water quality sampling on lakes. Since the initiation of the program in 1979, the principal objectives of the program have been to accumulate an accurate water quality database on lakes in terms of nutrient enrichment, and to inform lake residents about lake protection and biology. In detail, the goals of the program are:

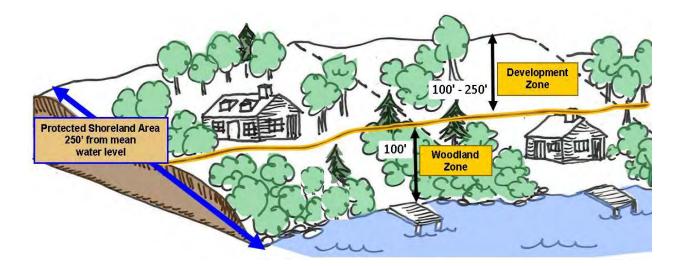
- 1. to provide a perspective on the range of water quality conditions on Vermont lakes;
- 2. to describe water quality conditions on each lake participating in the program;
- 3. to provide data useful in developing statistical eutrophication models for Vermont lakes;
- 4. to establish a database on each lake useful for documenting future changes in water quality;
- 5. to educate and involve lake residents in lake protection.


The Lay Monitoring Program was started by the Vermont Department of Environmental Conservation (DEC), with an initial participation of 32 lakes and 19 Lake Champlain stations. Since then, participation has increased to

include a total of 92 lakes and 40 Lake Champlain stations.

Figure 1 shows the total number of inland lakes and Lake Champlain stations sampled under the LMP each year since 1979.

Figure 1. Annual Total Number of Participating LMP Lakes or Stations.


Lay Monitoring Program Annual Update: The Vermont Shoreland Protection Act

Intent

Effective July 1, 2014, the Vermont Legislature passed shoreland regulations that apply to activities within 250 feet of a lake's mean water level for all lakes greater than 10 acres in size. The Shoreland Protection Act (Chapter 49A of Title 10, §1441 *et seq*) establishes a new state regulation for guiding shoreland development. The intent of the Act is to prevent degradation of water quality in lakes, preserve habitat and natural stability of shorelines, and maintain the economic benefits of lakes and their shorelands. The Act defines clear standards for the creation of buildings, driveways, and cleared areas in shorelands. The Act seeks to balance good shoreland management and shoreland development.

The Shoreland Protection Act recognizes that many shoreland properties in Vermont are already developed or are small lots that cannot meet the new standards. These properties are "grandfathered" until the owner proposes redevelopment. In these cases state officials will work with homeowners so that standards are met to the extent possible. The table below summarizes the standards in the Act.

What the Act Regulates	Why	
<i>Maintenance of Natural Vegetation</i> Naturally vegetated areas within 100 feet of the mean water level must be maintained as such.	 A wooded shoreland is essential for a healthy lake ecosystem. Most animal and plant life in a lake spend all or some of their life cycle in the shallow water, along a lake's shore. A buffer of natural vegetation absorbs and filters runoff from uphill land uses much more effectively than lawn. Tree roots, trunks, and branches hold the bank together, protecting against erosion as well as shade the shallow waters. 	
<i>Limits on Man-Made Hard Surfaces</i> The Act establishes a maximum of 20% impervious surface coverage.	Hard surfaces (roofs, driveways, decks, etc.) result in increased runoff during rain storms. Increased runoff can result in erosion, and lessens absorption and filtration functions of the natural vegetation.	
<i>Limits on Cleared Areas</i> The Act establishes a maximum of 40% cleared area coverage.	Clearing the shoreland of its natural vegetation, increases stormwater runoff and reduces the lake's natural defense in protecting itself from pollution, eroding banks, and creating degraded habitat.	
<i>Limits on Building on Steep Slopes</i> Special practices are required for building on slopes greater than 20%.	Steeper slopes are more prone to erosion and instability, and therefore a wider Woodland Zone, and/or other Best Management Practices are required to help reduce these impacts.	

New Development is located 100 feet from the water's edge in the Development Zone. In the Woodland Zone, a path and minimal clearing is allowed, as well as tree thinning in accordance with the Vegetation Management Standards.

Existing Development can be expanded using Best Management Practices. Best Management Practices, such as re-vegetating stretches of the Woodland Zone or infiltrating runoff, are techniques that help prevent or reduce degrading effects of increased impervious surface or cleared areas.

Vegetation Management Standards

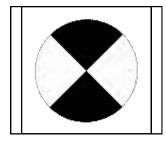
The Vegetation Management Standards outline maintenance of plants in the Woodland Zone using a point and grid system. For each 25 foot by 25 foot plot, the diameter of each tree is measured along with the number of saplings to calculate the number of points. Trees can be thinned as long as the minimum number of points is met for each 25 x 25 foot plot. The lower 1/3 of a tree's branches can be pruned, and dead or dangerous trees can be cut.

Contact Information for Guidance Materials and Questions

For more information, contact the Vermont Agency of Natural Resources, Department of Environmental Conservation, Watershed Management Div., Lakes and Ponds Shoreland Permit Program, 1 National Life Dr., Main 2, Montpelier, VT 05620.

Webpage: www.watershedmanagement.vt.gov/lakes.htm Email: <u>ANR.WSMDShoreland@state.vt.us</u> Phone: 802-490-6196

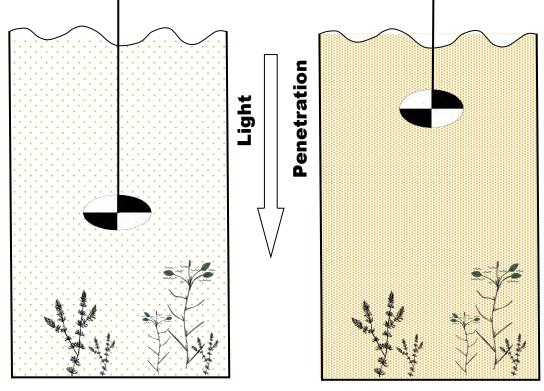
SECTION 1.


THE PARAMETERS THE LMP USES TO MEASURE WATER QUALITY

The Lay Monitoring Program is concerned with measuring water quality as it relates to increased nutrient enrichment of lakes. Nutrient enrichment caused by human activities is the primary threat to Vermont lake water quality.

A variety of conditions may occur in a lake which is experiencing declining water quality due to excessive cultural nutrient enrichment. Nutrients in the water stimulate algae and rooted plant growth and the lake's "productivity" increases. As a result, the algae growth decreases water clarity and in some cases causes foul odors. Excessive rooted plant growth can interfere with boating, swimming, fishing, and other recreational uses. As these plants and algae die each year, they fall to the bottom, adding to the lake sediments. When the natural environment of a lake is altered, the types of fish and other wildlife the lake supports may also change.

In order to determine a lake's water quality, or productivity, the LMP measures the Secchi water clarity and the chlorophyll-a and total phosphorus concentration.


Water Clarity: Secchi Disk Transparency

The Secchi disk reading is a measure of the clarity of lake water. The transparency of a lake's water is directly related to the amount of materials suspended in the water. Particulate matter, such as algae or silt, limits light penetration and reduces the water's clarity (Figure 2). Therefore, a Secchi disk transparency reading is a rough indication of a lake's water quality in terms of nutrient enrichment.

Some Vermont lakes have naturally "tea" colored water. This is very common in beaver ponds and in acidic lakes in some areas of the state. The color is due to the presence of dissolved organic acids, and can reduce the water's clarity. However, water color is not a major factor in most Lay Monitoring lakes. Other variables unrelated to nutrient enrichment can also influence the Secchi disk transparency reading, such as wave action and light reflection. These two variables can be minimized by sampling on calm days and taking the Secchi disk reading off the shaded side of the boat. On a few of the Lay Monitoring inland lakes and Lake Champlain stations, the Secchi disk is often still visible at the bottom of the lake. If on a particular lake the Secchi disk is viewed to the bottom at 5 meters, this should be interpreted to mean the Secchi disk transparency is <u>at least 5</u> meters. Such measurements are not an actual measure of water clarity (since the real reading would be deeper), and useful summer averages cannot be calculated.

The Secchi disk is widely used as a basic water quality indicator, and a Secchi disk transparency reading can often be related to the trophic state of a lake. An oligotrophic (deep, coldwater) lake usually has very clear water and therefore a deep Secchi disk reading. In contrary, a eutrophic (shallow, warmwater) lake usually supports large populations of algae and therefore has a shallow Secchi disk transparency reading. (The relationship between Secchi water clarity and chlorophyll-a, and Secchi water clarity and total phosphorus is shown in Figures 4 and 5.)

Clear lake having small algal population results in deep Secchi disk water clarity readings.

Turbid lake having large algal population results in shallow Secchi disk water clarity reading.

Figure 2. How Secchi Disk Measures Water Clarity

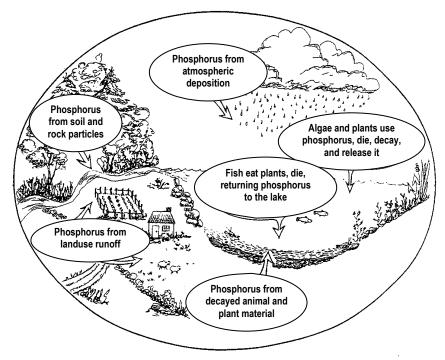
Chlorophyll-a Concentration

Algal populations in a lake can be quantified by measuring the amount of chlorophyll-a in a water sample. Chlorophyll-a is the photosynthetic green pigment contained in all types of algae and other green plants. The amount of chlorophyll-a present in a water sample is directly proportional to the amount of algae living in the water. In the

course of a year, algal populations normally follow a classic successional pattern from a peak population of diatoms (a group of

algae under microscope

algae which use silica to form glass shells for support and protection) in early spring to a variable summer algal population to a peak population of blue-green algae in the fall. The magnitude of the populations and the diversity of the species composition depend on factors such as the degree of nutrient enrichment in the lake and prevailing weather conditions.


Theoretically, if the Secchi disk transparency is related to the amount of particulate matter suspended in the water, it should also be related to the chlorophyll-a concentration of the water. If all other factors are constant, as algal populations and chlorophyll-a concentrations increase, the Secchi disk transparency should decrease. However, this relationship does not always hold true because Secchi disk transparency is influenced by several factors and because algal populations often inhabit water levels below the Secchi disk depth, thereby causing higher chlorophyll-a concentrations without affecting Secchi disk transparency.

The chlorophyll-a concentration can often be related to the trophic state of a lake. An oligotrophic lake usually supports a small algal population and therefore has a low chlorophyll-a concentration. Conversely, a eutrophic lake usually supports large populations of algae and therefore has a high chlorophyll-a concentration. (The relationship between chlorophyll-a and Secchi water clarity, and chlorophyll-a and total phosphorus is shown and explained in Figures 4 and 6.)

Total Phosphorus Concentration

By measuring the amount of nutrients in the water, the LMP measures the variable which most directly influences water quality. Phosphorus is the nutrient in shortest supply in Vermont lakes, therefore it is the one most likely to stimulate productivity, and the best nutrient to measure to track changes in productivity. Total phosphorus includes all the different chemical forms of phosphorus and measuring total phosphorus is an indication of the amount of phosphorus which is potentially available for algal growth.

Phosphorus enters a lake from a variety of sources such as rainfall, incoming streams, land runoff, ground water, and direct discharges. Within a lake, phosphorus that has accumulated in the bottom sediments may become re-suspended in the water under anaerobic (no oxygen) conditions. The phosphorus entering a lake can be derived from both natural and cultural sources. Phosphorus is contributed naturally to aquatic environments by the decomposition of organic matter and the erosion of phosphorus-containing soils. Culturally, phosphorus is contributed to a lake system by people's activities in the drainage basin (Figure 3).

Under natural conditions, the majority of phosphorus contributed to a lake system enters the lake during the spring when the flow of inlet streams is high due to snowmelt and spring rains. Cultural nutrient inputs, on the other hand, may occur at any time of the year. While the lake is in spring overturn, just after ice-out, the incoming phosphorus is distributed evenly throughout the lake. At this time, the total phosphorus concentration in a lake can be used to predict the amount of algal growth that will occur in the lake during the summer. Total phosphorus concentrations measured during the summer, on the other hand, reflect the amount of phosphorus contained in algae in the water, as well as the amount of phosphorus which is still available to the algae. Thus, spring total phosphorus concentration is related to the potential algal growth which will occur in a given season, while summer total phosphorus concentration is related to the algal growth.

Theoretically, total phosphorus concentration should be directly related to chlorophyll-a concentration and indirectly related to Secchi disk transparency. Hence, total phosphorus concentration is related to the trophic state of a lake. An oligotrophic lake usually receives small amounts of total phosphorus in the spring and exhibits low total phosphorus concentrations throughout the summer. In turn, a eutrophic lake usually receives large quantities of total phosphorus in the spring and exhibits high total phosphorus concentrations throughout the summer. (The relationship between total phosphorus and Secchi water clarity, and total phosphorus and chlorophyll-a is shown in Figures 5 and 6.)

Although spring total phosphorus is sampled on many Lay Monitoring lakes, it is not collected from Lake Champlain. Summer total phosphorus is measured on Lake Champlain, as the phosphorus distribution in such a large lake is a dynamic system, which cannot be measured by sampling only during spring overturn. The dynamic system in Lake Champlain results from the constant redistribution of phosphorus via currents and mixing patterns in the lake, and from continual phosphorus inputs via the lake's tributaries and point source discharges such as sewage treatment plants.

SAMPLING OVERVIEW

Each Lake Champlain monitor samples one station, while "inland" lake (lakes other than Lake Champlain) monitors typically sample two stations per lake. The Lay Monitoring Program is divided into two sampling programs. **Basic** monitors measure Secchi disk transparency on a weekly basis. **Supplemental** monitors, as well as all Lake Champlain monitors, sample Secchi disk water clarity and chlorophyll-a and total phosphorus concentrations.

	Station #1			Station #2
SAMPLING PROGRAM	Secchi	Chlorophyll-a	Phosphorus	Secchi
Basic	X			X
Supplemental	Χ	X	Χ	Х
Champlain	Х	X	X	

Basic monitoring of water clarity provides a good indication of water quality conditions. Supplemental monitoring is generally performed on inland lakes which have one or more of the following characteristics:

- 1) the lake is relatively new to the program and chlorophyll-a and total phosphorus base line information is desired,
- 2) the lake has a history of water quality problems, or
- 3) a diagnostic study has been performed on the lake and restoration measures have been implemented.

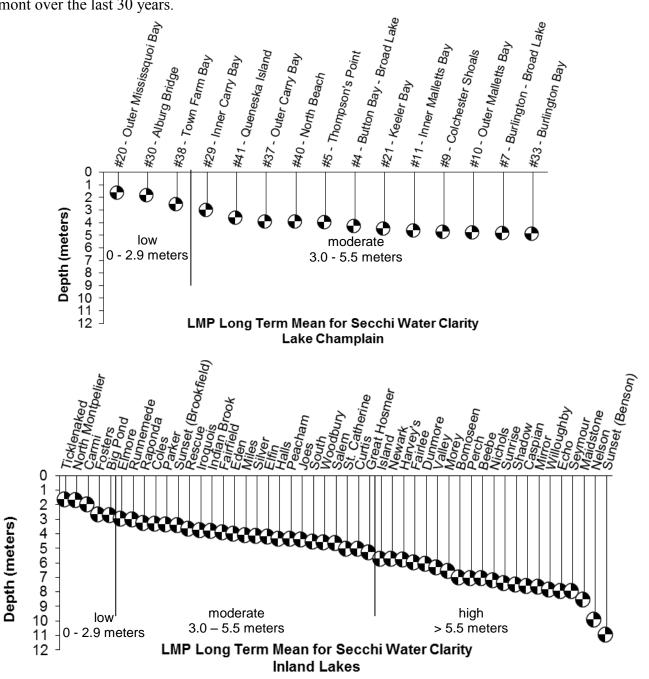
SAMPLING PROCEDURES

Water Clarity (Secchi disk transparency)

Water clarity is measured using a Secchi disk, a metal disk painted with two black and two white quadrants. The Secchi disk is lowered slowly into the water and the lowest depth at which it is still visible is the Secchi disk transparency reading. Measurements are read in meters (1 meter = 3.3 feet) from a marked line attached to the center of the disk.

Algal Population Density (chlorophyll-a concentration) and Nutrient Enrichment (total phosphorus concentration)

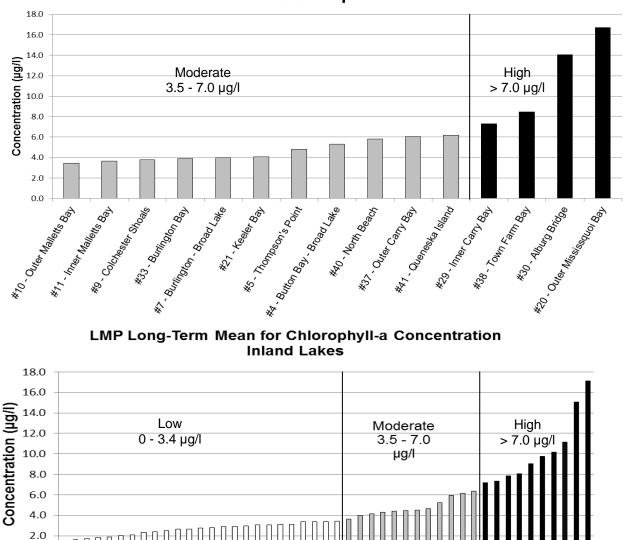
Supplemental monitors, in addition to taking Secchi disk readings, also collect water samples to be analyzed for chlorophyll-a and total phosphorus concentrations. Water samples are collected (in duplicate) by using a weighted garden hose, measured along its length in meters. The hose is lowered straight down into the water to a depth twice the Secchi disk reading. In this way a composite sample of the water column from the water's surface to the depth of the hose is contained in the hose. The hose is crimped shut at the water's surface and pulled up by reeling in a rope attached to the lower weighted end. When the weighted end is brought into the boat, the crimp is released and the water is emptied into a bucket. The appropriate bottle is filled with the water, and the hose is lowered once again in order to collect the duplicate sample.


Upon returning to shore, the monitor sets up a "home laboratory." The chlorophyll-a water samples are filtered through a simple filtration unit. The algae, and therefore the chlorophyll-a contained in the algae, are retained on the filter. The filter is folded, labeled, and frozen. The phosphorus sample collected in a test tube is stored on a shelf away from bright light. Chlorophyll-a samples are taken in duplicate, total phosphorus samples are not. Every two weeks the chlorophyll-a filters and phosphorus test tubes are picked up by LMP staff and transported to the Vermont DEC Laboratory in Burlington for analysis.

Chlorophyll-a concentration is analyzed using fluorometric determination. Total phosphorus is analyzed by the colorimetric, automated ascorbic acid method.

During the spring turnover period, staff members of the DEC sample a number of lakes throughout the state for total phosphorus concentration using the hose technique described in this section. Spring total phosphorus concentrations presented in this report represent the mean of six to nine samples collected on a lake for one sampling date. Spring total phosphorus concentrations provide an estimate of the amount of phosphorus which will be available to plants and algae during the summer.

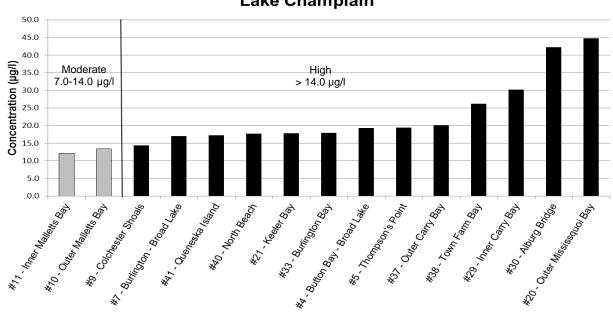
Secchi Water Clarity Long-Term Means


These graphs show the long-term mean for the inland lakes and Lake Champlain stations that participated in the LMP during 2013. Annual summer means are calculated from at least eight samples. **Long-Term Means** are based on averaging all the annual summer means. Some lakes or stations have been sampled since 1979 when the Lay Monitoring Program first started. The lakes (or stations) are ranked in order of increasing Secchi disk transparency with the lakes (or stations) with the lowest clarity on the left side and the graph and those with the greatest clarity at the right side of the graph. The groupings of "low," "moderate," and "high" are based on the range of clarity readings recorded in Vermont over the last 30 years.

Chlorophyll-a Long-Term Means

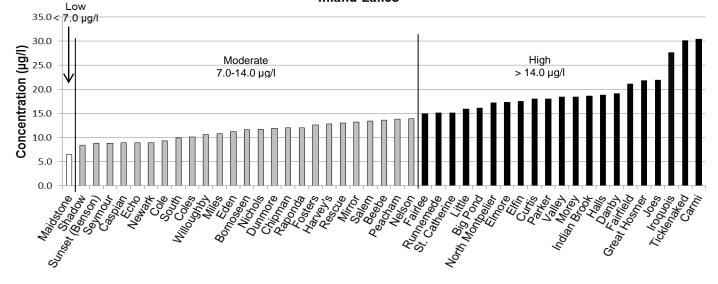
0.0

These graphs show the long-term mean for the inland lakes and Lake Champlain stations that participated in the LMP during 2013. Annual summer means are calculated from at least eight samples. **Long-Term Means** are based on averaging all the annual summer means. Some lakes or stations have been sampled since 1979 when the Lay Monitoring Program first started. The lakes or stations are ranked in order of increasing chlorophyll-a concentrations with the lakes or stations with the lowest chlorophyll-a levels on the left side of the graph and those with the greatest chlorophyll-a levels on the right side of the graph. The groupings of "low," "moderate" and "high" are based on the range of chlorophyll-a concentrations sampled in Vermont over the last 30 years.



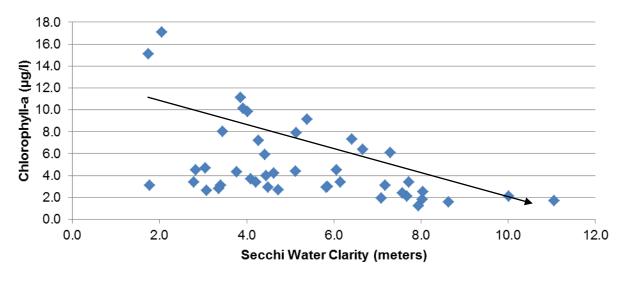
LMP Long-Term Mean for Chlorophyll-a Concentration Lake Champlain

ත්


Total Phosphorus Long-Term Means

These graphs show the long-term mean for the inland lakes and Lake Champlain stations that participated in the LMP during 2013. Annual summer means are calculated from at least eight samples. **Long-Term Means** are based on averaging all the annual summer means. Some lakes or stations have been sampled since 1979 when the Lay Monitoring Program first started. The lakes or stations are ranked in order of increasing total phosphorus concentrations with the lakes or stations with the lowest phosphorus levels on the left side of the graph and those with the greatest phosphorus levels on the right side of the graph. The groupings of "low," "moderate," and "high" are based on the range of total phosphorus concentrations sampled in Vermont over the last 30 years.

LMP Long-Term Mean for Total Phosphorus Concentration Lake Champlain


LMP Long-Term Mean for Total Phosphorus Concentration Inland Lakes

THE RELATIONSHIP OF LMP WATER QUALITY PARAMETERS

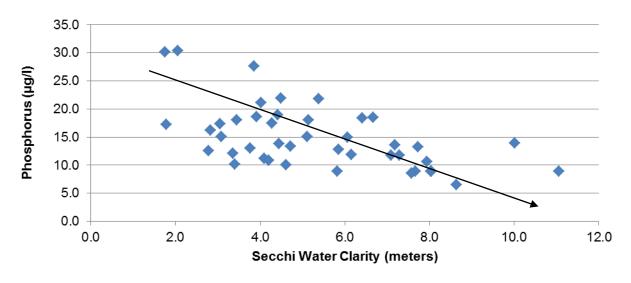

Figures 4-6 present the relationship of the Lake Champlain long-term data. The parameters sampled, Secchi disk transparency, chlorophyll-a, and total phosphorus are graphed against each other in order to observe how they are related to, and affected by, each other. Using the lake station data, three graphs were created: Secchi water clarity versus chlorophyll-a concentration; Secchi water clarity versus total phosphorus; and chlorophyll-a concentration versus total phosphorus.

Figure 4 below shows the relationship between Secchi water clarity and chlorophyll-a concentration, as mapped from the long-term inland lake means. Each data point represents the Secchi/chlorophyll-a relationship for one lake. In general this graph shows that when the Uecchi water clarity increases, there is a decrease in chlorophll-a, as would be expected.

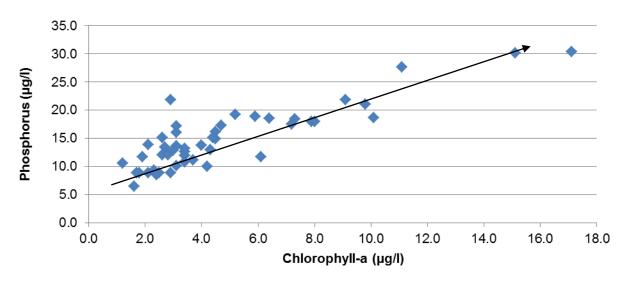

→ Indicates trend

Figure 5 portrays the relationship between Secchi water clarity and total phosphorus, using the Long-Term LMP Means. Each data point represents the Secchi/total phosphorus relationship for one LMP lake. As would be expected, the graph shows that as Secchi water clarity increases, the total phosphorus concentration decreases.

Indicates trend

Figure 6 shows the relationship between chlorophyll-a and total phosphorus, as graphed using the Long-Term LMP Means. Each data point represents the chlorophyll-a/total phosphorus relationship for one LMP lake. In general, as the total phosphorus concentration increases, the chlorophyll-a concentration also increases.

→ Indicates trend

LAY MONITORING DATA ANALYSIS

A data analysis is conducted on all of the Lay Monitoring lakes and Lake Champlain stations. This analysis consists of:

- 1. calculating the <u>summer annual means</u> for each parameter sampled;
- 2. showing and comparing the <u>long-term means</u> for the inland lakes and Lake Champlain stations;
- 3. designating the <u>trophic state</u> (eutrophic, mesotrophic, and oligotrophic) of each lake based on the long-term means for each parameter sampled; and
- 4. determining trends from water quality databases. A database should describe water quality conditions with enough accuracy to be useful in statistical analyses.

1. Summer Annual Means

The reliability of summer annual means for each water quality parameter depends on the sampling technique of the monitors and the frequency of the sampling. A summer average calculated from many samples will be more reliable and representative of the lake than an average determined from just a few samples. Summer averages based on sparse, inconsistent, or scattered sampling are considered weak and are not truly comparable with other lakes or with other years. If a lake was sampled seven weeks or less during the summer its summer average Secchi disk transparency, chlorophyll-a concentration, and total phosphorus concentration are not calculated and will not appear in the individual lake Annual Means Tables as such. Since partial data sets may contain useful information, a record of which years each lake or station was sampled is included in Appendix 2.

2. Comparison of Long-Term Means Among Lakes

The comparison between lakes or stations based on the long-term water quality means is presented on pages 12-14. The graphs show the Lay Monitoring lakes and the Lake Champlain stations according to long-term means for each of the parameters sampled. The stations and lakes are grouped, for purposes of comparison among themselves, into three general divisions: high, moderate, and low. The stations or lakes falling within the same division may be considered to have a similar degree of nutrient enrichment.

3. Trophic Status

The evaluation of trophic state for each Lay Monitoring lake is discussed beginning on page 19.

4. Determining Trends from Water Quality Databases

In addition to describing current water quality conditions on lakes, the Lay Monitoring data is useful for detecting future changes in water quality. Results from the first several years of a study are generally described as "base line" data and serve as a reference point for future studies. After base line conditions have been established, a change in water quality may be documented by demonstrating that a statistically significant difference is present between the recent data and the established base line conditions. In this way, if there is a water quality decline, it may be detected and lake residents can be alerted to take corrective action.

Data analysis is also useful for detecting long-term trends in water quality (see Figure 7.). Trends can show whether or not a lake's water quality is changing or maintaining stable conditions. All lakes exhibit natural variability from year to year, some more than others. The less variable the data on a particular lake, the faster it is to detect a trend. Likewise, the more variable a lake is, the longer it takes to see a trend. There are lakes in the program whose water quality

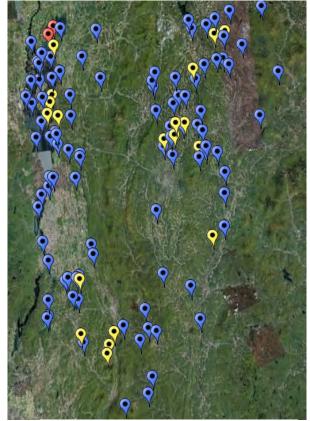
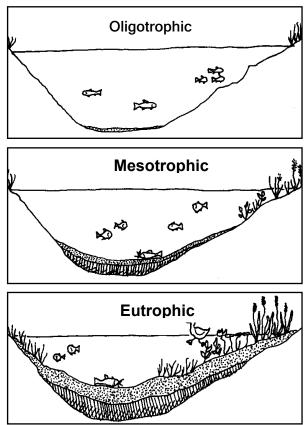


Figure 7. Stable or good long-term trends Increased nutrient enrichment trends Statistically degraded water quality trends


is so variable that even 10 years of data is difficult to conclude much other than the water is highly variable from year to year.

The summer averages of Secchi water clarity, total phosphorus and chlorophyll-a are examined for their variability from year to year. In addition, spring total phosphorus is analyzed by the same method. The variability between years helps determine how many years of monitoring is necessary in order to establish a base line water quality database that among many uses can be used for trend analysis.

The Lay Monitoring data reveal that, overall, Secchi disk transparency exhibits the least variability from year to year and thus is the best parameter for creating a database. The other parameters, chlorophyll-a and phosphorus concentrations, are often more variable and require more years of sampling to establish good reference points. However, the Lay Monitoring data on these lakes are still useful for describing current water quality conditions and for developing statewide eutrophication models.

EUTROPHICATION AND TROPHIC STATE

Eutrophication is a temporal phenomenon which occurs over a span of thousands of years. Limnologists have divided the gradual process of eutrophication into various stages of nutrient enrichment called trophic states. Generally, eutrophication is divided into three broad states - - oligotrophic, mesotrophic, and eutrophic. It is normal for all lakes to pass through these three states - from oligotrophy through mesotrophy to eutrophy. The rate at which a lake eutrophies depends on the size and shape of the lake and the characteristics of its drainage basin.

Vermont lakes are at many different stages in the

process of eutrophication. Some are still deep, cold, and relatively unproductive (oligotrophic), while others have filled in with sediment over the years to the point where they are now shallow and warm, and support substantial growths of rooted aquatic plants and/or algae (eutrophic). Vermont is fortunate to have a diversity of lake types within its state boundaries with lakes that vary widely in terms of their individual progression in the eutrophication process, as each stage of eutrophication plays an important role in the natural environment.

To place a value judgment on a trophic state, for instance to call an oligotrophic lake "desirable" or a eutrophic lake "undesirable," is not scientifically sound. The eutrophication process occurs naturally, and therefore should not suggest a value judgment. However, when people accelerate the eutrophication process through their activities in a lake's drainage basin, they are altering the course of nature. When people alter the natural scheme of things, their impact may be considered detrimental. Thus, <u>culturally</u> accelerated eutrophication may be considered "undesirable."

All lakes experience natural eutrophication and many lakes are exposed to cultural eutrophication. The extent of cultural eutrophication in a lake will depend on the variety and the management of land uses in the drainage basin and along the shoreline. The effect of cultural eutrophication is a rapid increase in the nutrient enrichment of a lake and an acceleration of the eutrophication process. Cultural eutrophication can be identified by conducting a study to determine the sources of nutrient loading to a lake (nutrients contributed by people cause cultural eutrophication), or by monitoring the rate of eutrophication of a lake (a rapid rate implies culturally accelerated eutrophication).

The water quality parameters commonly measured to determine the trophic state of a lake are Secchi disk transparency, chlorophyll-a concentration, and total phosphorus concentration. By examining the summer average for these parameters, the trophic state or degree of nutrient enrichment can be assessed. A rapid rate of nutrient enrichment may be indicative of cultural eutrophication, as opposed to the slow rate of natural eutrophication.

Trophic State

Each Lay Monitoring inland lake is evaluated to determine its trophic state based on the water quality data collected since the lake entered the Lay Monitoring Program. Five trophic categories are used: eutrophic; mesotrophic; oligotrophic; transitional between eutrophic and mesotrophic; and transitional between mesotrophic and oligotrophic. To determine the trophic state, the available yearly averages since 1979 were averaged together for each parameter on a lake and the resulting values were compared with the table below. For instance, if a lake was sampled for three years under the Supplemental program, the three summer average Secchi disk transparencies, and chlorophyll-a and total phosphorus concentrations obtained during that time are averaged together. These average values define the trophic state according to the following Secchi disk transparency, chlorophyll-a concentration, and phosphorus concentration groupings:

Trophic State	Average Secchi disk <u>transparency</u>	Average chlorophyll-a <u>concentration</u>	Average total phosphorus <u>concentration</u>
Eutrophic	less than 3.0 meters	more than 7.0 ug/l	more than 14 ug/l
Mesotrophic	3.0-5.5	3.5-7.0	7.0-14
Oligotrophic	more than 5.5	less than 3.5	less than 7.0

Due to the variability encountered within lakes, the average values of different parameters on a lake often do not fall neatly into the same trophic state. In these cases, to determine trophic state, the average spring phosphorus concentration is weighted most heavily, then chlorophyll-a concentration,

and finally Secchi disk transparency. Some subjectivity is necessarily involved here, although an attempt is made to keep the evaluations of trophic state as objective as possible.

The Lay Monitoring lakes are mapped on the following page according to trophic state (Figure 8). Lakes which are intermediate between trophic states are termed "transitional." It is interesting to note that many of the oligotrophic lakes occur in northeastern Vermont, while most of the eutrophic lakes occur in lower elevation areas such as the Lake Champlain valley and the Connecticut River valley. Associated factors that might have influenced the trophic state of these lakes are naturally more productive soils in the valley areas and a longer history of human settlement and cleared land in these regions.

The trophic state of each lake is included in the individual lake evaluations in SECTION 2 of this report.

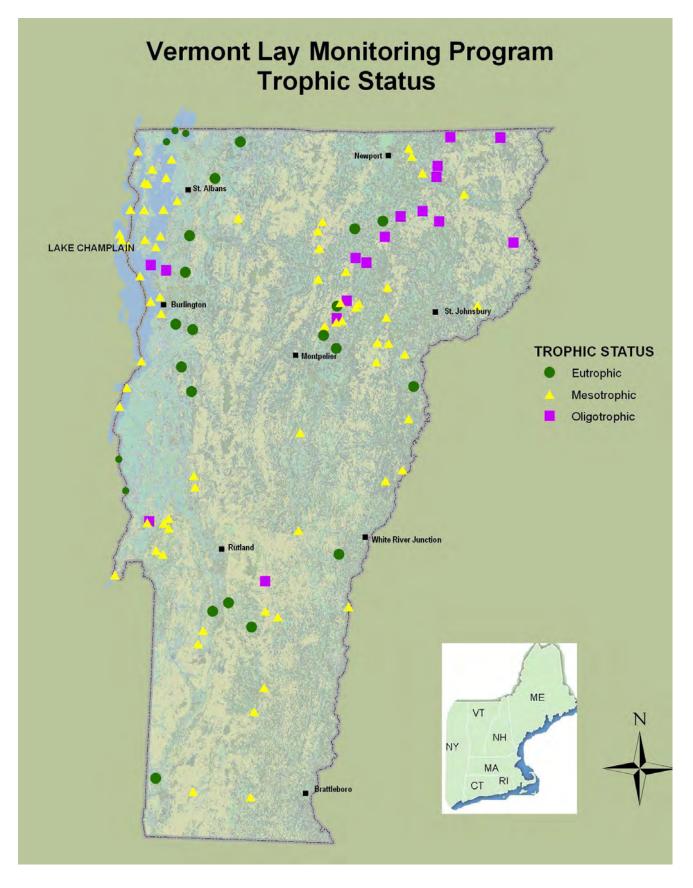
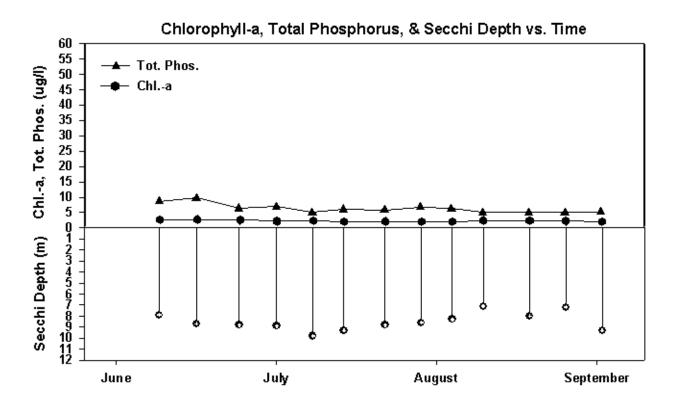
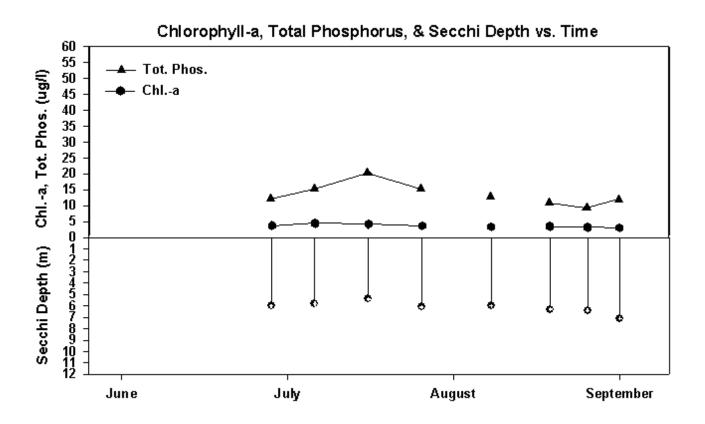
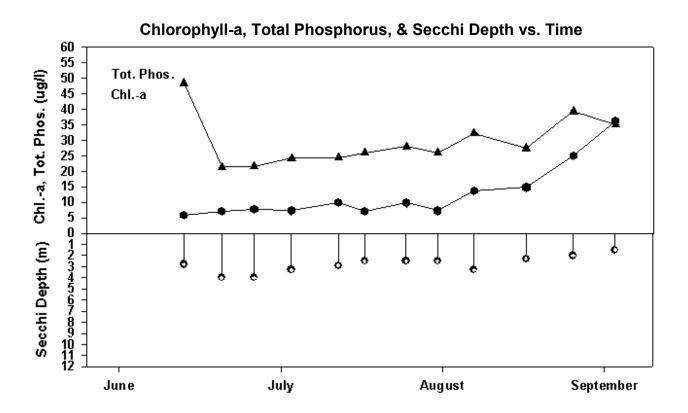



Figure 8.


An Oligotrophic Lake:

Graphed below is a typical oligotrophic lake. Oligotrophic lakes are characterized by small algal populations and very clear water all summer. Notice the chlorophyll-a concentration remains low (between 1.0 and 2.0 ug/l) all summer. Likewise, the Secchi disk reading is consistently deep all summer (between 7.5 and 11 meters). Variations in the Secchi disk readings are probably caused by such factors as wind conditions during sampling and length of time since the last storm, rather than variations in algal population density.


A Mesotrophic Lake:

Graphed below is a typical mesotrophic lake. Mesotrophic lakes are characterized by moderate algal populations and relatively clear water. Water clarity generally decreases during the summer as seen by the slow drop in Secchi disk transparency. Readings can vary anywhere from 3.0 to 5.5 meters. The algal population increases slowly during the summer as the water warms up and conditions become more favorable for growth. Chlorophyll-a concentrations usually vary between 3.5 and 7.0 ug/l. Note that the shallowest Secchi disk reading corresponds to the greatest chlorophyll-a concentration. However, due primarily to variations in sampling conditions, this is not always the case. Variations in Secchi disk readings on mesotrophic lakes are due to changes in the algal population density, the amount of sediment suspended in the water, and sampling day weather conditions.

A Eutrophic Lake:

Graphed below is a typical eutrophic lake. Eutrophic lakes are characterized by shallow Secchi disk readings and large algal populations during most of the summer. By early June the lake already supports an abundant algal population. Water clarity is often between 2.0 and 3.5 meters during the summer, although it may drop below this during an algae "bloom." When water and weather conditions become optimum for algae growth, one species population growth can increase dramatically. An algae bloom is not uncommon for a eutrophic lake during either July or August. Chlorophyll-a concentrations during blooms may be anywhere from 10 to 100 ug/l. Notice that the Secchi disk reading drops considerably during an algae bloom. Many lakes are naturally eutrophic; this does not mean these lakes have "poor" water quality.

SUMMARY OF HOW THE DATA ARE USED

Data from the Lay Monitoring Program show that lakes exhibit natural fluctuations in nutrient concentration from year to year. However, monitoring results can be used to detect significant, rapid, or smaller long-term increases in nutrient loading, which would most likely indicate cultural eutrophication. Lay Monitoring information helps to identify the changes in nutrient loading and alerts communities and lake residents to take corrective actions to prevent problems with their lake water quality.

Summary List of Data Uses:

•Determining Water Quality Trends

Lay Monitoring data is used to establish the baseline conditions of a waterbody. These data can also be used to identify water quality improvement or degradation over time.

•Water Quality Assessments

Lay Monitoring data have been used to develop water quality assessments for Vermont's biennial "305(b) Report" to the U.S. Congress, named after the section of the Clean Water Act that requires the report. Data used for this purpose are evaluated in accordance with Vermont's Water Quality Assessment and Listing Methodology.

•Impaired and Priority Waters Listings

Following the development of water quality assessments, certain waters are "listed" based on the available data, which can include Lay Monitoring data. The federal Clean Water Act requires states to prepare a biennial list of waters that do not meet Water Quality Standards due to pollutants. This list of impaired (polluted) waters is called the "303(d) list," after the section of the Clean Water Act that requires the list. Vermont also prepares a list of waters that are state priorities for further study or remediation that do not fall within the limited scope of the 303(d) list. The state priority waters list includes, among others, waters in need of further assessment and waters altered by exotic species, flow regulation, or channel alteration. Data used for listing purposes are evaluated in accordance with Vermont's Water Quality Assessment and Listing Methodology.

•Legislative Process

Lay Monitoring data have been used in the legislative process and for the development of water quality standards. Data used for this purpose must be documented as quality-assured and based on reliable and reproducible field and analytical methods.

•TMDL (Total Maximum Daily Load)

Lay Monitoring data have been used for developing pollution control plans (so-called TMDL analyses) required for all impaired waters on Vermont's 303(d) list.

• Federal Funding for Remediation

Lay Monitoring data have been used to obtain federal funding for remediation projects. Funds go towards projects that cleanup waters with documented water quality problems. The highest quality data will carry the greatest weight when such data are used to direct remediation funds.

•Red Flag

Lay Monitoring data has been used to identify waters where water quality is questionable and requires more in-depth study. Once these waters have been brought to the attention of state and academic parties, professionals can conduct more rigorous research and monitoring.

SECTION 2.

LAY MONITORING LAKES

In 2013, the following lakes participated in the Lay Monitoring Program:

Lake	Page	Lake	Page
Amherst		Maidstone	88
Beebe		Miles	90
Big Pond		Mirror	92
Bomoseen		Morey	94
Carmi		Nelson	
Caspian	40	Newark	98
Chipman		Nichols	
Cole		North Montpelier	102
Coles		Parker	
Curtis		Peacham	106
Danby		Perch	108
Dunmore		Raponda	110
Echo		Rescue	
Eden		Runnemede	114
Elfin		Salem	116
Elmore	60	St. Catherine	118
Fairfield		St. Catherine – Little Lake	120
Fairlee	64	Seymour	122
Fosters		Shadow	
Great Hosmer		Silver	126
Green River	70	South (Eden)	128
Groton	72	Sunrise (Orwell/Benson)	130
Halls	74	Sunset (Benson)	
Harvey's		Sunset (Brookfield)	134
Holland		Ticklenaked	136
Indian Brook		Valley	138
Iroquois		Willoughby	
Island		Woodbury	142
Joes			

HOW LAY MONITORING DATA ARE DISPLAYED

The data of each lake are presented in alphabetical order beginning on page 30. Each data page is organized according to the following sections.

Lake Name:

Lakes are listed by the State name found in the "Vermont Lakes and Ponds: an Inventory by County." When a lake is known by more than one name, other names are listed in the brief description of the lake following the monitor names.

Lay Monitor(s):

People who sampled or assisted with sampling at least three weeks during the summer are included on this list. The principal monitor is listed first.

Physical Lake Characteristics:

Lakes referred to as a size, such as "small," or "moderately-sized" are named by the following LMP criteria: <100acres = small; 100-200acres = moderate size; 200-350acres = relatively large, and >350acres = large.

Compared to Other lakes, the Trophic State is:

Trophic state describes the degree to which a lake has become enriched with nutrients and aquatic life. The Lay Monitoring lakes have been divided into five trophic state categories: eutrophic, mesotrophic, oligotrophic, transitional between eutrophic and mesotrophic, and transitional between mesotrophic and oligotrophic.

Table of 2013 Summary:

This table presents the maximum, minimum and mean values, as well as the number of observations for each parameter measured during the summer. If Spring Total Phosphorus was measured by the DEC, the result is listed at the bottom of the table.

Table of Annual Data:

This table includes the annual summer means for each sampling parameter for however long the lake has participated in the program. The Lay Monitor weekly results for Secchi disk transparency, chlorophyll-a concentration, and total phosphorus are used to calculate summer means. Spring total phosphorus is collected by the DEC on a single sampling date in the spring. If the Secchi disk was observed to the lake bottom during the summer, then no numerical value was entered under that year, or if less than eight samples were collected, no annual mean would be calculated.

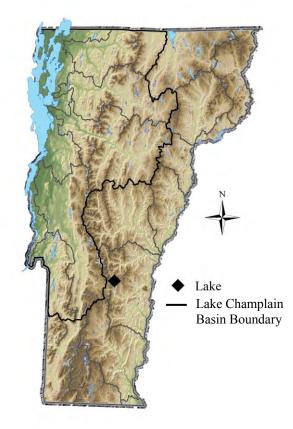
Graph of Long-Term Means:

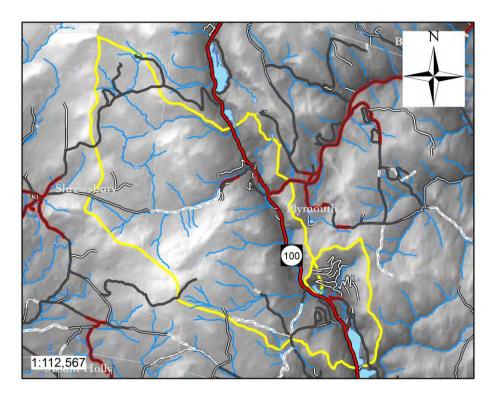
The two-part graph presents the long-term means for Secchi disk transparency, chlorophyll-a concentration, and total phosphorus. Time is measured along the horizontal axis.

Secchi disk transparency, presented in the lower graph, is measured in meters along the left vertical axis. The vertical axis is descending for Secchi disk transparency, with 0 meter depth, or lake surface, located at the top of the graph.

Chlorophyll-a concentration and total phosphorus are presented in the top graph and measured in micrograms per liter (ug/l) along the left vertical axis.

AMHERST LAKE

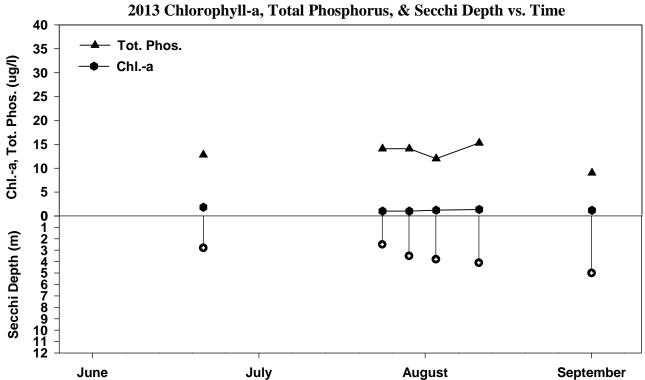

Plymouth, VT


Lay Monitor: Richard and Ryan Ruggiano

Lake Surface Area:	81	acres
Drainage Basin Area	12,204	acres
Maximum depth:	90 ft.	(27.4 m)
Average depth:	60 ft.	(18.3 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ ا/و <i>بر</i> 3.5	1/وµ 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic.	< 3.0	>7.0	> 14



Lake outlined by its watershed

Amherst Lake

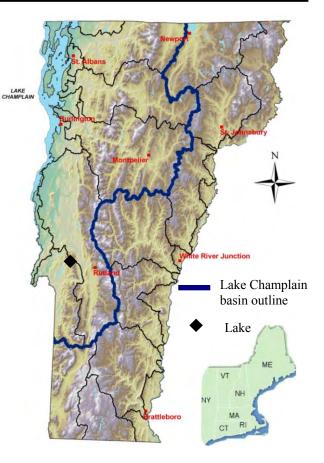
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2013	6				

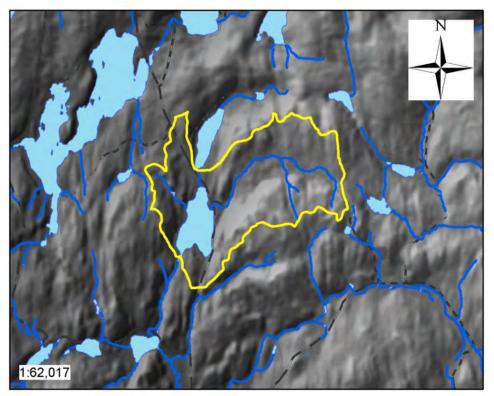
2013 Summary						
Days	Min	Mean	Max			
6	2.5	3.6	5.0			
6	0.8	1.2	2.1			
6	9.0	13	15			
	Davs 6 6	Davs Min 6 2.5 6 0.8	Davs Min Mean 6 2.5 3.6 6 0.8 1.2			

Note: 2013 was the first year Amherst was part of the Lay Monitoring Program, therefore the graph above depicts the results from 2013 only.

BEEBE POND

Hubbardton, VT


Lay Monitors: Barbara Cooley Jody Zeoli Barbara Elden Former Monitors: Mary Sondergeld Marilyn and Keith Brostek


Beebe Pond is a small, warmwater lake.

Lake Surface Area:	111	acres
Drainage Basin Area	1,843	acres
Maximum depth:	43 ft.	(13.0 m)
Average depth:	26 ft.	(7.9 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/1/eµ
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Beebe Pond

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	16	6.7	3.0		15
1980	13	7.0	3.4		16
1981	9	7.3	3.8		14
1982	8	7.6	3.5		21
1983	8	8.0	2.1		12
1984	9	8.3	3.3		10
1985	10	7.1			12
1986	8	9.0			25
1987	4				16
1988	8	8.3			
1989	7				
1990	7				
1991	7				
1992	10	7.4			
1993	8	6.7			
1994	12	7.0	3.1	11	16
1995	9	7.4			
1996	8	6.9			
1997	9	7.3			
1998	6				12
1999	9	7.6			
2013	Summary				

Days

9

1

Parameter

Spring TP (ug/I)

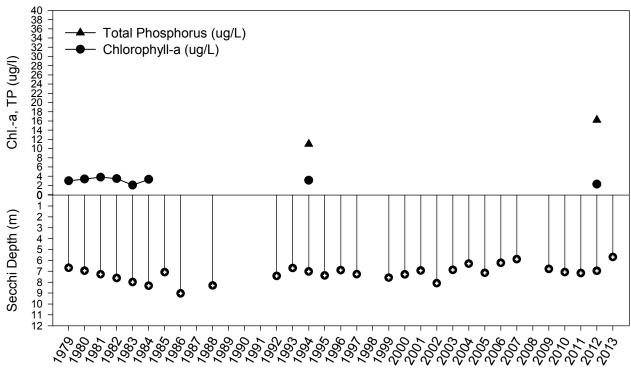
Secchi (m)

Min

5.1

Mean

5.7


16

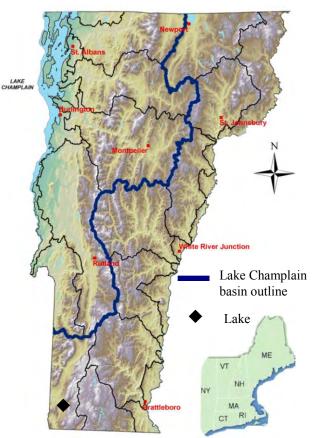
Max

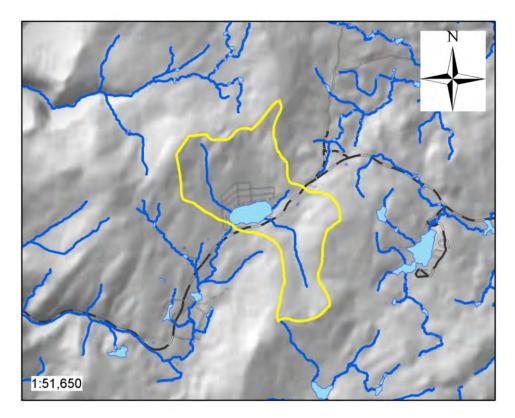
7.5

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	9	7.3			
2001	8	6.9			
2002	8	8.1			
2003	12	6.9			22
2004	8	6.3			21
2005	8	7.2			16
2006	9	6.2			15
2007	10	5.9			14
2008	7				
2009	11	6.8			
2010	12	7.1			
2011	9	7.2			
2012	9	7.0	2.3	16	14
2013	9	5.7			16

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

BIG POND (WOODFORD LAKE)


Woodford, VT


Lay Monitor: Maureen O'Neil Tiffany Tobin Former Lay Monitors: Anita Capella Dorothea Scott

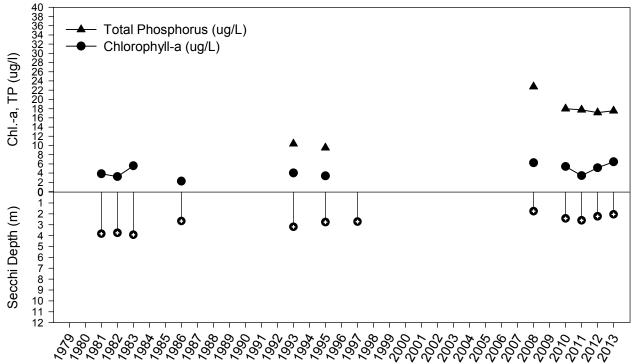
Big Pond is a small, warmwater lake.					
Lake Surface Area:	31	acres			
Drainage Basin Area	715	acres			
Maximum depth:	28 ft.	(8.5 m)			
Average depth:	13 ft.	(4.0 m)			

Compared to other lakes, the trophic state is: Mesotrophic

Trophic State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/ 1/ r.0
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Big Pond


Annual Data

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1981	13	3.8	3.8		
1982	13	3.8	3.2		7.0
1983	10	3.9	5.6		8.5
1986	10	2.7	2.2		
1993	8	3.2	4.0	10	
1994	7				
1995	10	2.8	3.4	9.5	
1996	7				
1997	8	2.7			

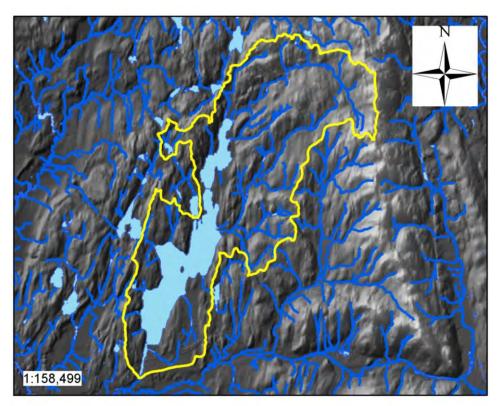
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2008	8	1.8	6.2	23	9.2
2009	1				11
2010	12	2.4	5.4	18	
2011	10	2.6	3.4	18	
2012	9	2.2	5.1	17	
2013	9	2.1	6.4	18	

2013 Summa	ry			
Parameter	Davs	Min	Mean	Max
Secchi (m)	9	1.5	2.1	2.6
Chl-a (ug/l)	9	4.0	6.4	8.8
Summer TP (ug/ID	9	16	18	23

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE BOMOSEEN


Castleton and Hubbardton, VT


Lay Monitor: Frank Giannini Former Lay Monitors: Alfred S. Kosloffsky Jim Leamy

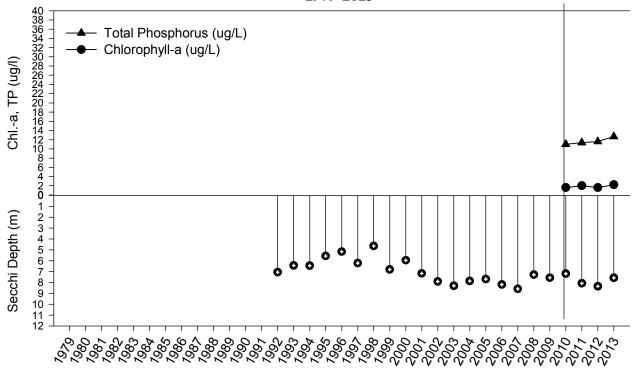
Lake Bomoseen is a large, warmwater lake.					
Lake Surface Area:	2,360	acres			
Drainage Basin Area	23,630	acres			
Maximum depth:	65 ft.	(19.7 m)			
Average depth:	27 ft.	(8.2 m)			

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y/	1/و <i>µ</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Bomoseen


Annual Data

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1992	11	7.1			
1993	12	6.4			
1994	11	6.5			
1995	11	5.6			11
1996	11	5.2			14
1997	13	6.2			
1998	13	4.6			14
1999	13	6.8			

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	12	6.0			
2001	9	7.2			
2002	11	7.9			
2003	13	8.3			
2004	12	7.9			12
2005	14	7.7			
2006	13	8.2			
2007	10	8.6			8.0
2008	11	7.3			9.9
2009	9	7.6			
2010	10	7.2	1.6	11	
2011	11	8.1	2.0	11	10
2012	10	8.4	1.6	12	
2013	10	7.6	2.2	13	

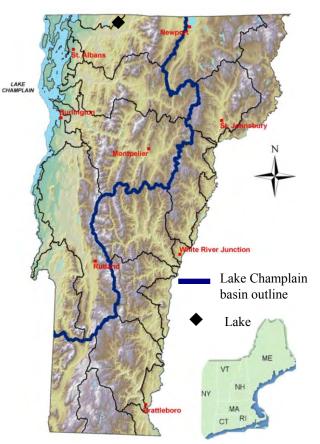
2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	10	6.9	7.6	9.0		
Chl-a (ug/l)	10	1.7	2.2	2.8		
Summer TP (ug/I)	10	10	13	17		

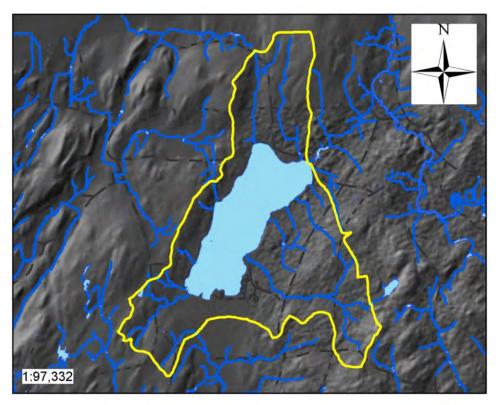
Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE CARMI

Franklin, VT

I.


Lay Monitor: Peter Benevento Former Lay Monitors: Bob Rennie Dave Jones Richard Davis


Lake Carmi is a large, shallow, warmwater lake.

Lake Surface Area:	1,402	acres
Drainage Basin Area	7,710	acres
Maximum depth:	33 ft.	(10.0 m)
Average depth:	13ft.	(3.9 m)

Compared to other lakes, the trophic state is Eutrophic

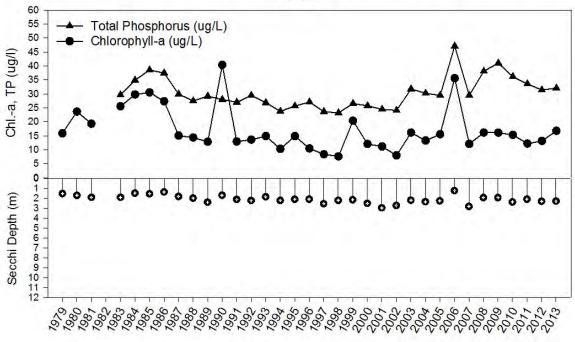
Trophic State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Qligotrophic</u>	> 5.5 meters	/ / yy/ l	1/و <i>µ</i> 7.0
<u>Mesotrophic</u>	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Carmi

Annual Data

Annual Data


	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	17	1.5	16		18
1980	16	1.7	24		18
1981	12	1.9	19		23
1982	7				30
1983	11	1.9	26	30	30
1984	12	1.5	30	35	25
1985	13	1.5	31	39	25
1986	13	1.3	27	37	22
1987	10	1.8	15	30	27
1988	13	2.0	14	28	
1989	13	2.4	13	29	
1990	14	1.7	40	28	
1991	12	2.1	13	27	
1992	13	2.2	14	29	
1993	14	1.8	15	27	
1994	14	2.2	10	24	27
1995	10	2.1	15	26	23
1996	10	2.1	10	27	29
1997	9	2.5	8.4	24	28
1998	9	2.2	7.6	23	24
1999	9	2.1	20	27	27

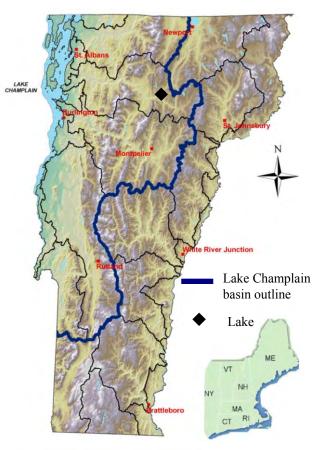
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	8	2.5	12	26	25
2001	14	2.9	11	25	27
2002	9	2.7	8.0	24	25
2003	8	2.2	16	32	
2004	11	2.3	13	30	29
2005	11	2.2	16	29	
2006	10	1.2	36	47	
2007	12	2.8	12	29	23
2008	12	1.9	16	38	
2009	13	1.9	16	41	33
2010	13	2.4	15	36	
2011	12	2.1	12	34	
2012	12	2.3	13	31	25
2013	12	2.3	17	32	32

2013 Summary

Parameter	Days	Min	Mean	Max
Secchi (m)	12	1.5	2.3	3.0
Chl-a (ug/l)	12	6.6	17	31
Summer TP (ug/I)	12	23	32	40
Spring TP (ug/I)	1		32	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

CASPIAN LAKE


Greensboro, VT


Lay Monitor: Andy Dales Former Lay Monitors: George Hasen Scott Irwin

Caspian Lake is a large, deep, coldwater lake.					
Lake Surface Area:	789	acres			
Drainage Basin Area	4,510	acres			
Maximum depth:	142 ft.	(43.0 m)			
Average depth:	57 ft.	(17.3 m)			

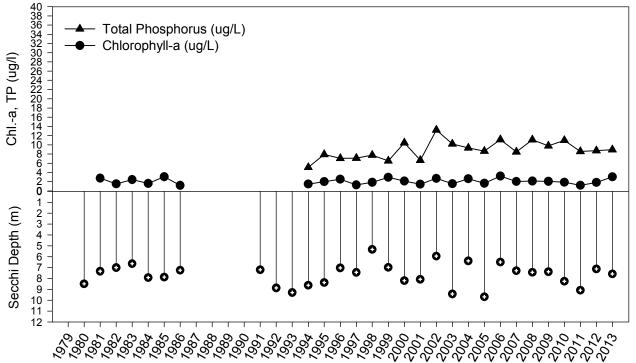
Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	≺ 3.5 µg/l	<7.0 µg/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Caspian Lake

Annual Data


Annual Data

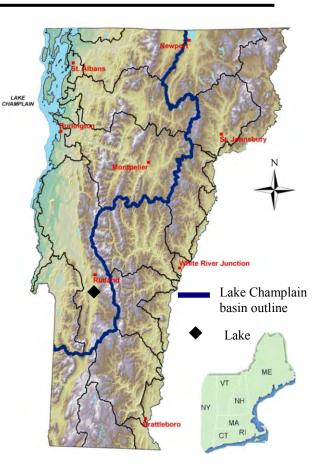
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1979	7	()			4.3
1980	9	8.5			5.3
1981	13	7.3	2.8		5.3
1982	12	7.0	1.5		7.3
1983	11	6.6	2.4		8.7
1984	12	7.9	1.6		6.0
1985	13	7.9	3.1		7.3
1986	12	7.3	1.2		8.0
1991	12	7.2			
1992	13	8.9			
1993	11	9.3			
1994	13	8.6	1.5	5.1	5.1
1995	12	8.4	2.0	7.9	
1996	12	7.0	2.5	7.1	4.6
1997	10	7.5	1.3	7.1	5.5
1998	10	5.3	1.9	7.8	
1999	10	7.0	2.9	6.5	6.9
2013	Summary				

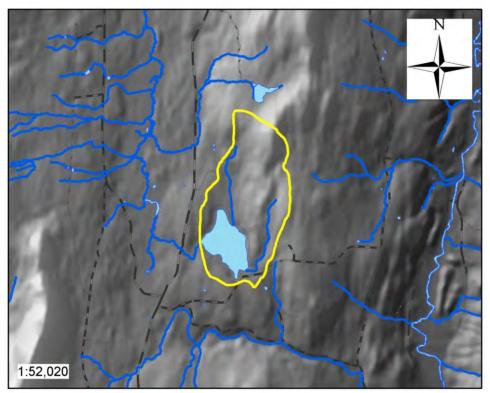
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	10	8.2	2.1	10	
2001	10	8.1	1.5	6.7	
2002	10	6.0	2.7	13	
2003	14	9.4	1.6	10	
2004	14	6.4	2.6	9.3	
2005	13	9.7	1.7	8.6	7.2
2006	11	6.5	3.2	11	9.6
2007	12	7.3	2.0	8.5	7.9
2008	12	7.4	2.1	11	8.0
2009	14	7.4	2.1	9.8	
2010	11	8.3	1.9	11	
2011	12	9.1	1.2	8.6	
2012	12	7.1	1.8	8.7	
2013	12	7.6	3.0	8.9	

2013 Summa	ry			
Parameter	Days	Min	Mean	Max
Secchi (m)	12	6.0	7.6	11
Chl-a (ug/l)	12	1.4	3.0	4.7
Summer TP (ug/I)	12	6.6	8.9	14

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

CHIPMAN LAKE


Tinmouth, VT


Lay Monitors: Annie Robbins and Joe Frankiewicz

Chipman Lake is a small, shallow lake.					
Lake Surface Area:	79	acres			
Drainage Basin Area	535	acres			
Maximum depth:	11 ft.	(3.4 m)			
Average depth:	7 ft.	(2.1 m)			

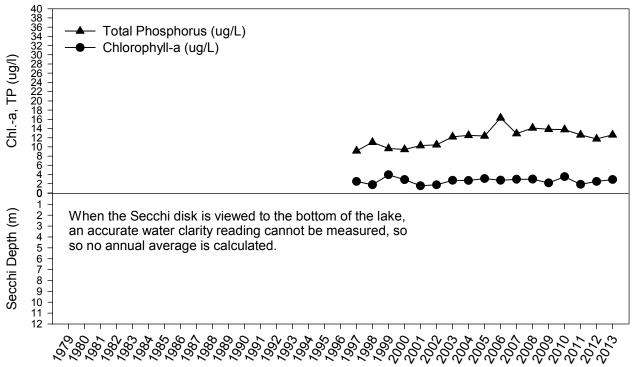
Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg∕ l	/ / 7.0 × 7.0
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Chipman Lake

Annual Data


Annual Data

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1996	11				
1997	15		2.5	9.1	14
1998	15		1.8	11	
1999	14		3.9	9.6	8.0

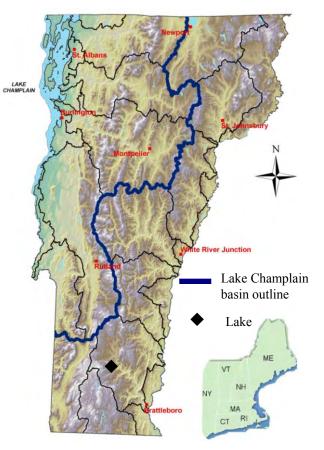
1	imua	I Data				
		Days	Secchi	Chloro-a	Summer TP	Spring TP
	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
-	2000	14		2.9	9.4	
_	2001	11		1.5	10	5.0
	2002	13		1.8	10	_
	2003	14		2.7	12	_
	2004	13		2.7	13	_
	2005	12		3.1	12	14
	2006	14		2.7	16	_
	2007	12		3.0	13	_
	2008	12		3.0	14	_
	2009	12		2.2	14	_
	2010	11		3.5	14	_
	2011	15		1.9	13	9.9
	2012	14		2.5	12	
_	2013	10		2.9	13	

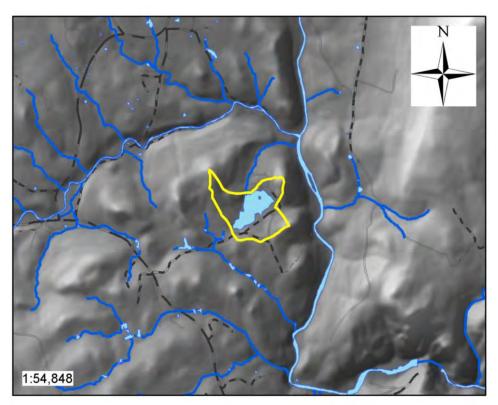
2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	10	2.4	3.1	3.4		
Chl-a (ug/l)	10	0.7	2.9	6.2		
Summer TP (ug/ID	9	11	13	15		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

COLE POND

Jamaica, VT


Lay Monitors: Sherry and Vaughn Clark


Cole Pond is a fairly remote, small, shallow lake.

Lake Surface Area:	41	acres
Drainage Basin Area	282	acres
Maximum depth:	13 ft.	(4.0 m)
Average depth:	5 ft.	(1.5 m)

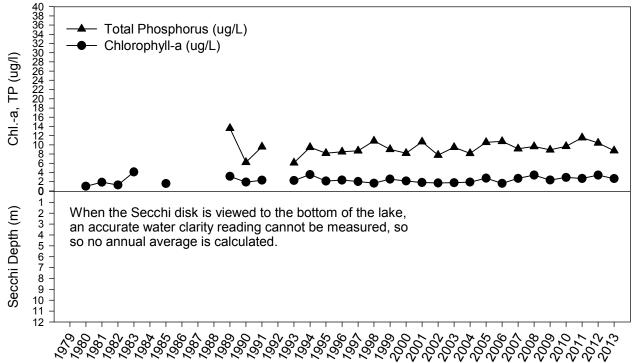
Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/l	/ 1/ x7.0
<u>Mesotrophic</u>	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Cole Pond

Annual Data


Annual Data

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1980	13	~ /	1.0		
1981	13		1.9		5.5
1982	11		1.3		9.0
1983	9		4.1		9.5
1985	11		1.6		
1988	8				
1989	10		3.2	14	12
1990	12		1.9	6.2	
1991	12		2.3	9.6	
1992	13				
1993	12		2.3	6.1	
1994	13		3.5	9.5	
1995	12		2.1	8.2	7.4
1996	13		2.3	8.5	9.7
1997	13		2.0	8.7	
1998	13		1.7	11	8.0
1999	12		2.5	9.0	
2013	Summary	7			

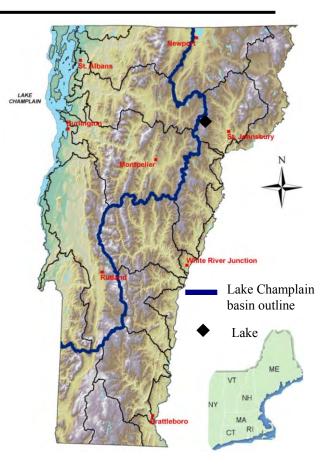
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	12		2.2	8.2	8.9
2001	13		1.8	11	
2002	13		1.7	7.8	
2003	12		1.8	9.5	
2004	12		1.9	8.2	
2005	11		2.8	11	
2006	11		1.6	11	13
2007	11		2.7	9.2	
2008	11		3.4	9.6	
2009	12		2.4	8.9	
2010	12		2.9	9.7	
2011	11		2.7	12	8.8
2012	12		3.4	10	
2013	12		2.7	8.7	

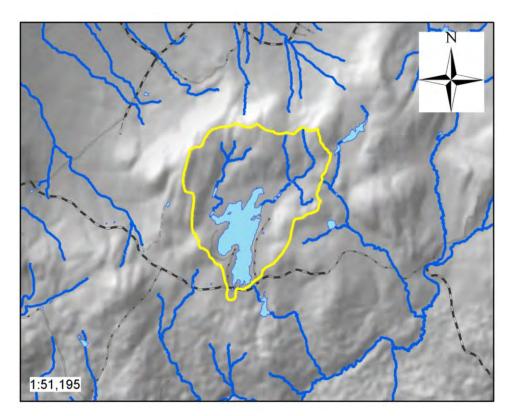
Parameter Min Days Mean Max Secchi (m) 12 2.6 2.9 3.2 Chl-a (ug/l) 12 1.8 2.7 3.5 Summer TP (ug/ID 12 7.4 8.7 9.8

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

COLES POND

Stannard, Walden, VT

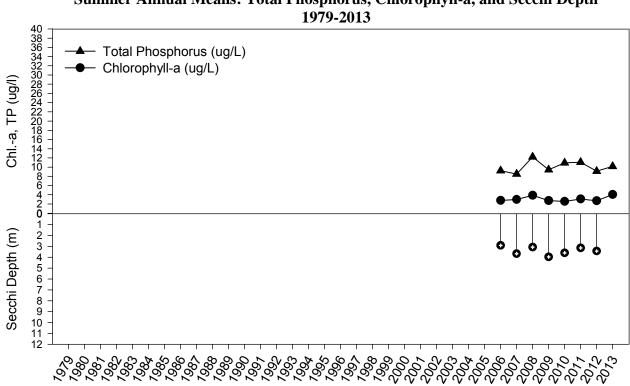

Lay Monitor: Judy Dunnan Former Lay Monitors: Joseph Engel Samantha M. Lavertue


Coles Pond is a moderately sized, shallow, natural lake with artificial controls.

Lake Surface Area:	125	acres
Drainage Basin Area	744	acres
Maximum depth:	21 ft.	(6.4 m)
Average depth:	8 ft.	(2.4 m)

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/ / 7.0 kg
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14



Lake outlined by its watershed

Coles Pond

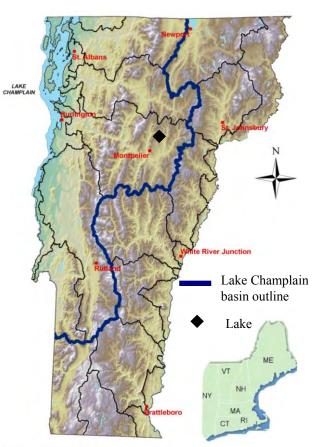
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2006	12	2.9	2.8	9.2	
2007	12	3.7	3.0	8.5	
2008	12	3.1	3.9	12	
2009	13	4.0	2.7	9.4	
2010	13	3.6	2.6	11	8.8
2011	12	3.1	3.1	11	
2012	11	3.4	2.7	9.1	
2013	12		4.0	10	

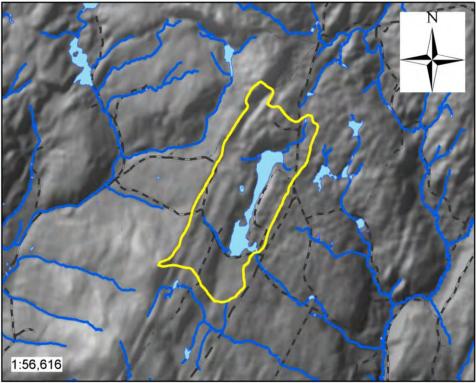
2013 Summary					
Days	Min	Mean	Max		
12	2.8	3.2	3.6		
12	2.3	4.0	7.3		
12	8.1	10	13		
	Davs 12 12	Davs Min 12 2.8 12 2.3	Davs Min Mean 12 2.8 3.2 12 2.3 4.0		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth

CURTIS POND

Calais, VT


Lay Monitors: Andrea Triguba and Doug Braasch

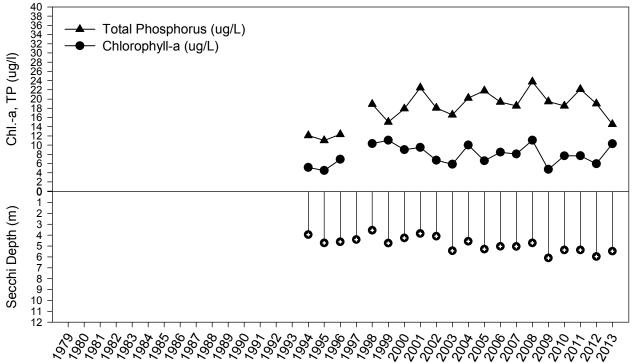

Former Lay Monitors: Lucille and Alexander MacLellan

Curtis Pond is a small, warmwater lake.					
Lake Surface Area:	72	acres			
Drainage Basin Area	917	acres			
Maximum depth:	31 ft.	(9.4 m)			
Average depth:	11 ft.	(3.4 m)			

Compared to other lakes, the trophic state is Eutrophic

<u>Trophic</u> State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg/l	/1/eµ
Mesotrophic.	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Curtis Pond

F	Annua	l Data				
		Days	Secchi	Chloro-a	Summer TP	Spring TP
	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
	1994	12	3.9	5.1	12	
	1995	10	4.7	4.5	11	18
	1996	12	4.6	6.9	12	
	1997	12	4.4			
	1998	12	3.6	10	19	
_	1999	10	4.7	11	15	

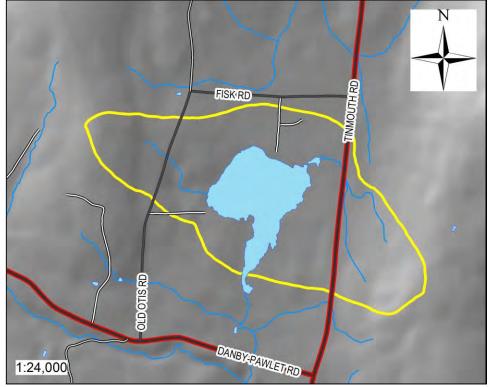
A	Annual Data						
		Days	Secchi	Chloro-a	Summer TP	Spring TP	
	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	
	2000	11	4.3	9.0	18		
	2001	15	3.9	9.5	22	22	
	2002	13	4.1	6.7	18		
	2003	11	5.4	5.8	17		
	2004	14	4.6	10	20	22	
	2005	15	5.3	6.6	22	24	
	2006	14	5.0	8.5	19	21	
	2007	12	5.0	8.1	19		
	2008	14	4.7	11	24	20	
	2009	13	6.1	4.7	19		
	2010	14	5.4	7.7	19	18	
	2011	12	5.4	7.7	22		
	2012	12	6.0	5.9	19	17	
	2013	12	5.5	10	15		

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	12	3.5	5.5	7.1	
Chl-a (ug/l)	12	4.2	10	45	
Summer TP (ug/I)	12	12	15	18	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

DANBY POND

Danby, VT


Lay Monitor: Glenn Williams and Mie Kingsley Former Lay Monitors: Bob and Ruth Easton

Danby Pond is a small, warm water, natural pond. Lake Surface Area: 56 acres Drainage Basin Area 388 acres Maximum depth: 6 ft. (1.8m)

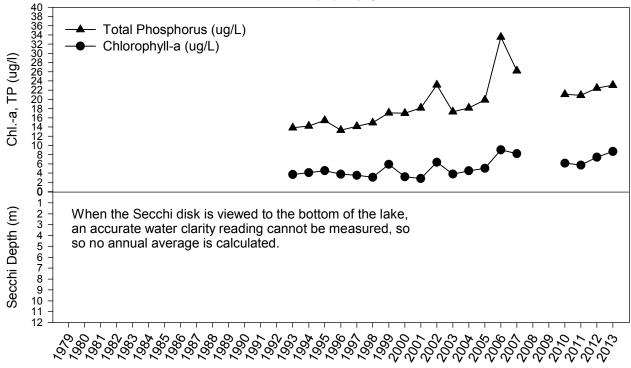
Compared to other lakes, the trophic state is Eutrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg/1	//e/
<u>Mesotrophic</u>	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Danby Pond

Annual Data


Annual Data

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1993	14		3.7	14	
1994	13		4.1	14	6.7
1995	14		4.5	15	5.2
1996	13		3.8	13	
1997	14		3.5	14	9.4
1998	14		3.1	15	
1999	14		5.9	17	

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	12		3.2	17	10
2001	13		2.8	18	12
2002	13		6.4	23	
2003	12		3.8	17	
2004	13		4.5	18	13
2005	12		5.0	20	12
2006	11		9.0	34	
2007	11		8.2	26	
2010	10		6.1	21	12
2011	11		5.7	21	16
2012	11		7.4	22	17
2013	10		8.7	23	

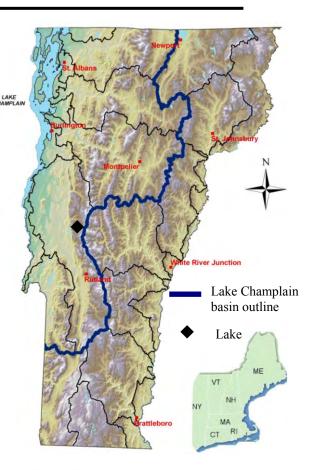
2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	10	1.4	1.4	1.5		
Chl-a (ug/l)	10	6.1	8.7	13		
Summer TP (ug/I)	10	16	23	35		

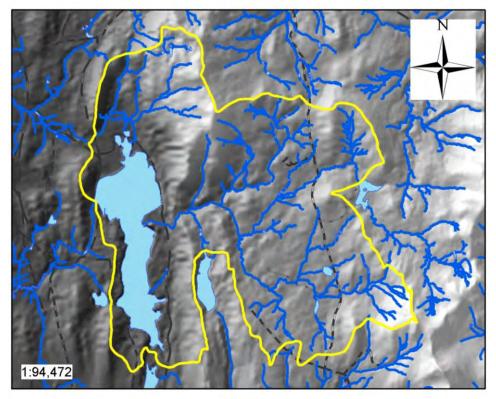
Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE DUNMORE

Salisbury, Leicester, VT

Lay Monitor: David Volz and Alex Abraham Former Lay Monitors: Troy Carr and milfoil crew Joe Carr, Rob Nicol, and Will Pitkin Andrew Menkart and milfoil crew Liam Powers Matt Hayden Nick Staats


Lake Dunmore is a long lake divided into two sections – a deep northern section in the town of Salisbury and a shallow southern section in the town of Leicester.


Lake Surface Area:985 acresDrainage Basin Area13,068 acresMaximum depth:105 ft. (32 m)Average depth:28 ft. (8.5 m)

Compared to other lakes, the trophic state is

Transitional between Oligotrophic and Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Qligotrophic</u>	> 5.5 meters	/ s.5 /	1/وµ 7.0×
Mesotrophic	3.0 - 5.5	3.5-7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Dunmore

Spring TP

(ug/l)

8.5

9.8

7.3

7.1

8.2

7.9

Innua	l Data					Annua	l Data			
	Days	Secchi	Chloro-a	Summer TP	Spring TP		Days	Secchi	Chloro-a	Summer TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	Year	Sampled	(m)	(ug/l)	(ug/l)
1979	15	5.8			8.5	2000	10	7.4	2.3	7.7
1980	13	7.2			3.7	2001	8	6.0		9.3
1982	11	5.8	4.5		10	2002	14	8.4	1.8	11
1984	13	5.7	3.1		8.3	2003	12	6.7	3.7	11
1985	9	6.4	4.2		7.7	2004	12	6.6	3.3	14
1986	12	5.4	3.5		7.7	2005	9	5.6	4.5	13
1987	10	5.4	2.9		8.0	2006	10	5.9	3.9	12
1993	10	7.7				2007	11	5.9	3.6	11
1994	11	6.8				2008	10	4.6	4.1	17
1995	8	7.8			6.7	2009	11	5.6	2.5	15
1996	9	5.7			7.3	2010	7			
1997	9	7.8	1.7	9.9		2011	9	5.2		
1998	10	4.2	3.2	11	6.7	2012	13	5.2	3.4	10
1999	10	7.1	3.4	10	6.2	2013	9	4.4	4.7	17
2013	Summary									
Param	eter Da	avs Mi	in Mean	Max						
Secchi ((m)	9 3.	9 4.4	5.2						

Chl-a (ug/l)

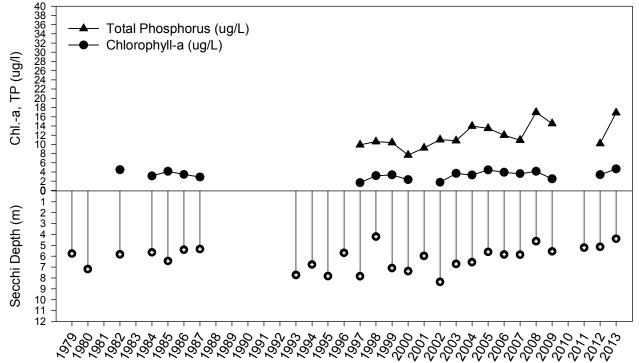
Summer TP (ug/ID

9

9

3.5

9.9


4.7

17

5.9

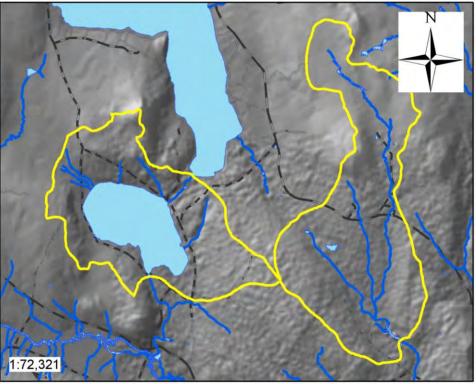
24

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

ECHO LAKE

Charleston, VT


Lay Monitors: Peter Engels Mike Vinton Former Lay Monitors: Eric Stevens

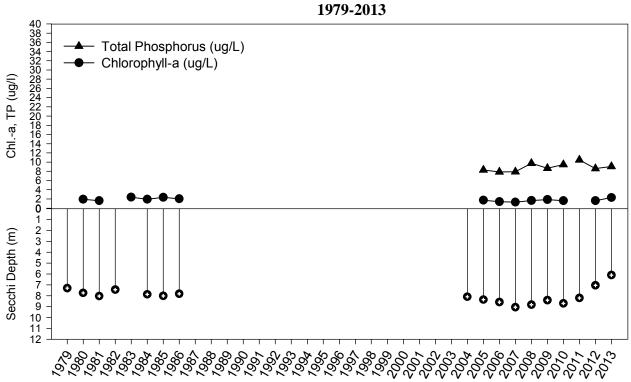

Echo Lake is a large lake that supports both warm- and coldwater fish.

Lake Surface Area:	550	acres
Drainage Basin Area	15,186	acres
Maximum depth:	129 ft.	(39 m)
Average depth:	58 ft.	(17 m)

Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5µg/l	<7.0 µg/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Echo Lake

Annual Data

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	16	7.3			3.0
1980	13	7.8	1.9		7.0
1981	14	8.0	1.6		7.5
1982	10	7.5			9.0
1983	8		2.4		6.5
1984	9	7.9	1.9		8.0
1985	15	8.0	2.3		9.0
1986	14	7.8	2.0		8.0

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2004	12	8.1			7.2
2005	11	8.4	1.7	8.3	
2006	13	8.6	1.4	7.9	10
2007	11	9.1	1.3	7.9	8.5
2008	10	8.8	1.7	9.7	
2009	10	8.4	1.9	8.7	_
2010	10	8.7	1.6	9.5	_
2011	8	8.2		10	_
2012	10	7.1	1.6	8.6	
2013	9	6.1	2.3	9.0	

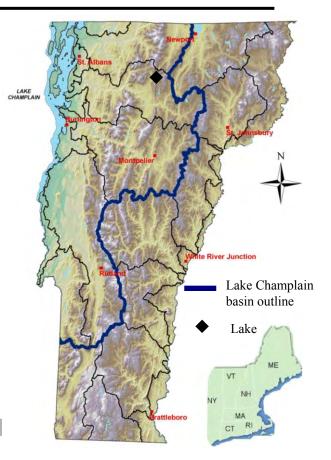
2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	9	4.0	6.1	7.5		
Chl-a (ug/l)	9	1.1	2.3	4.0		
Summer TP (ug/ID	9	6.9	9.0	11		

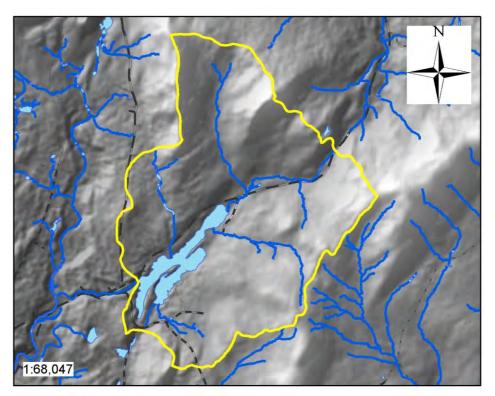
Summer Annual Means:	Total Phosphorus ,	Chlorophyll-a, and Secchi Depth
	1979-2013	

Eden, VT

Lay Monitors: Sue and Ed Gilbert

Former Lay Monitors:


Terry and Bonnie Francis Steve and Teela Leach Bruce Lyon Gary Durett Conrad Klefos


Lake Eden is a moderately sized, warmwater lake which is nearly bisected by narrow peninsulas of the northeastern and southwestern lake shores.

Lake Surface Area:194acresDrainage Basin Area2,347acresMaximum depth:40 ft.(12.2 m)Average depth:15 ft.(4.5 m)

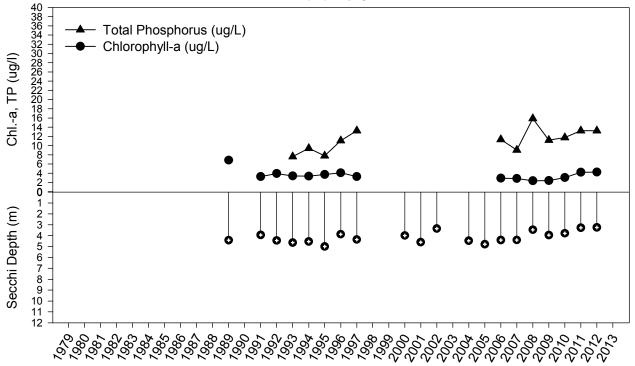
Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	1/و <i>µ</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Eden

Annual Data


Annual Data

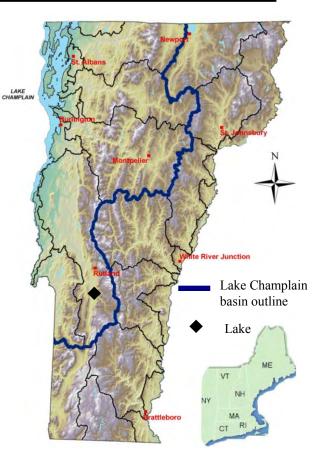
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1989	9	4.4	6.8		9.7
1990	3				
1991	9	3.9	3.3		
1992	13	4.4	3.9		
1993	12	4.6	3.4	7.6	
1994	12	4.5	3.4	9.4	6.3
1995	13	5.0	3.7	7.8	
1996	11	3.9	4.1	11	
1997	9	4.4	3.3	13	
1998	6				5.7
1999	7				

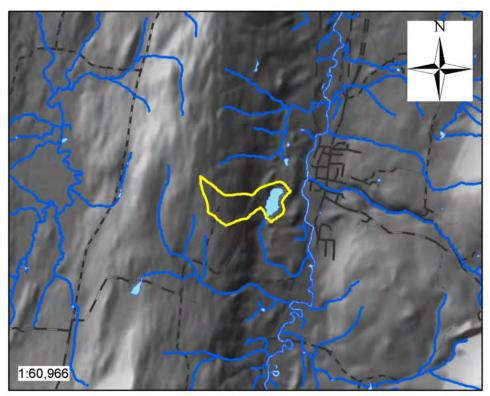
-		1 D ava				
		Days	Secchi	Chloro-a	Summer TP	Spring TP
	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
	2000	9	4.0			
	2001	9	4.6			8.6
	2002	9	3.4			_
	2004	8	4.5			_
	2005	13	4.8			_
	2006	11	4.4	2.9	11	_
	2007	12	4.4	2.9	9.1	14
	2008	13	3.5	2.4	16	_
	2009	9	4.0	2.4	11	11
	2010	12	3.8	3.1	12	_
	2011	13	3.3	4.2	13	_
	2012	13	3.2	4.3	13	
_	2013	12	3.2	4.4	11	

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	12	2.7	3.2	3.4	
Chl-a (ug/l)	12	3.2	4.4	6.3	
Summer TP (ug/ID	12	7.9	11	19	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

ELFIN LAKE


Wallingford, VT


Lay Monitor: Michael Bird Former Lay Monitors: Anne Miller

Elfin Lake is a small, undeveloped lake.				
Lake Surface Area:	16	acres		
Drainage Basin Area	228	acres		
Maximum depth:	37 ft.	(11.2 m)		
Average depth:	12 ft.	(3.7 m)		

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	ا/و <i>µ</i> 7.0
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic.	< 3.0	>7.0	> 14

Lake outlined by its watershed

Elfin Lake

Annual Data

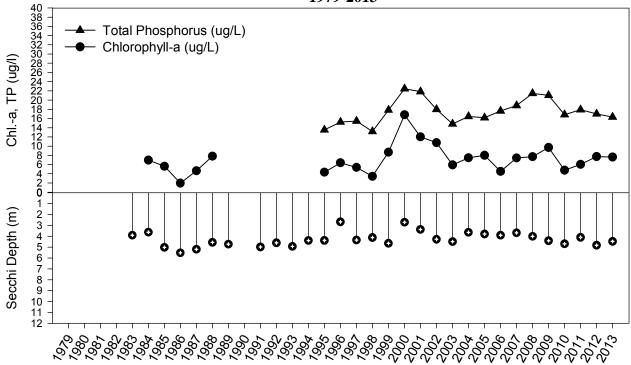
Annual Data

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1983	12	3.9			11
1984	13	3.6	7.0		17
1985	13	5.0	5.6		17
1986	13	5.5	2.0		
1987	13	5.2	4.6		
1988	14	4.6	7.8		
1989	8	4.7			19
1990	6				
1991	14	5.0			
1992	10	4.6			
1993	11	4.9			
1994	11	4.4			
1995	11	4.4	4.3	14	
1996	12	2.7	6.4	15	12
1997	10	4.4	5.4	15	
1998	11	4.1	3.4	13	
1999	11	4.7	8.7	18	
2012	C				

	Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
	2000	11	2.7	17	22	
_	2001	12	3.4	12	22	
	2002	12	4.3	11	18	
	2003	10	4.5	5.9	15	
	2004	10	3.7	7.5	16	17
	2005	12	3.8	8.0	16	
	2006	11	3.9	4.5	18	
	2007	11	3.7	7.4	19	20
	2008	11	4.0	7.7	21	
	2009	11	4.4	9.7	21	
	2010	12	4.7	4.8	17	
	2011	12	4.1	6.1	18	
	2012	12	4.8	7.7	17	

7.6

16


2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	12	4.1	4.5	4.9	
Chl-a (ug/l)	12	5.9	7.6	12	
Summer TP (ug/I)	12	12	16	22	
-					

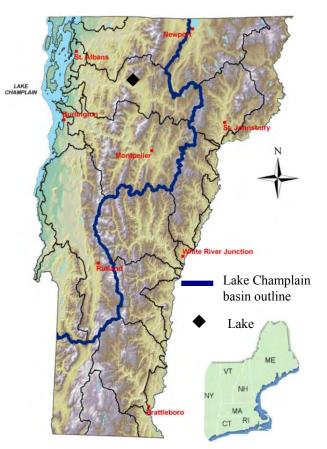
Summer Annual Means: Total Phosphorus,	Chlorophyll-a, and Secchi Depth
1979-2013	

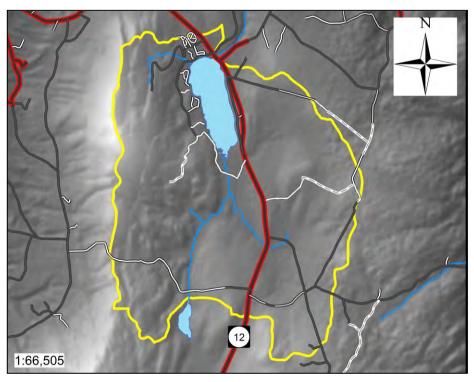
2013

12

4.5

LAKE ELMORE


Elmore, VT


Lay Monitor: Dave Anderson Former Lay Monitors: Cindy Blackburn, Joe Ciccolo, Lisa Kelly & Dave Peters June Mendell

Lake Elmore is a large, fairly shallow, natural lake.Lake Surface Area:219 acresDrainage Basin Area5,574 acresMaximum depth:17 ft. (5.1 m)Average depth:11 ft. (3.3 m)

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y	//ex
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Elmore

Annua	Annual Data					
	Days	Secchi	Chloro-a	Summer TP	Spring TP	
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	
1979	15	2.5	3.5		10	
1980	9	2.9	5.4		10	
1981	7				15	
1982	13	2.9	5.2		13	
1983	12	3.0	5.1		14	
1984	13	2.7	8.5		11	
1985	13	3.2	6.4		12	
1986	11	3.1			9.7	
1987	13	3.8			13	
1995	11	2.9	2.8	19	14	
1996	12	3.6	4.1	17	10	
1997	9	3.3	2.8	20		
2013	Summary	7				
Param	eter D	Days Mi	in Mean	Max		
Secchi	(m)	11 2.	0 2.8	3.2		

Chl-a (ug/l)

Summer TP (ug/l)

11

11

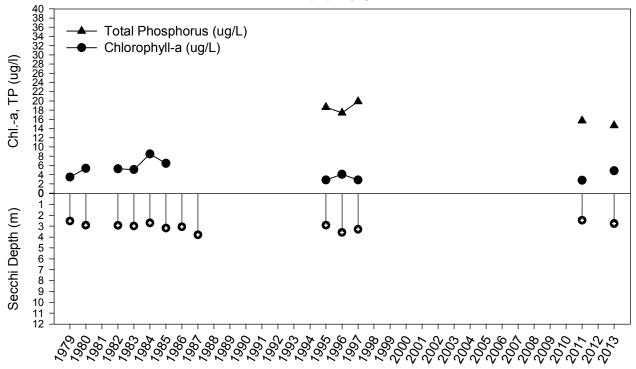
1.7

12

4.8

15

11


18

Annual DataDaysSecchiChloro-aSummer TPYearSampled(m)(ug/l)(ug/l)201192.52.816

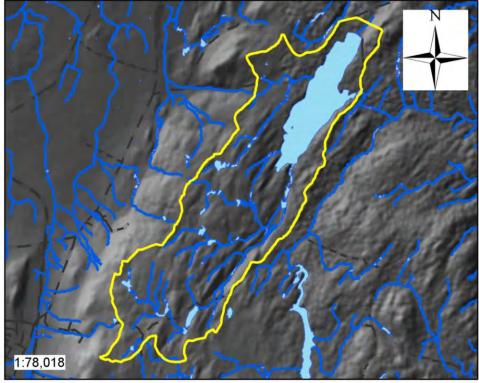
Year Sa	mpled	(m)	(ug/l)	(ug/l)	(ug/l)
2011	9	2.5	2.8	16	
2012	6				
2013	11	2.8	4.8	15	

Spring TP

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

FAIRFIELD POND

Fairfield, VT


Lay Monitors: Donald and Harriet Gray Former Lay Monitors: Thomas Benoure Kimberly Benoure Ron Bocash

Fairfield Pond is a large, fairly shallow, natural lake.Lake Surface Area:446Acres3,758Drainage Basin Area3,758Aximum depth:42 ft.Average depth:23 ft.23 ft.(7.0 m)

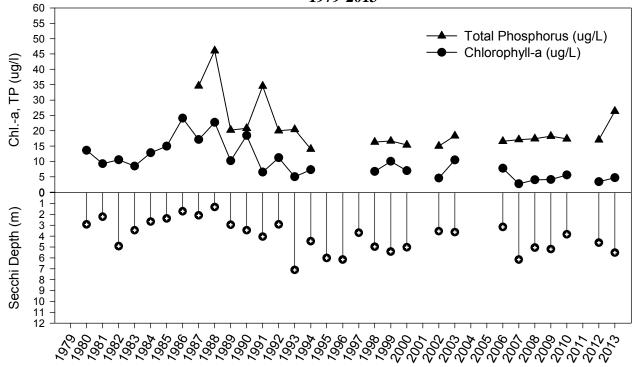
Compared to other lakes, the trophic state is Eutrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg/l	1/و <i>µ</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Fairfield Pond

Annual Data


Annual Data

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1980	13	2.9	14		25
1981	13	2.2	9.3		22
1982	12	4.9	11		30
1983	12	3.5	8.5		34
1984	9	2.7	13		44
1985	12	2.4	15		46
1986	12	1.7	24		52
1987	13	2.1	17	35	39
1988	14	1.3	23	46	41
1989	12	3.0	10	20	27
1990	13	3.5	18	21	40
1991	13	4.0	6.5	35	18
1992	9	2.9	11	20	15
1993	12	7.1	5.0	20	17
1994	10	4.5	7.3	14	17
1995	11	6.0			14
1996	14	6.2			18
1997	11	3.7			16
1998	13	5.0	6.7	16	16
1999	12	5.4	10	17	14
2012	Summan				

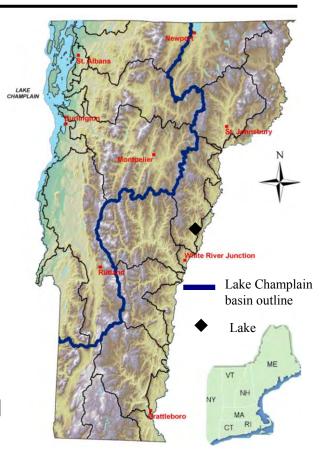
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	8	5.0	7.0	15	15
2001	5				16
2002	9	3.5	4.6	15	
2003	8	3.6	10	18	
2006	13	3.2	7.8	17	
2007	12	6.2	2.7	17	17
2008	13	5.1	4.0	17	
2009	14	5.2	4.1	18	
2010	14	3.8	5.6	17	
2011	3				
2012	13	4.6	3.4	17	
2013	9	5.5	4.7	26	

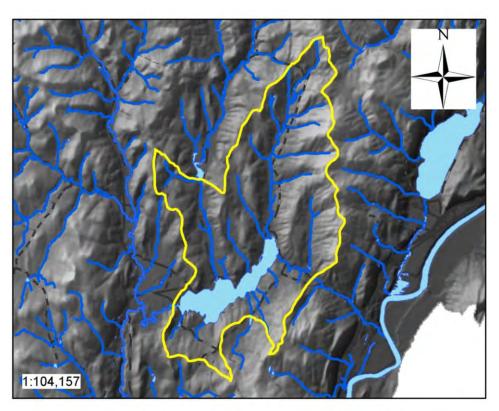
2013 Summary				
Parameter	Days	Min	Mean	Max
Secchi (m)	9	4.0	5.5	6.8
Chl-a (ug/l)	9	2.2	4.7	7.8
Summer TP (ug/ID	8 (8	12	26	62

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE FAIRLEE

Fairlee, West Fairlee and Thetford, VT


Lay Monitors: Gordon Kerr Former Lay Monitors: Chris Madden Don Wilson


Lake Fairlee is a large, warmwater lake.

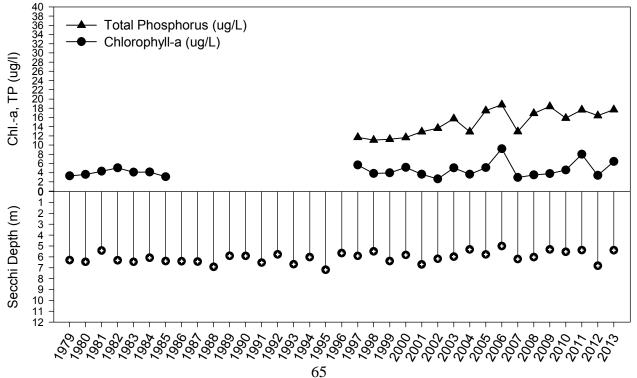
Lake Surface Area:	457	acres
Drainage Basin Area	12,976	acres
Maximum depth:	50 ft.	(15.0 m)
Average depth:	23 ft.	(7.0 m)

Compared to other lakes, the trophic status is Mesotrophic

Trophic St	ate Average <u>Secchi</u> Clarity	Ave. / Chlorophyll-a	Ave. Total a Phosphorus
<u> Oligotrophi</u>	ç > 5.5 meters	/ / e/	1/وµ 7.0 ×
Mesotroph	ig. 3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Fairlee


Annual Data						
	Days	Secchi	Chloro-a	Summer TP	Spring TP	
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	
1979	13	6.3	3.3		6.0	
1980	13	6.5	3.6		8.3	
1981	13	5.4	4.3		12	
1982	11	6.3	5.0		15	
1983	13	6.5	4.1		10	
1984	12	6.1	4.1		9.3	
1985	11	6.4	3.1		10	
1986	8	6.4			13	
1987	12	6.4			15	
1988	12	6.9				
1989	11	5.9				
1990	12	5.9				
1991	13	6.5				
1992	14	5.8				
1993	12	6.7				
1994	13	6.0				
1995	13	7.2				
1996	13	5.7			12	
1997	13	5.9	5.7	12		
1998	13	5.5	3.8	11	9.0	
1999	13	6.4	4.0	11		
	a					

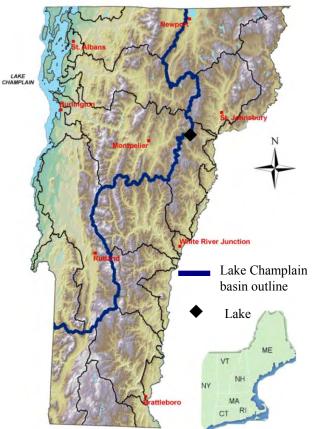
Annua	Annual Data							
	Days	Secchi	Chloro-a	Summer TP	Spring TP			
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)			
2000	13	5.8	5.1	12				
2001	10	6.7	3.6	13				
2002	9	6.2	2.6	14				
2003	8	6.0	5.1	16				
2004	10	5.3	3.7	13	15			
2005	10	5.8	5.1	17				
2006	10	5.0	9.2	19	13			
2007	9	6.2	2.9	13	14			
2008	9	6.0	3.5	17	11			
2009	9	5.3	3.8	18	15			
2010	9	5.5	4.6	16				
2011	8	5.4	8.0	18				
2012	9	6.8	3.4	16				
2013	8	5.4	6.4	18				

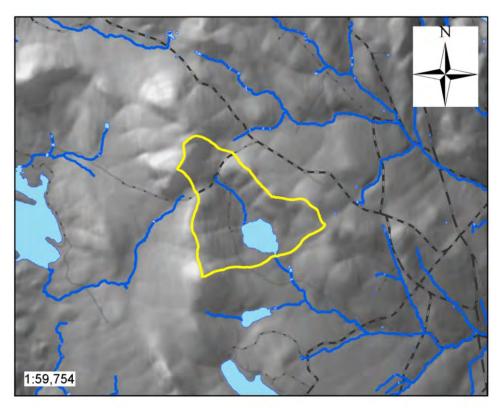
2013 Summary

Parameter	Days	Min	Mean	Max
Secchi (m)	8	4.2	5.4	6.3
Chl-a (ug/l)	8	5.1	6.4	8.5
Summer TP (ug/ID	8	13	18	26

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

FOSTERS POND

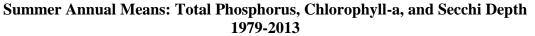

Peacham, VT

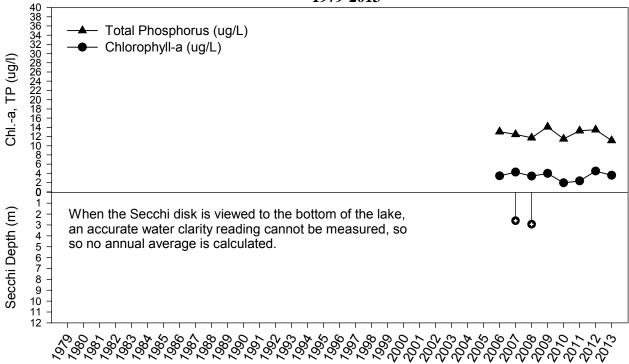

Lay Monitors: David and Marilyn Magnus

Fosters Pond is a small, shallow pond.						
Lake Surface Area:	61	acres				
Drainage Basin Area	647	acres				
Maximum depth:	13 ft.	(3.9 m)				
Average depth:	8 ft.	(2.4 m)				

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Aligotrophic</u>	> 5.5 meters	/ / yy	/ / 7.0 ×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic.	< 3.0	>7.0	> 14




Lake outlined by its watershed

Fosters Pond

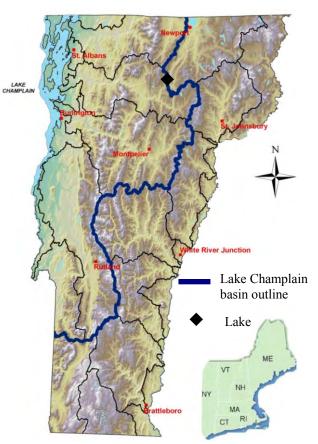
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2005	8				
2006	10		3.4	13	11
2007	9	2.6	4.3	12	9.3
2008	10	2.9	3.4	12	7.8
2009	9		4.0	14	
2010	9		1.9	11	
2011	10		2.3	13	
2012	9		4.5	13	
2013	9		3.6	11	

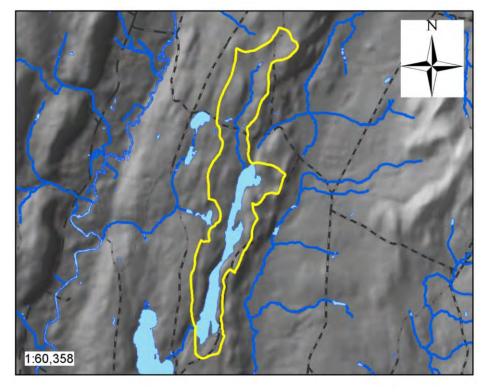
2013 Summary					
Davs	Min	Mean	Max		
9	2.9	3.2	3.4		
9	1.8	3.6	5.7		
9	8.6	11	17		
	Davs 9 9	Davs Min 9 2.9 9 1.8	Davs Min Mean 9 2.9 3.2 9 1.8 3.6		

GREAT HOSMER POND

Craftsbury and Albany, VT

Average depth:


Lay Monitors: John Brodhead, Elizabeth Sonshine, Susan Dunklee Former Lay Monitors: Amy Glen Luc Brodhead


Great Hosmer is a moderately sized, long,
narrow, relatively deep lake.Lake Surface Area:140Drainage Basin Area860Maximum depth:57 ft. (17.4 m)

Compared to other lakes, the trophic state is

20 ft. (6.1 m)

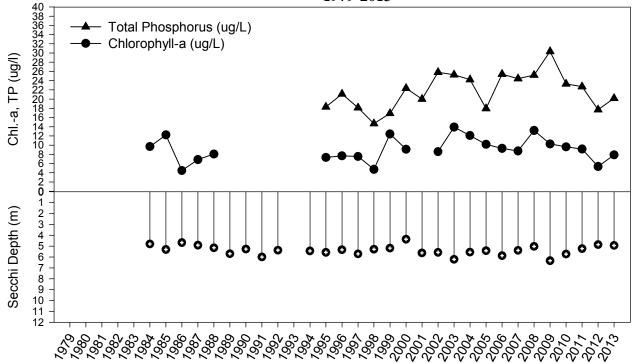
<u>Trophic</u> State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg/l	1/و <i>µ</i> 7.0
Mesotrophic	3.0 - 5.5	3.5-7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Great Hosmer Pond

Spring TP (ug/l)

18


21

22

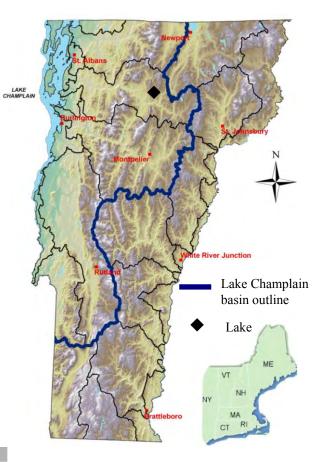
22

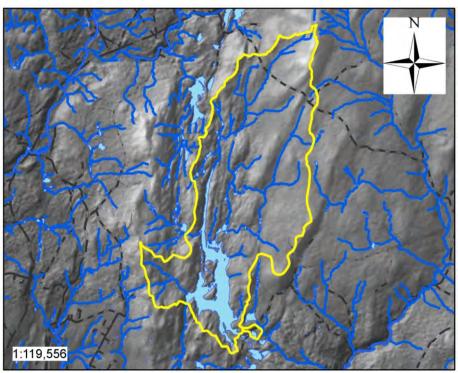
Annual	Data					Annua	l Data			
	Days	Secchi	Chloro-a	Summer TP	Spring TP		Days	Secchi	Chloro-a	Summer TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	Year	Sampled	(m)	(ug/l)	(ug/l)
1984	13	4.8	9.7		24	2000	9	4.4	9.1	22
1985	13	5.3	12		30	2001	9	5.6		20
1986	14	4.7	4.5			2002	11	5.6	8.6	26
1987	13	4.9	6.9			2003	11	6.2	14	25
1988	11	5.2	8.1			2004	10	5.6	12	24
1989	12	5.7				2005	9	5.4	10	18
1990	11	5.3			23	2006	10	5.9	9.3	25
1991	11	6.0				2007	9	5.4	8.7	24
1992	8	5.4				2008	9	5.0	13	25
1993	6					2009	11	6.3	10	30
1994	10	5.4				2010	11	5.7	9.6	23
1995	10	5.6	7.3	18		2011	12	5.2	9.1	23
1996	10	5.3	7.7	21		2012	11	4.9	5.4	18
1997	8	5.7	7.5	18	28	2013	11	4.9	7.9	20
1998	9	5.3	4.7	15						
1999	11	5.2	12	17						
2013	Summary									
Parame	•	ys Mi	in Mean	Max						
Secchi (n	n) 1	1 3.	8 4.9	5.8						
Chl-a (ug	/l) 1 ⁻	1 3.	1 7.9	12						
Summer	TP (ug/l) 1	1 1	5 20	30						
Spring TI	⊃ (ug/l)	1	22							

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

GREEN RIVER RESERVOIR

Hyde Park, VT


Lay Monitors: Alexis Drane, Ross Bryant Former Lay Monitors: Sharlotte Williams, Lucas Griggs, Michale McAtee, Ryan Harlow, and Thomas Gregory Jason Kelley and Harry Dunn-Davenport Terry and Bonnie Francis Heather Thomas Debbie Benjamin Terry Gregory

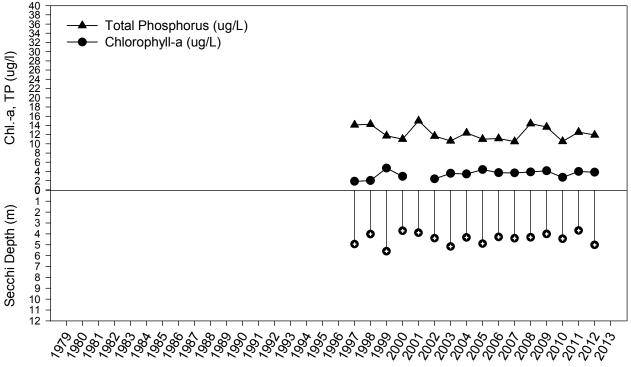

Green River Reservoir is a large, artificial, warmwater lake.

Lake Surface Area:	554	acres
Drainage Basin Area	9,075	acres
Maximum depth:	93 ft.	(28.4 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y/	//ex
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Green River Reservoir

A	nnua	l Data				
		Days	Secchi	Chloro-a	Summer TP	Spring TP
	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
	1997	8	4.9	1.9	14	
	1998	8	4.0	2.0	14	17
	1999	8	5.6	4.7	12	14

Annual Data Summer TP Days Secchi Chloro-a Spring TP Year Sampled (ug/l) (m) (ug/l) (ug/l) 2000 9 3.7 2.9 11 2001 8 3.9 15 2002 9 4.4 12 2.4 2003 9 5.2 3.6 11 2004 12 4.3 3.4 12 2005 10 4.9 4.4 11 11 2006 10 4.3 3.7 11 2007 11 4.4 3.7 10 17 14 2008 11 4.3 3.9 2009 11 4.0 4.1 14 2010 11 4.5 2.7 11 3.7 2011 13 4.0 13 17 5.0 3.8 12 2012 12 2013 5

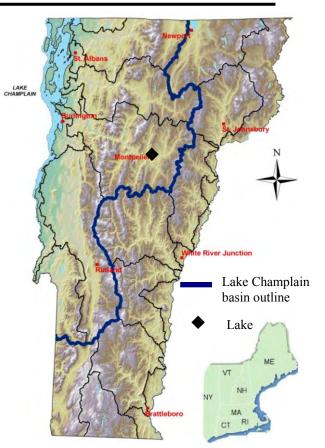
2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	5	2.0	3.5	5.0		
Chl-a (ug/l)	5	1.1	4.4	12		
Summer TP (ug/ID	5	9.1	13	17		

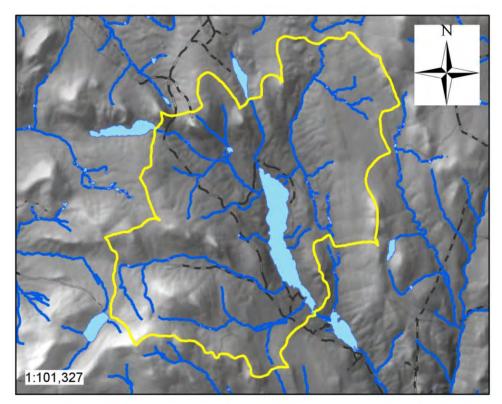
Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE GROTON

Groton, VT

Lay Monitors: John LaRosa


Former Lay Monitors: Cathy and David Donath Diana Rudd Milton Lamberton


Lake Groton is a large, shallow, warmwater lake.

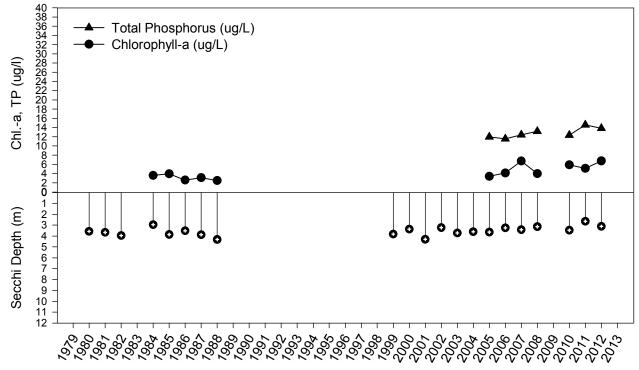
Lake Surface Area:	422	acres
Drainage Basin Area	12,006	acres
Maximum depth:	35 ft.	(10.7 m)
Average depth:	13 ft.	(4.0 m)

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/l	/1/و <i>µ</i>
Mesotrophic.	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Groton


Annual Data

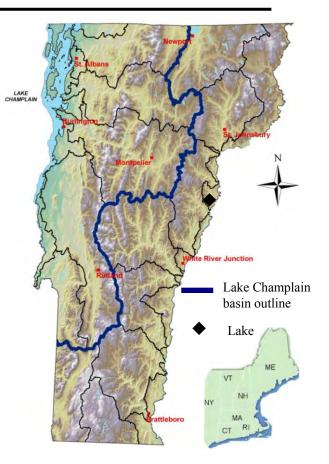
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1979	6				4.0
1980	10	3.6			8.3
1981	9	3.7			6.7
1982	12	4.0			9.0
1983	4				10
1984	13	3.0	3.6		6.3
1985	13	3.9	3.9		6.7
1986	14	3.5	2.6		8.3
1987	14	3.9	3.1		16
1988	21	4.3	2.5		
1999	12	3.8			6.9

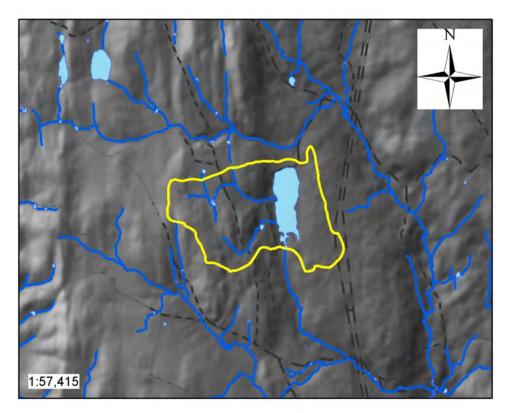
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	10	3.4			
2001	11	4.3			
2002	8	3.2			
2003	8	3.7			
2004	9	3.6			
2005	9	3.6	3.4	12	8.6
2006	9	3.3	4.1	12	9.8
2007	10	3.4	6.7	12	
2008	10	3.1	4.0	13	
2010	9	3.5	5.9	12	
2011	9	2.6	5.1	15	
2012	9	3.1	6.8	14	
2013	3				8.5

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	3	2.5	2.8	3.1	
Spring TP (ug/l)	1		8.5		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

HALLS LAKE


Newbury, VT

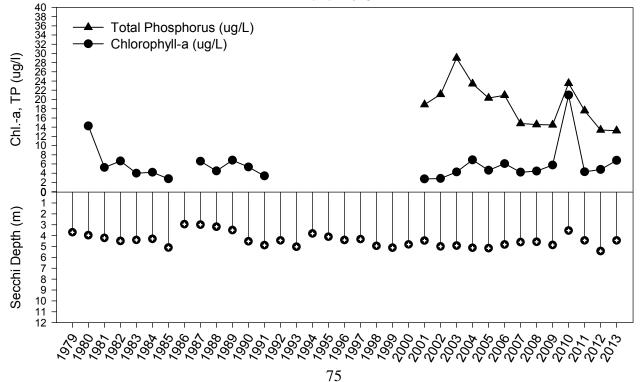

Lay Monitor: Jeff MacQueen Former Lay Monitors: Joe and Mike Dekens Albert Wright

Halls Lake is a small, shallow, warmwater lake.					
Lake Surface Area:	85	acres			
Drainage Basin Area	561	acres			
Maximum depth:	30 ft.	(9.1 m)			
Average depth:	17 ft.	(5.2 m)			

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / s.5	1/و <i>µ</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Halls Lake

Annua	I Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	13	3.7			6.0
1980	10	4.0	14		9.0
1981	12	4.2	5.2		20
1982	10	4.5	6.6		12
1983	9	4.4	4.0		19
1984	12	4.3	4.2		14
1985	11	5.1	2.8		13
1986	12	3.0			14
1987	13	3.0	6.6		13
1988	14	3.2	4.5		
1989	10	3.5	6.8		
1990	11	4.5	5.3		16
1991	16	4.9	3.4		
1992	9	4.4			
1993	11	5.0			
1994	10	3.8			
1995	11	4.1			
1996	11	4.4			
1997	11	4.3			12
1998	10	5.0			
1999	12	5.1			

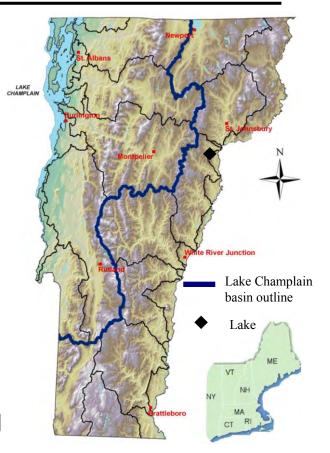
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	13	4.8			
2001	9	4.5	2.8	19	
2002	9	5.0	2.8	21	14
2003	9	4.9	4.3	29	
2004	9	5.1	6.9	23	18
2005	9	5.2	4.6	20	19
2006	9	4.8	6.1	21	20
2007	9	4.6	4.2	15	
2008	9	4.6	4.4	15	
2009	9	4.9	5.8	14	23
2010	9	3.5	21	24	25
2011	9	4.4	4.3	18	16
2012	9	5.4	4.8	13	
2013	9	4.4	6.8	13	

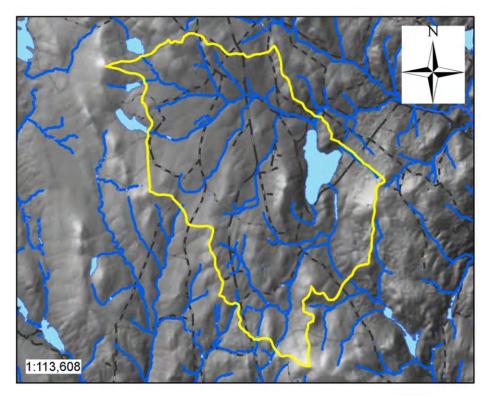
2013 Summary Parameter Secchi (m) Days Min Mean Max 3.8 5.1 9 4.4 Chl-a (ug/l) 9 3.5 6.8 11 Summer TP (ug/ID 9 11 13 17

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

HARVEY'S LAKE

Barnett, VT


Lay Monitor: Phil Sorrentino Former Lay Monitors: Steve Mills Jackie Sprague Wayne Berg Ruth Anderson Jean Hall Bouffard Leon and Marilyn Rank


Harvey's Lake is a large, deep, coldwater lake.

Lake Surface Area:	351	acres
Drainage Basin Area	5,364	acres
Maximum depth:	145 ft.	(44.2 m)
Average depth:	66 ft.	(20.1 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/l	/1/و <i>µ</i>
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Harvey's Lake

Annual Data						
	Days	Secchi	Chloro-a	Summer TP	Spring TP	
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	
1979	14	6.2	3.8		14	
1980	13	6.6	5.1		15	
1981	12	6.5	5.2		23	
1982	11	5.7	4.4		16	
1983	12	4.2	3.9	14	13	
1984	12	4.3	3.0	22	12	
1985	6				13	
1986	12	5.0	3.1	18	10	
1987	7				11	
1991	13	5.5			11	
1992	12	5.8			9.0	
1993	12	6.0			11	
1994	11	6.2			8.6	
1995	9	7.2			10	
1996	11	4.9				
1997	13	6.7	1.7	11	8.1	
1998	12	6.4	1.2	9.8	8.0	
1999	11	5.7	3.1	10	11	
2013	Summary					

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	11	4.8	4.0	12	11
2001	7				11
2002	11	5.9	2.1	11	7.7
2003	9	8.7	2.2	13	
2004	9	7.1	2.5	13	10
2005	9	5.5	4.2	14	13
2006	9	7.5	1.9	12	11
2007	9	5.7	2.0	12	15
2008	9	3.8	2.9	13	
2009	12	6.0	1.9	11	11
2010	12	6.7	2.4	11	
2011	9	5.5	3.3	12	
2012	9	5.5	2.8	11	
2013	9	4.2	1.9	12	

 Chl-a (ug/l)
 9
 0.9
 1.9
 3.9

 Summer TP (ug/ID
 9
 10
 12
 16

Mean

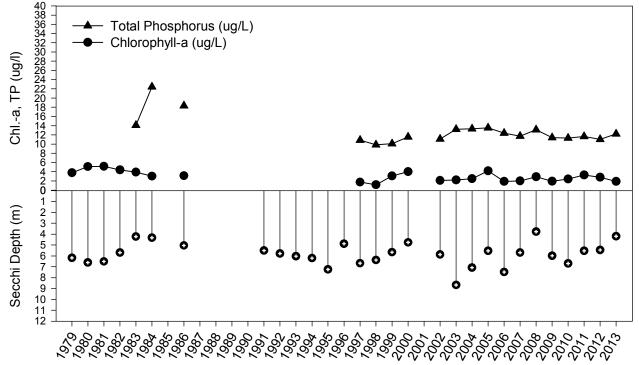
4.2

Max

6.0

Parameter

Secchi (m)


Davs

9

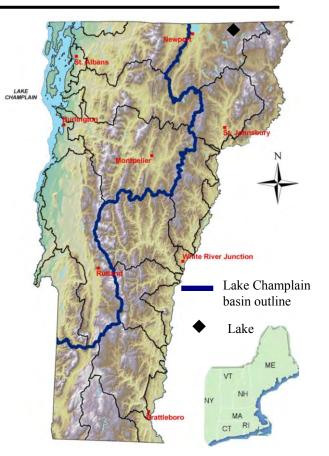
Min

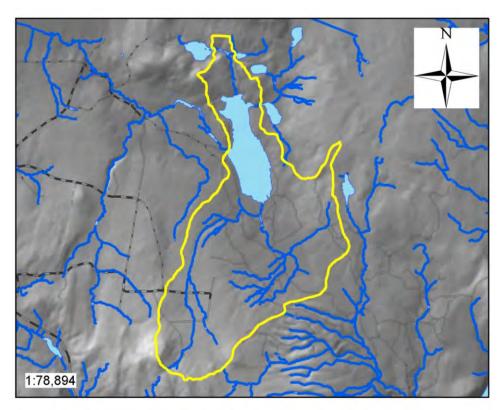
2.5

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

HOLLAND POND

Holland, VT


Lay Monitors: Tom Fetter and Chris Owen


Holland Pond is a relatively large, coldwater lake with little shoreland development.

Lake Surface Area:	325	acres
Drainage Basin Area	4,431	acres
Maximum depth:	39 ft.	(11.9 m)
Average depth:	17 ft.	(5.2 m)

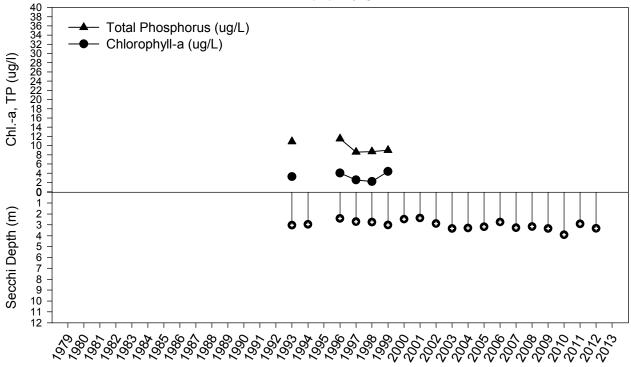
Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/ 1/ x7.0
Mesotrophic.	3.0 - 5.5	3.5-7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Holland Pond

Annual Data


Annual Data

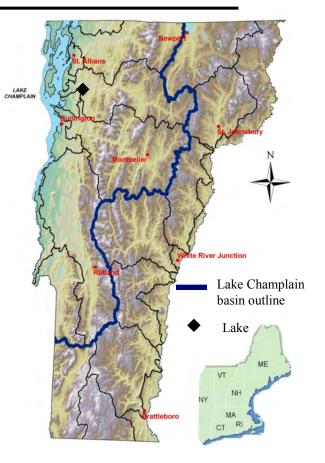
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1993	9	3.0	3.3	11	
1994	8	3.0			4.8
1995	6				8.0
1996	10	2.4	4.1	12	
1997	13	2.7	2.6	8.6	
1998	10	2.8	2.2	8.7	6.9
1999	12	3.0	4.4	9.0	8.1

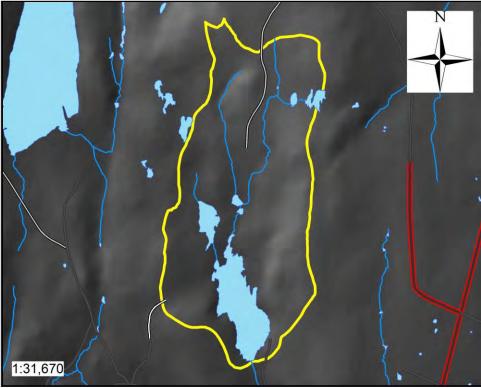
1 Milliuu						
	Days	Secchi	Chloro-a	Summer TP	Spring TP	
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	
2000	10	2.5				
2001	11	2.4			_	
2002	11	2.9				
2003	10	3.3			6.7	
2004	9	3.3			_	
2005	12	3.2			_	
2006	10	2.7			_	
2007	11	3.3			8.9	
2008	10	3.2				
2009	9	3.3			8.2	
2010	10	3.9			9.5	
2011	10	2.9			_	
2012	9	3.3			10	
2013	7				9.6	

2013 Summary				
Days	Min	Mean	Max	
7	2.4	2.9	3.5	
1		9.6		
	-	Days Min	DavsMinMean72.42.9	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

INDIAN BROOK RESERVOIR


Essex, VT


Lay Monitor: Beth Glaspie Former Lay Monitors: Kate Crawford and Garnet Smith

Indian Brook Reservoir is a small, warm water lake.Lake Surface Area:50 acresDrainage Basin Area761 acresMaximum depth:22 ft. (11.3 m)Average depth:13 ft. (5.8 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / a/5 ×	ا∕و <i>µ</i> 9/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
<u>Eutrophic</u>	< 3.0	>7.0	> 14

Lake outlined by its watershed

Indian Brook Reservoir

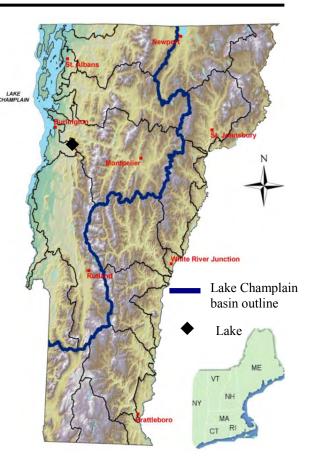
1	Annua	l Data				
		Days	Secchi	Chloro-a	Summer TP	Spring TP
	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
_	2010	10	4.0	6.2	18	
	2012	9	4.0	17	20	
	2013	10	3.7	7.1	18	

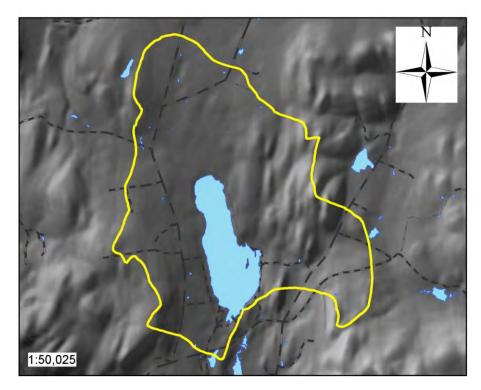
2013 Summar	у			
Parameter	Days	Min	Mean	Max
Secchi (m)	10	3.3	3.7	4.5
Chl-a (ug/l)	10	3.9	7.1	15
Summer TP (ug/l)	10	14	18	23

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE IROQUOIS

Williston and Hinesburg, VT


Lay Monitor: Dan Sharpe Former Lay Monitors: Adam Kaminsky Steve Lidle Chip and Joanne Wright Kelli Brown Ginger and Eric Johnson and Judy E Robert and Helen Hall


Lake Iroquois is a relatively large lake. It has a sha northern section and a deeper, southern basin.

Lake Surface Area:	243	acres
Drainage Basin Area	2,418	acres
Maximum depth:	37 ft.	(11.3 m)
Average depth:	19 ft.	(5.8 m)

Compared to other lakes, the trophic state is Eutrophic

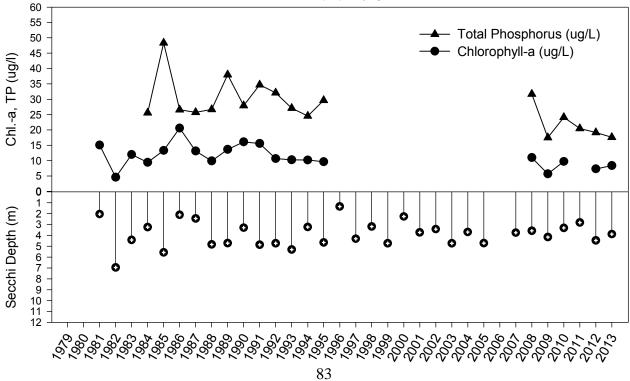
<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg∕ l	ا∕و <i>µ</i> 0.7>
<u>Mesotrophic</u>	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	> 7.0	> 14

Lake outlined by its watershed

Lake Iroquois

Annual Data

Annual Data


	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	12	2.8	9.5		26
1980	12	3.7	8.8		30
1981	13	2.0	15		29
1982	11	7.0	4.6		37
1983	13	4.4	12		27
1984	12	3.3	9.5	26	27
1985	12	5.6	13	48	28
1986	13	2.1	21	27	25
1987	12	2.5	13	26	28
1988	12	4.8	9.9	27	29
1989	11	4.7	14	38	39
1990	12	3.3	16	28	30
1991	12	4.9	16	35	23
1992	12	4.7	11	32	32
1993	11	5.3	10	27	29
1994	12	3.2	10	25	40
1995	11	4.7	9.6	30	25
1996	12	1.4			48
1997	13	4.3			13
1998	10	3.2			27
1999	12	4.7			19

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	11	2.3			22
2001	10	3.7			22
2002	10	3.4			16
2003	9	4.7			
2004	12	3.7			25
2005	9	4.7			
2007	10	3.8			
2008	14	3.6	11	32	
2009	14	4.2	5.7	17	27
2010	10	3.3	9.7	24	
2011	10	2.8		20	
2012	13	4.5	7.3	19	
2013	12	3.9	8.4	18	

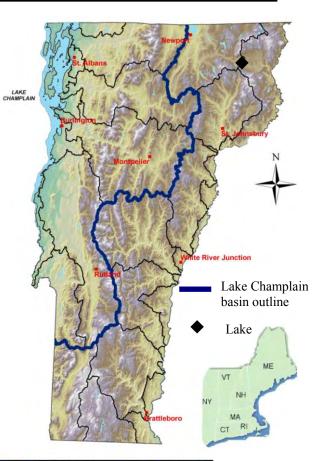
2013 Summary

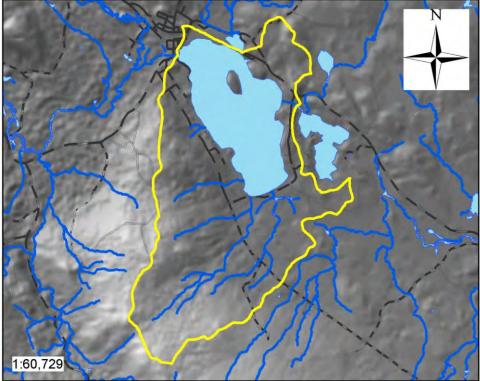
Parameter	Days	Min	Mean	Max
Secchi (m)	12	3.1	3.9	5.2
Chl-a (ug/l)	12	5.7	8.4	12
Summer TP (ug/I)	12	14	18	25

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

ISLAND POND

Brighton, VT


Lay Monitors: George and Patricia Wilcox Former Lay Monitors: Patrick Clarke David Molloy Ed Larsen


Island Pond is a large, warmwater lake with a large island in the middle.

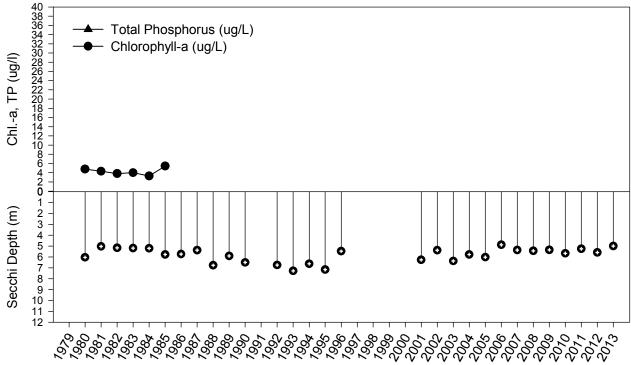
Lake Surface Area:	626	acres
Drainage Basin Area	6,295	acres
Maximum depth:	63 ft.	(19.0 m)
Average depth:	31 ft.	(9.4 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	//و <i>µ</i>
Mesotrophic	3.0 - 5.5	3.5-7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Island Pond


Annual Data

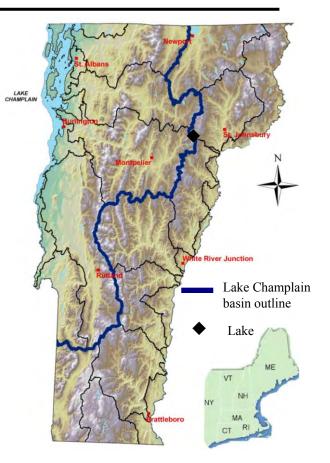
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	4				3.0
1980	13	6.0	4.8		6.7
1981	11	5.0	4.3		6.3
1982	9	5.2	3.8		8.7
1983	12	5.2	4.0		9.3
1984	12	5.2	3.3		8.7
1985	10	5.8	5.5		10
1986	14	5.7			9.0
1987	13	5.4			8.7
1988	12	6.8			
1989	13	5.9			
1990	12	6.5			
1992	11	6.7			
1993	13	7.3			
1994	13	6.6			
1995	13	7.2			6.5
1996	14	5.5			

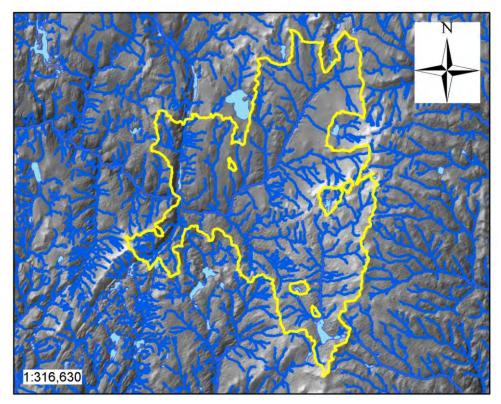
 Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	7				
2001	9	6.3			7.7
2002	11	5.4			
2003	8	6.4			
2004	8	5.8			10
2005	9	6.0			
2006	9	4.9			
2007	10	5.4			8.5
2008	8	5.4			9.9
2009	9	5.4			12
2010	9	5.7			
2011	9	5.3			
 2012	9	5.6			
 2013	8	5.0			

Parameter	Days	Min	Mean	Max
Secchi (m)	8	2.5	5.0	6.6

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

JOES POND


Danville and Cabot, VT

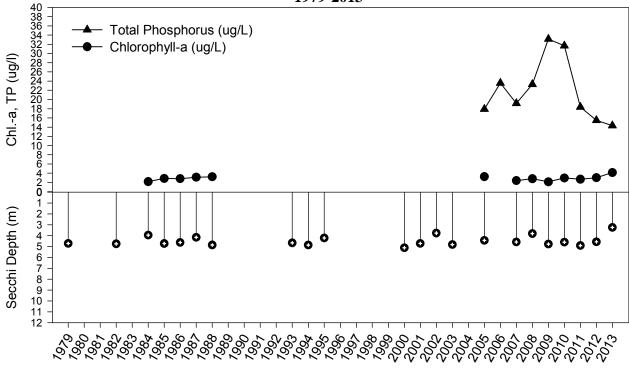

Lay Monitor: Gina Kurrle and Marti Talbot Former Lay Monitors: James and Marie Dimick Maurice Gardner

Joes Pond is an irregularly-shaped lake comprised of three distinct lake basins connected by narrow, shallow channels. Lake Surface Area: 396 acres Drainage Basin Area 18,445 acres Maximum depth: 78 ft. (23.8 m) Average depth: 21 ft. (6.4 m)

Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u>Oligotrophic</u>	> 5.5 meters	≺ 3.5 µg/l	×7.0 µg/l
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Joes Pond

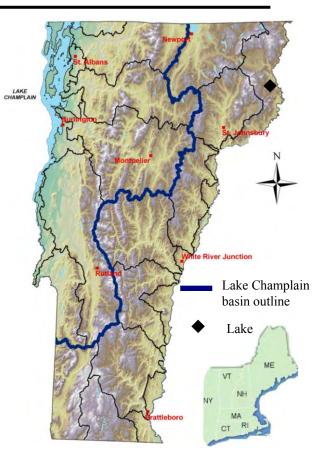
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	9	4.7			7.7
1980	4				6.7
1981	7				5.0
1982	8	4.8			7.3
1983	7				17
1984	12	3.9	2.2		6.3
1985	13	4.7	2.9		8.0
1986	13	4.6	2.8		6.7
1987	14	4.2	3.1		8.3
1988	13	4.9	3.2		
1989	5				
1993	11	4.7			7.8
1994	12	4.9			6.0
1995	10	4.2			

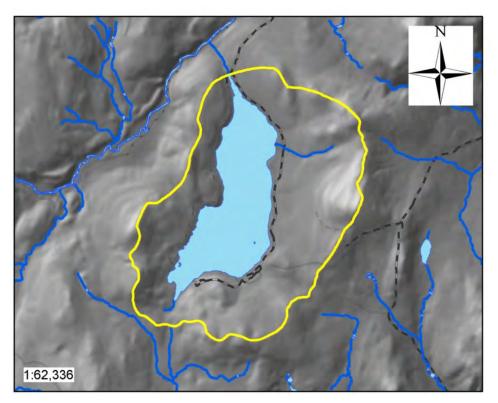
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	8	5.1			
2001	10	4.7			
2002	9	3.8			_
2003	9	4.8			
2004	7				8.0
2005	8	4.4	3.3	18	12
2006	8			24	
2007	10	4.6	2.4	19	12
2008	10	3.8	2.8	23	9.2
2009	9	4.8	2.1	33	
2010	8	4.6	3.0	32	8.6
2011	9	4.9	2.7	18	
2012	10	4.6	3.0	15	
2013	9	3.2	4.2	14	9.4

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	9	2.3	3.2	4.3	
Chl-a (ug/l)	9	3.2	4.2	5.2	
Summer TP (ug/ID	9	10	14	19	
Spring TP (ug/I)	1		9.4		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

MAIDSTONE LAKE


Maidstone, VT


Lay Monitors: Stewart Family Lin Mixer Burbank Family

Maidstone Lake is a large, deep, coldwater lake.Lake Surface Area:745Drainage Basin Area3,103Aximum depth:121 ft.Average depth:46 ft.

Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg/l	<7.0 µg/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Maidstone Lake

Spring TP (ug/l)

6.0

6.1
 7.7
 6.3
 6.2
 7.1
 9.1
 7.3

Annua	l Data					Annua	l Data			
	Days	Secchi	Chloro-a	Summer TP	Spring TP		Days	Secchi	Chloro-a	Summer TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	Year	Sampled	(m)	(ug/l)	(ug/l)
1979	16	7.3			4.3	2000	13	8.9	1.7	7.2
1980	14	8.2			4.0	2001	14	9.8	1.3	5.4
1981	13	7.7			6.0	2002	14	7.8	2.0	5.6
1989	11	8.6	2.0			2003	12	8.5	1.7	7.2
1990	14	8.2	2.0			2004	12	9.7	1.3	6.9
1991	13	7.7	1.3			2005	14	9.5	1.3	6.3
1992	13	8.4	1.7			2006	13	8.6	1.4	7.7
1993	14	9.5	2.0			2007	13	8.5	1.6	6.3
1994	13	7.5	1.8	6.2		2008	13	8.2	1.8	9.8
1995	13	9.2	1.6	5.6		2009	13	8.1	1.8	6.5
1996	14	8.3	1.8	4.6		2010	14	9.6	1.3	8.2
1997	14	7.9	1.5	5.4		2011	14	8.9	1.2	7.3
1998	13	7.5	1.4	4.9		2012	14	9.6	1.2	6.9
1999	14	8.7	2.1	5.5	4.3	2013	15	10.0	1.7	6.7
2013	Summary	7								
Param	•	ays Mi	in Mean	Max						
Secchi (m)	15 7.		12						

Chl-a (ug/l)

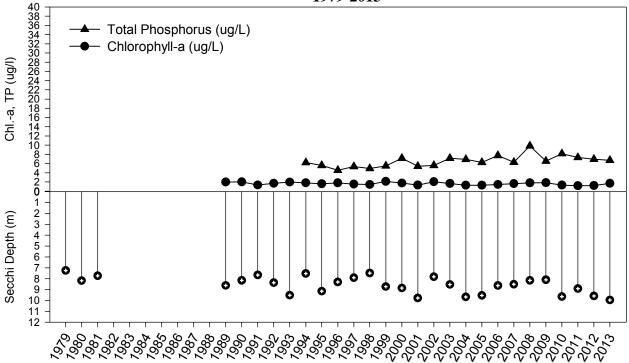
Summer TP (ug/ID

15

15

1.2

5.0


1.7

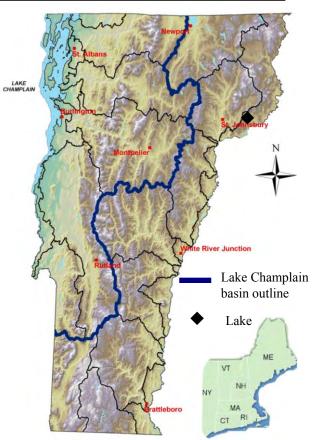
6.7

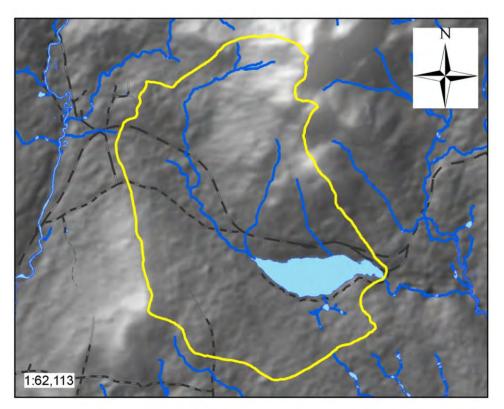
2.9

12

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

MILES POND


Concord, VT

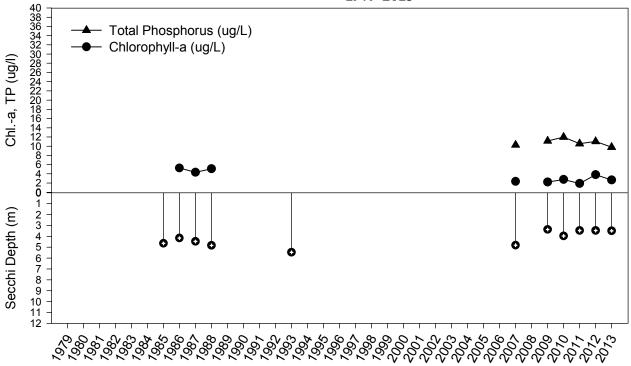

Lay Monitor: Nancy Darrah

Miles Pond is a small, relatively deep,
warmwater lake.Lake Surface Area:215Drainage Basin Area4,158Average depth:55 ft.(16.7 m)Average depth:20 ft.

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphoru
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	ا/و <i>ير</i> 7.0 ×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Miles Pond

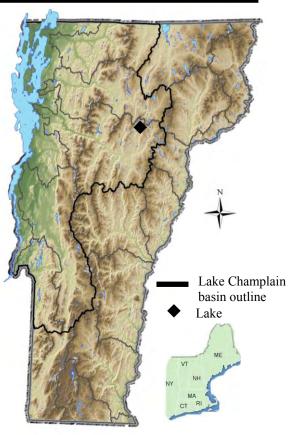
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1985	9	4.7			9.5
1986	8	4.2	5.3		10
1987	9	4.5	4.3		8.5
1988	9	4.8	5.1		
1989	6				
1990	7				
1991	7				
1992	7				
1993	9	5.5			

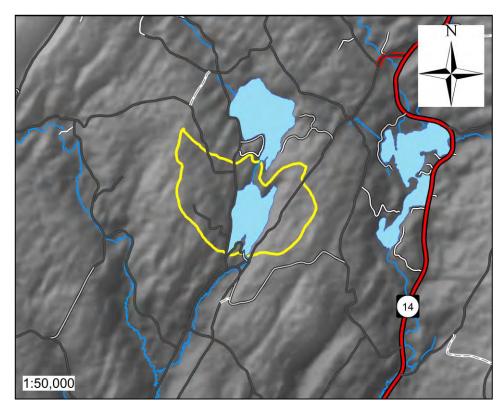
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2007	8	4.8	2.3	10	9.8
2008	7				
2009	9	3.4	2.2	11	
2010	9	4.0	2.8	12	14
2011	9	3.5	1.9	11	14
2012	9	3.5	3.8	11	
2013	11	3.5	2.6	9.8	

2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	11	3.5	3.5	3.5		
Chl-a (ug/l)	11	0.8	2.6	5.7		
Summer TP (ug/ID	11	7.2	9.8	16		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

MIRROR LAKE

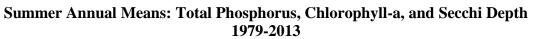

Calais, VT

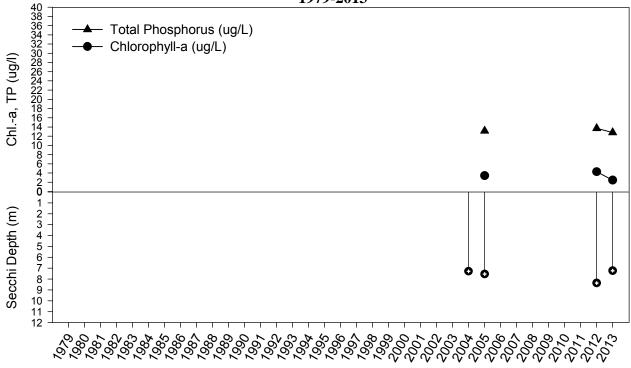

Lay Monitor: Ram Verma and Eric Jacobsen Former Lay Monitors: Rowan Jacobson

Miles Pond is a small, relatively deep,					
warmwater lake.					
Lake Surface Area:	85	acres			
Drainage Basin Area	3,349	acres			
Maximum depth:	106 ft.	(32 m)			
Average depth:	43 ft.	(13 m)			

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/ / 7.0 ×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
<u>Eutrophic</u>	< 3.0	>7.0	> 14



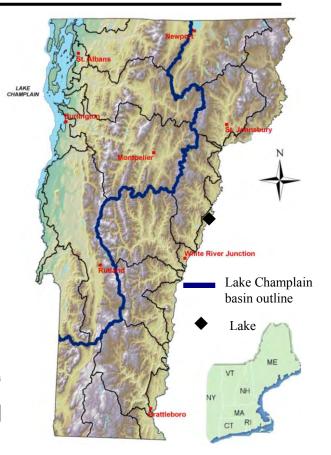

Lake outlined by its watershed

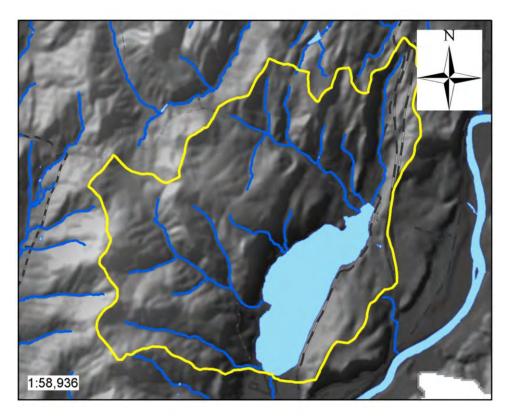
Lake Mirror

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2004	8	7.3			10
2005	10	7.6	3.4	13	
2012	8	8.4	4.3	14	
2013	10	7.2	2.5	13	

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	10	6.3	7.2	8.3	
Chl-a (ug/l)	10	1.6	2.5	3.6	
Summer TP (ug/ID	10	7.9	13	20	

LAKE MOREY


Fairlee, VT


Lay Monitors: Don Weaver Former Lay Monitors: Bill Scott Deb Williams

Lake Morey is a large, relatively deep,				
warmwater lake.				
Lake Surface Area:	547	acres		
Drainage Basin Area	5,101	acres		
Maximum depth:	43 ft.	(13.1 m)		
Average depth:	24 ft.	(7.3 m)		

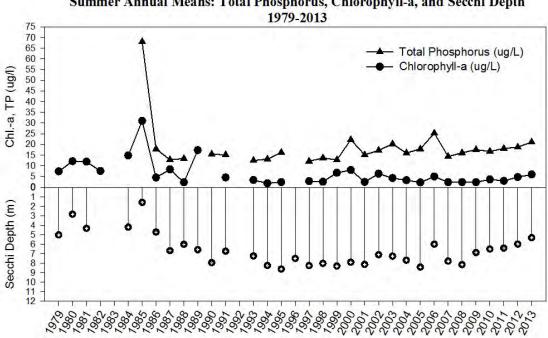
Compared to other lakes the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/l	ا/و <i>µ</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic.	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Morey

Annual Data


Annual Data

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	13	5.0	7.4		32
1980	14	2.8	12		20
1981	14	4.3	12		48
1982	8		7.6		46
1983	7				39
1984	9	4.2	15		37
1985	12	1.6	31	68	58
1986	13	4.7	4.5	18	39
1987	13	6.7	8.3	13	9.0
1988	12	6.0	2.2	13	12
1989	8	6.6	17		17
1990	11	7.9		15	16
1991	9	6.7	4.6	15	12
1992	7				11
1993	10	7.2	3.4	13	12
1994	8	8.2	1.8	13	
1995	8	8.6	2.4	16	12
1996	8	7.5			11
1997	9	8.2	2.8	12	11
1998	9	8.0	2.5	14	12
1999	9	8.3	6.7	13	

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	9	7.9	8.0	22	
2001	9	8.1	2.4	15	
2002	9	7.1	6.3	17	10
2003	9	7.2	4.2	20	15
2004	9	7.7	3.3	16	14
2005	9	8.4	2.2	18	12
2006	9	6.0	5.0	25	
2007	9	7.8	2.3	14	14
2008	9	8.1	2.3	16	12
2009	9	6.9	2.3	18	17
2010	9	6.5	3.6	17	30
2011	9	6.4	2.9	18	
2012	9	6.0	4.8	19	
2013	9	5.3	5.9	21	15

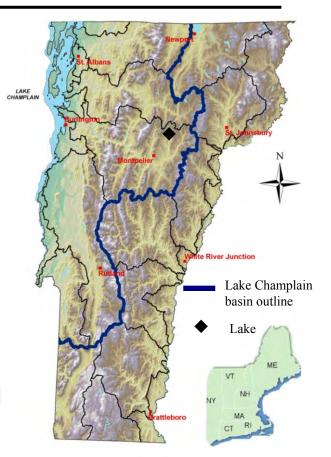
2013 Summary

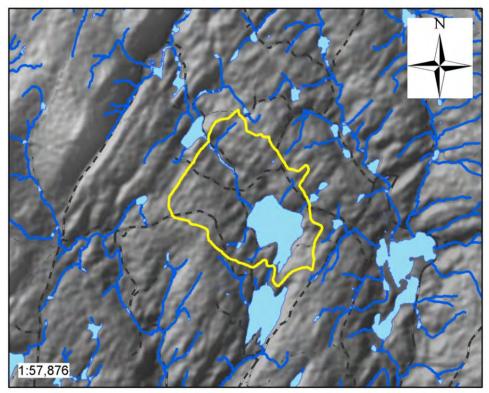
Parameter	Days	Min	Mean	Max
Secchi (m)	9	3.9	5.3	6.5
Chl-a (ug/l)	9	3.8	5.9	10
Summer TP (ug/ID	9	15	21	38
Spring TP (ug/I)	1		15	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth

NELSON POND

Calais and Woodbury, VT


Lay Monitor: Chris and Walker Bean Former Lay Monitors: Doug Stitely Jan Brough

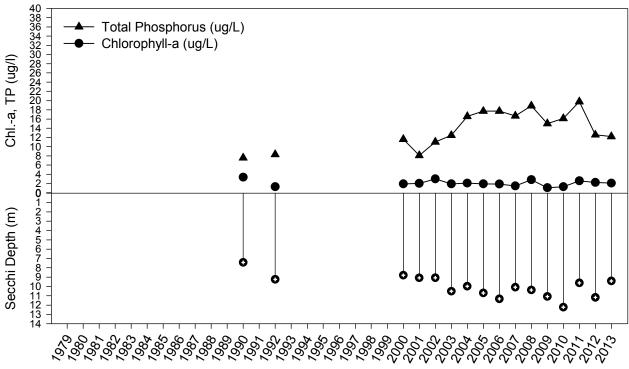

Nelson Pond, also known as Forest Lake, is a moderately sized, deep, coldwater lake.

Lake Surface Area:	133	acres
Drainage Basin Area	2,827	acres
Maximum depth:	97 ft.	(29.6 m)
Average depth:	49 ft.	(14.9 m)

Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u>Oligotrophic</u>	> 5.5 meters	≺ 3.5 µg/l	<7.0 µg/l
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Nelson Pond

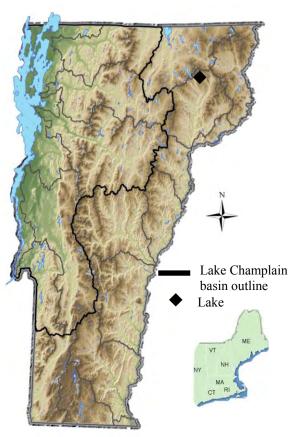
1	Annua	l Data				
		Days	Secchi	Chloro-a	Summer TP	Spring TP
_	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
	1979	6				5.0
	1980	6				3.5
	1990	10	7.4	3.4	7.6	8.0
	1991	6				7.5
	1992	10	9.2	1.3	8.3	5.5

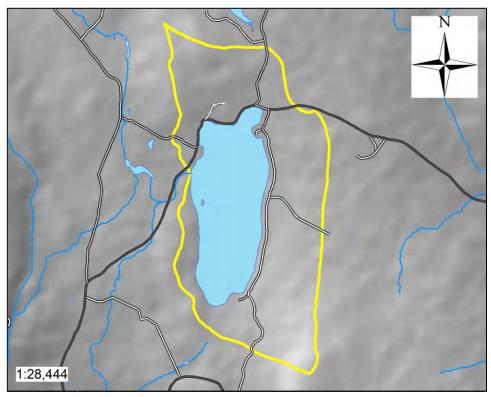
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	10	8.8	1.9	12	
2001	12	9.1	2.0	8.1	
2002	11	9.1	3.0	11	
2003	11	11	1.9	12	
2004	12	10.0	2.1	17	7.0
2005	11	11	1.9	18	6.5
2006	11	11	1.9	18	8.7
2007	12	10	1.5	17	12
2008	11	10	2.8	19	
2009	11	11	1.1	15	9.5
2010	12	12	1.3	16	8.1
2011	12	9.6	2.6	20	
2012	13	11	2.2	13	
2013	11	9.4	2.1	12	

2013 Summary					
Days	Min	Mean	Max		
11	7.9	9.4	11		
11	1.1	2.1	3.1		
11	9.0	12	18		
	Davs 11 11	Davs Min 11 7.9 11 1.1	Davs Min Mean 11 7.9 9.4 11 1.1 2.1		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

NEWARK POND

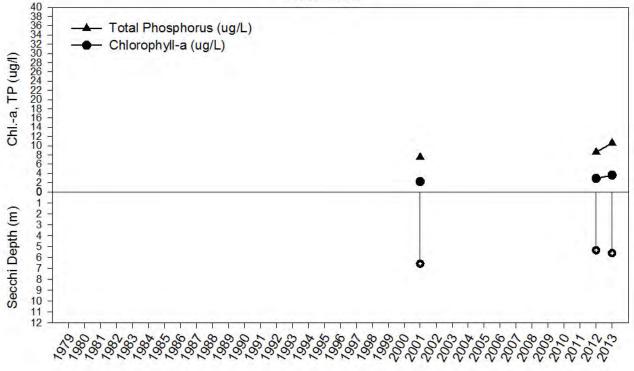

Newark, VT


Lay Monitors: Libby and Don Welch

Nichols Pond is a moderately	sized, o	deep,
coldwater lake.		
Lake Surface Area:	153	acres
Drainage Basin Area	554	acres
Maximum depth:	31 ft.	(9.4 m)
Average depth:	14 ft. ((4.3m)

Compared to other lakes the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u>Oligotrophic</u>	> 5.5 meters	≺ 3.5 µg/l	<7.0 µg/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	> 7.0	> 14

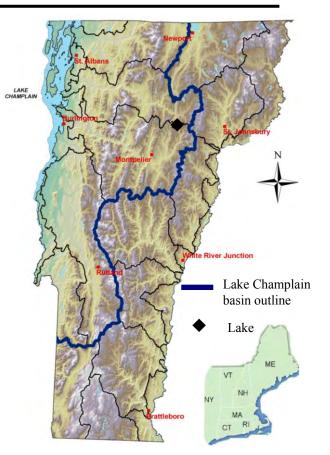

Lake outlined by its watershed

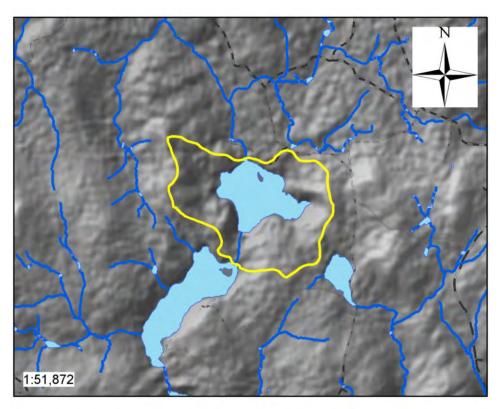
Newark Pond

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l
2001	13	6.6	2.2	7.5	5.5)
2012	12	5.3	2.9	8.6	
2013	10	5.6	3.6	11	

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	10	4.5	5.6	6.8	
Chl-a (ug/l)	10	2.1	3.6	9.1	
Summer TP (ug/ID	9	8.7	11	13	

NICHOLS POND


Woodbury, VT

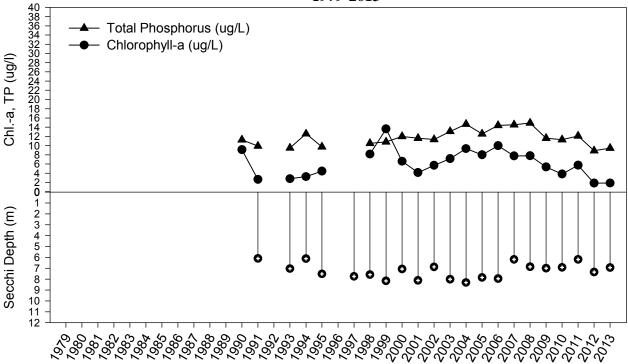

Lay Monitors: Michael Gray Ellie Hayes Former Lay Monitors: Doug Stitely

Nichols Pond is a moderately sized, deep,			
coldwater lake.			
Lake Surface Area:	171	acres	
Drainage Basin Area	2,920	acres	
Maximum depth:	109 ft.	(33.2 m)	

Compared to other lakes the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/ / q/l
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Nichols Pond

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1990	12		9.1	11	9.0
1991	9	6.1	2.7	9.9	7.0
1993	8	7.0	2.8	9.5	
1994	9	6.1	3.3	13	
1995	11	7.5	4.4	9.7	
1997	12	7.8			7.3
1998	10	7.6	8.2	11	10
1999	11	8.2	14	11	

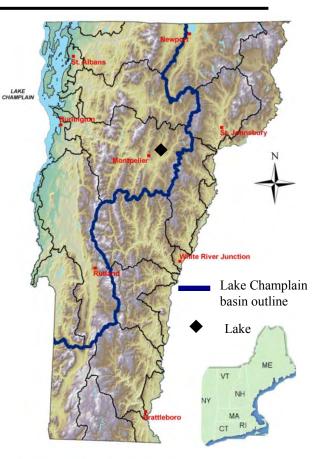
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	11	7.1	6.6	12	
2001	10	8.1	4.1	12	
2002	12	6.9	5.7	11	
2003	12	8.0	7.1	13	
2004	12	8.3	9.3	15	10
2005	8	7.9	8.0	13	
2006	10	8.0	10.0	14	
2007	10	6.2	7.8	15	14
2008	11	6.9	7.8	15	
2009	11	7.0	5.4	12	
2010	12	6.9	3.8	11	11
2011	11	6.2	5.7	12	9.9
2012	11	7.4	1.8	8.9	9.5
2013	10	6.9	1.9	9.5	

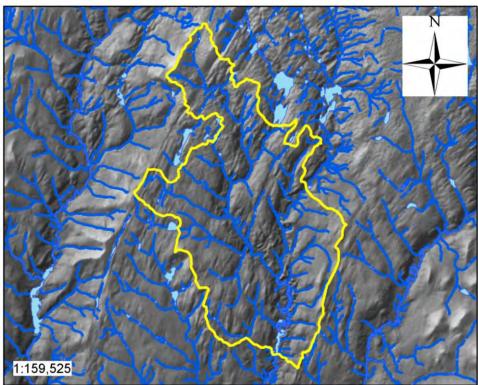
2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	10	5.0	6.9	8.7	
Chl-a (ug/l)	10	1.0	1.9	2.8	
Summer TP (ug/ID	10	7.4	9.5	13	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

NORTH MONTPELIER POND

East Montpelier, VT


Lay Monitor: Laura Brown Former Lay Monitors: Rose Paul George Springston

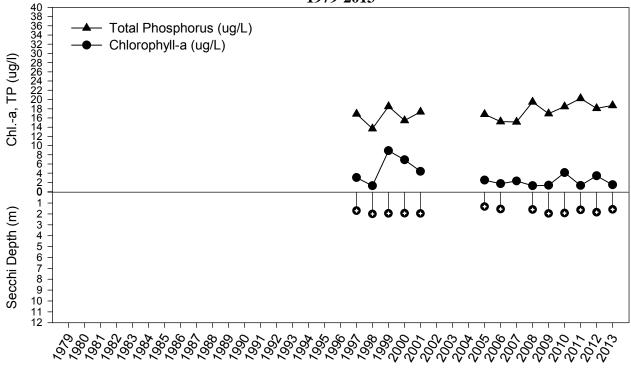

North Montpelier Pond is a small, warmwater lake. Lake Surface Area: 72 acres Drainage Basin Area 32,581 acres

Dramage Dasin Mea	52,501	acres
Maximum depth:	12 ft.	(3.6 m)

Compared to other lakes the trophic state is Eutrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y/l	//و <i>µ</i> 7.0
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


North Montpelier Pond

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1997	8	1.7	3.1	17	
1998	9	2.0	1.3	14	
1999	10	2.0	8.9	19	

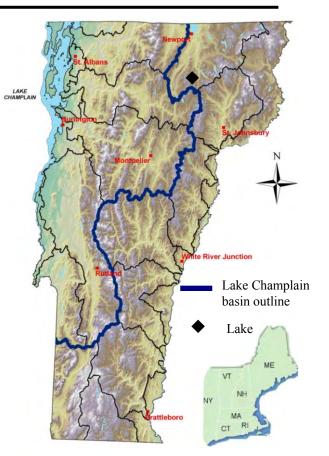
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	9	2.0	6.9	15	
2001	10	2.0	4.4	17	_
2005	10	1.3	2.5	17	_
2006	9	1.6	1.7	15	
2007	9		2.3	15	_
2008	9	1.6	1.3	19	_
2009	9	2.0	1.4	17	_
2010	9	1.9	4.1	18	18
2011	10	1.6	1.3	20	
2012	9	1.9	3.4	18	
2013	9	1.6	1.5	19	

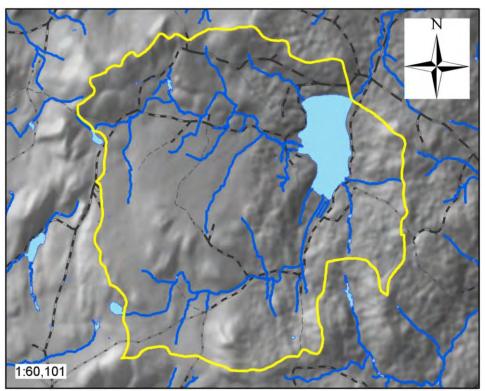
2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	9	0.4	1.6	2.0	
Chl-a (ug/l)	9	0.6	1.5	2.8	
Summer TP (ug/ID	9	14	19	35	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE PARKER

Glover, VT


Lay Monitor: Bob Richards Former Lay Monitors: Bob Johnson Marjorie and Arnold Smith


Lake Parker is a relatively large, fairly shallow, warmwater lake. Lake Surface Area: 250 acres Drainage Basin Area 5,418 acres Maximum depth: 45 ft. (13.7 m)

Average Depth:15 ft. (15.7 m)25 ft. (7.6 m)

Compared to other lakes, the trophic state is Eutrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y/l	1/و <i>µ</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Parker

Annual Data

Annual Data

Parameter

Secchi (m)

Chl-a (ug/l)

Summer TP (ug/ID

Days

9

9

9

Min

2.0

6.2

16

Mean

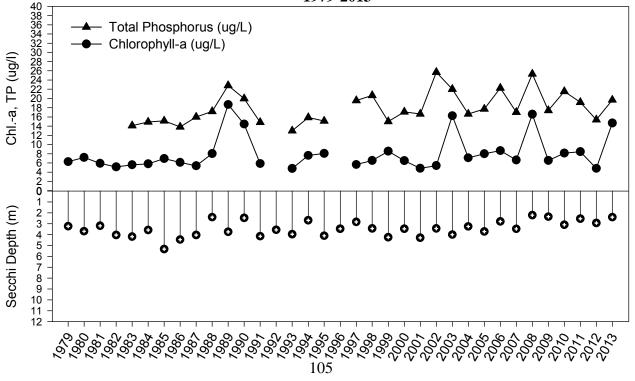
2.4

15

20

Max

3.0


27

22

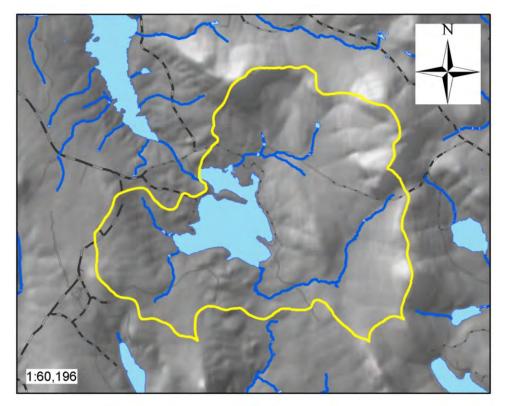
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	18	3.2	6.3		17
1980	13	3.7	7.2		20
1981	13	3.2	5.9		21
1982	13	4.0	5.2		18
1983	13	4.2	5.6	14	15
1984	13	3.6	5.8	15	12
1985	12	5.3	6.9	15	14
1986	12	4.5	6.1	14	13
1987	12	4.0	5.4	16	13
1988	12	2.4	8.0	17	
1989	12	3.8	19	23	
1990	12	2.5	14	20	19
1991	12	4.2	5.9	15	14
1992	13	3.6			
1993	12	4.0	4.8	13	
1994	10	2.7	7.6	16	
1995	11	4.1	8.1	15	19
1996	9	3.5			
1997	9	2.8	5.7	20	16
1998	9	3.4	6.5	21	
1999	11	4.3	8.5	15	17
2013	Summary				

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	12	3.5	6.5	17	21
2001	11	4.3	4.8	17	13
2002	10	3.4	5.4	26	18
2003	12	4.0	16	22	
2004	13	3.3	7.1	17	14
2005	11	3.7	8.0	18	16
2006	12	2.8	8.7	22	17
2007	12	3.5	6.6	17	22
2008	14	2.2	17	25	
2009	15	2.4	6.5	17	18
2010	14	3.1	8.1	22	
2011	14	2.5	8.4	19	
2012	12	2.9	4.8	15	
2013	9	2.4	15	20	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

PEACHAM POND

Peacham, VT


Lay Monitor: John and Martha Winston Former Lay Monitors: Vic and Lu Laprade Dennis Hendy

Peacham pond is a relatively large, deep lake.					
Lake Surface Area:	340	acres			
Drainage Basin Area	3,750	acres			
Maximum depth:	61 ft.	(18.5 m)			
Average depth:	20 ft.	(6.1 m)			

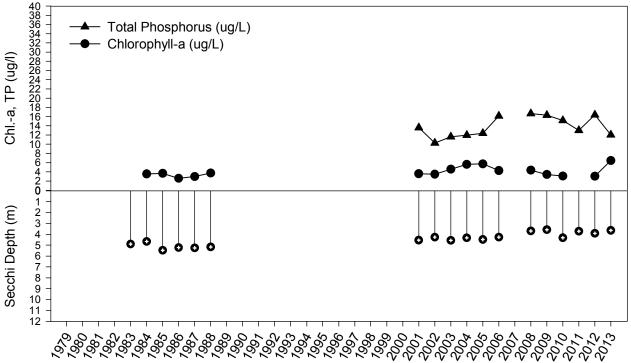
Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/l	1/و <i>µ</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Peacham Pond

Annual Data


Annual Data

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1983	10	4.9			12
1984	13	4.7	3.5		7.7
1985	11	5.5	3.7		8.3
1986	9	5.2	2.6		
1987	12	5.3	3.0		
1988	10	5.2	3.7		

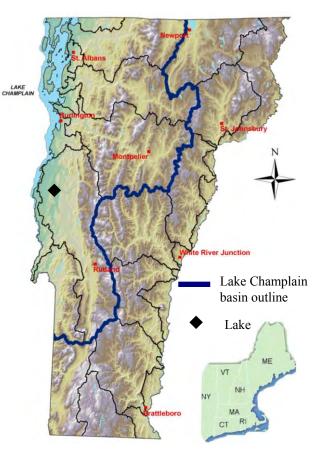
		Days	Secchi	Chloro-a	Summer TP	Spring TP
_	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
	2001	12	4.5	3.6	14	
_	2002	11	4.3	3.5	10	8.6
_	2003	10	4.6	4.6	12	
_	2004	10	4.3	5.6	12	
_	2005	10	4.5	5.7	12	
-	2006	10	4.3	4.3	16	
-	2008	8	3.7	4.4	17	10
-	2009	10	3.6	3.4	16	
-	2010	10	4.3	3.1	15	
-	2011	9	3.7		13	
-	2012	10	3.9	3.1	16	
-	2013	9	3.6	6.5	12	

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	9	3.0	3.6	4.0	
Chl-a (ug/l)	9	2.6	6.5	22	
Summer TP (ug/ID	9	8.9	12	15	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

PERCH POND

Benson, VT


Lay Monitors: Dwight Fowler Former Lay Monitors: John Molnar Gordon and Harriet Mitchell Ginny Shaw

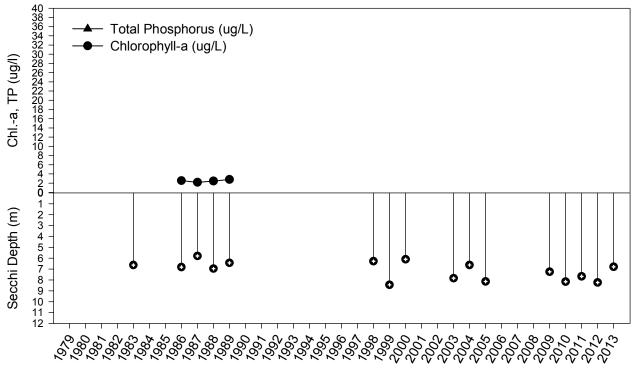
Perch Pond is a small relatively deep warmwater lake. Lake Surface Area: 24

Lake Sulface Alea.	24
Drainage Basin Area:	110
Maximum Depth:	44ft. (3.3 m)
Average Depth:	16 ft. (4.8 m)

Compared to other lakes, the trophic state is: Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u>Oligotrophic</u>	> 5.5 meters	≺ 3.5 µg/l	×7.0µ9/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Perch Pond

Annua	l Data					Annua	l Data
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)	Year	Days Sampled
1983	12	6.6			8.0	2000	8
1984	6				11	2003	ę
1986	14	6.8	2.6		8.5	2004	1(
1987	13	5.8	2.2			2005	11
1988	13	7.0	2.5			2009	9
1989	12	6.4	2.8			2010	1(
1998	8	6.3				2011	1(
1999	9	8.5				2012	9

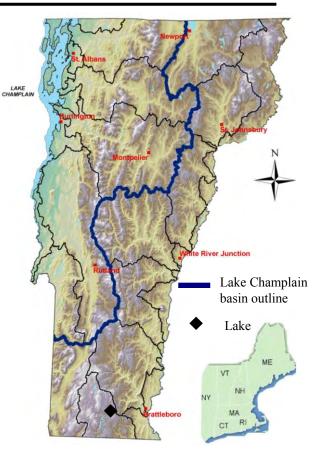
	Days	Secchi	Chloro-a	Summer TP	Spring TP
 Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	8	6.1			
 2003	9	7.8			12
 2004	10	6.6			
 2005	11	8.1			11
 2009	9	7.3			
2010	10	8.2			
 2011	10	7.7			8.3
 2012	9	8.2			
 2013	9	6.8			

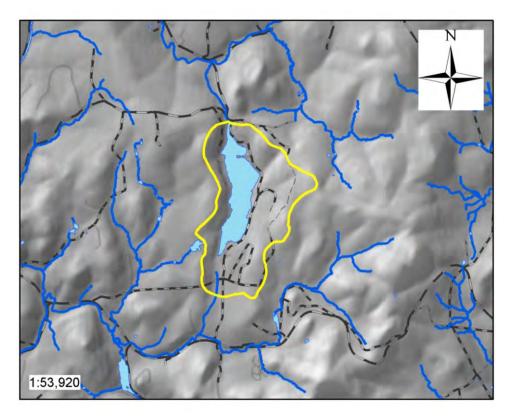
Parameter	Days	Min	Mean	Max
Secchi (m)	9	4.8	6.8	8.5

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

RAPONDA

Wilmington, VT


Lay Monitor: Cindy Meyer


Raponda is a moderately sized, warmwater lake.

Lake Surface Area:	121	acres
Drainage Basin Area	616	acres
Maximum depth:	12 ft.	(3.7 m)
Average Depth:	8 ft.	(2.4 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphoru:
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/ / 7.0 ×
Mesotrophic	3.0 - 5.5	3.5-7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Raponda

Annual Data


Annual Data

Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1980	13		2.5		11
1981	13		2.8		9.3
1982	12		2.2		5.7
1983	10		3.2		7.3
1984	11	3.3	3.0		8.7
1991	12				

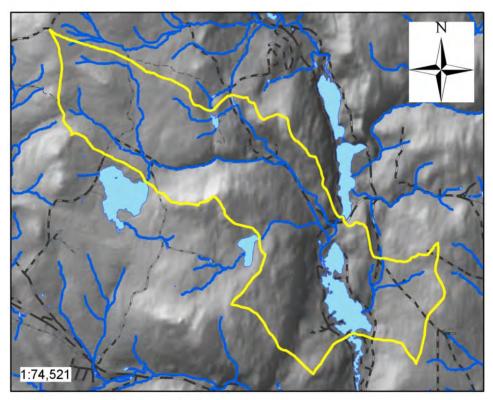
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2002	11		2.1	13	
2003	10		2.2	18	
2004	10		2.6	9.7	
2005	9		1.9	10	
2006	10	3.3	3.2	14	11
2007	9		5.8	12	
2008	11	3.5	2.1	13	
2009	11	3.4	2.9	12	
2010	11	3.4	2.9	11	
2011	8	3.3	3.0	12	
2012	10		2.3	10	
2013	9		2.6	9.9	8.0

2013 Summary					
Days	Min	Mean	Max		
9	2.5	3.4	3.6		
9	1.2	2.6	5.0		
9	8.3	9.9	13		
1		8.0			
	Davs 9 9	Davs Min 9 2.5 9 1.2	Davs Min Mean 9 2.5 3.4 9 1.2 2.6 9 8.3 9.9		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE RESCUE

Ludlow, VT

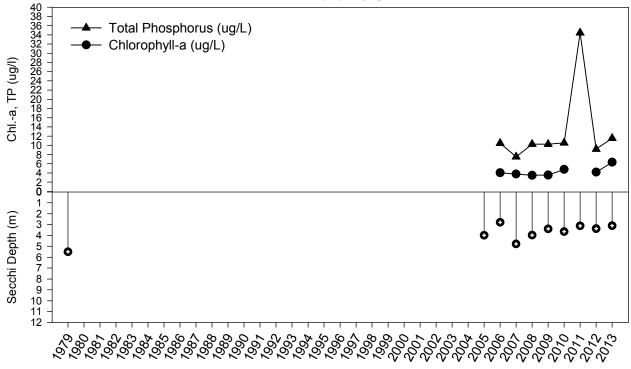

Lay Monitors: Jim and Janine Norman Former Monitors: David Hearne

Lake Rescue is a moderately	v sized, n	atural lake.
Lake Surface Area:	180	acres
Drainage Basin Area	22,859	acres
Maximum depth:	90 ft.	(27 m)
Average Depth:	40 ft.	(12 m)

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y/	ا/و <i>µ</i> 7.0
Mesotrophic	3.0 - 5.5	3.5-7.0	7.0 -14
<u>Eutrophic</u>	< 3.0	>7.0	> 14

Lake outlined by its watershed


Rescue Lake

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	16	5.5			5.5
1980	6				6.0

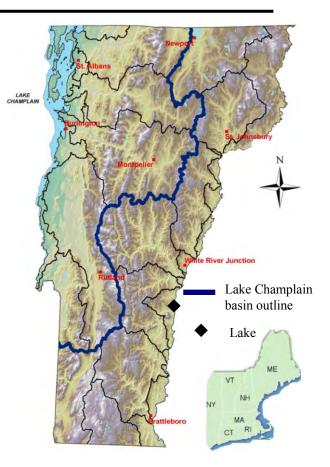
	Annual Data								
		Days	Secchi	Chloro-a	Summer TP	Spring TP			
_	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)			
	2005	11	4.0			9.4			
	2006	11	2.8	4.0	10				
_	2007	11	4.8	3.8	7.5	8.6			
_	2008	10	4.0	3.5	10	8.1			
_	2009	10	3.4	3.5	10	8.9			
_	2010	10	3.7	4.8	11				
_	2011	10	3.1		34				
	2012	8	3.4	4.2	9.2	13			
_	2013	10	3.1	6.3	12	13			

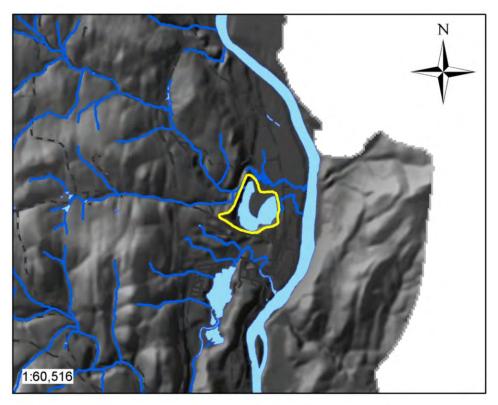
2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	10	2.0	3.1	4.1		
Chl-a (ug/l)	10	2.1	6.3	19		
Summer TP (ug/ID	10	8.7	12	16		
Spring TP (ug/I)	1		13			

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE RUNNEMEDE

Windsor, VT


Lay Monitor: Andrew Robbins Former Lay Monitors: Micheal Quinn Donna Ewald

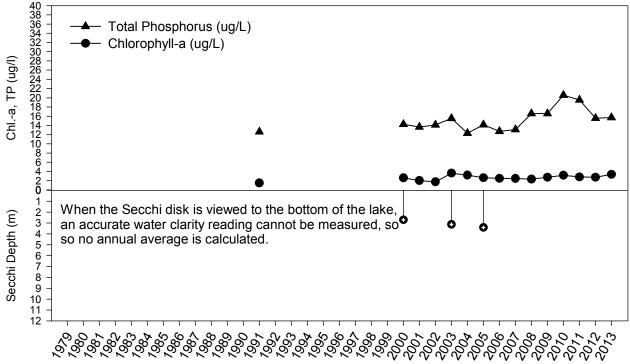

Runnemede is a small, warmwater lake.

62	acres
133	acres
13 ft.	(3.9 m)
13 ft.	(3.9 m)
	133 13 ft.

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	ا∕و <i>µ</i> 9/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Lake Runnemede

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1991	8		1.5	13	
1998	6				

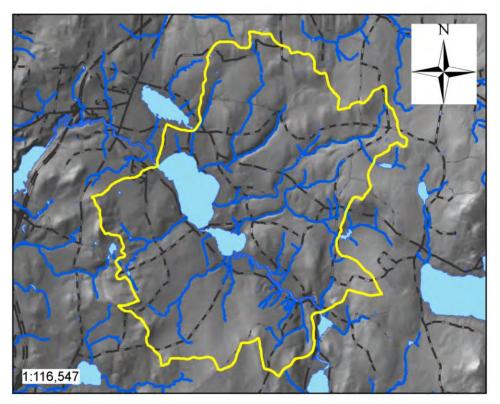
Annual Data								
	Days	Secchi	Chloro-a	Summer TP	Spring TP			
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)			
2000	16	2.7	2.6	14	19			
2001	19		2.0	14				
2002	19		1.7	14				
2003	17	3.1	3.6	16				
2004	16		3.2	12	_			
2005	18	3.4	2.6	14	_			
2006	16		2.5	13	_			
2007	15		2.5	13	_			
2008	17		2.3	17	20			
2009	15		2.7	17	_			
2010	13		3.2	21	_			
2011	12		2.8	20				
2012	11		2.7	16				
2013	11		3.4	16				

2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	11	3.1	3.1	3.2		
Chl-a (ug/l)	11	1.9	3.4	5.4		
Summer TP (ug/I)	11	14	16	19		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE SALEM


Derby, VT


Lay Monitors: Claire Roberts Paula Staples Former Lay Monitors: David Wood Bobbie Cummings Raymond Stabb Ted and Marni Surdy

Lake Salem is a large, warmwater lake.					
Lake Surface Area:	764	acres			
Drainage Basin Area	84,133	acres			
Maximum depth:	70 ft.	(21.3 m)			
Average Depth:	20 ft.	(6.1 m)			

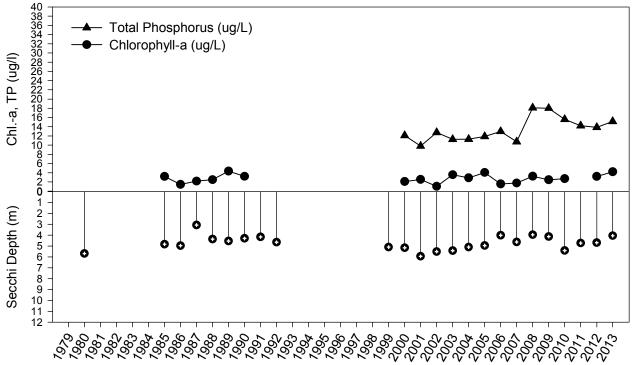
Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/1/وµ 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Salem

Annual Data


Annual Data

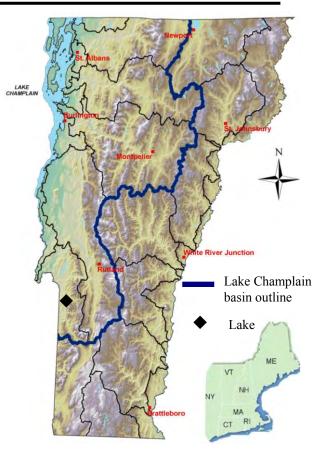
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1979	7				3.0
1980	8	5.7			10
1985	13	4.8	3.2		10
1986	13	5.0	1.5		11
1987	11	3.1	2.2		13
1988	12	4.4	2.5		
1989	12	4.5	4.4		
1990	12	4.3	3.2		
1991	10	4.2			
1992	12	4.6			
1999	9	5.1			9.8

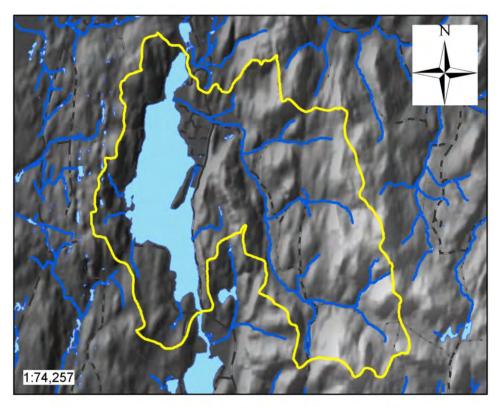
-						
	Vear	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
	i cai	Bampied	(111)	(ug/1)	(ug/1)	(ug/1)
	2000	9	5.2	2.1	12	11
	2001	10	5.9	2.5	9.8	
	2002	9	5.5	1.0	13	
_	2003	11	5.4	3.6	11	
_	2004	12	5.1	2.9	11	11
_	2005	11	5.0	4.0	12	
_	2006	12	4.0	1.6	13	
_	2007	10	4.6	1.8	11	13
_	2008	11	4.0	3.2	18	
_	2009	10	4.1	2.5	18	
_	2010	9	5.4	2.7	16	
_	2011	8	4.7		14	
_	2012	10	4.7	3.2	14	
_	2013	9	4.0	4.2	15	

2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	9	3.0	4.0	5.0		
Chl-a (ug/l)	9	2.6	4.2	8.4		
Summer TP (ug/ID	9	11	15	21		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LAKE ST. CATHERINE

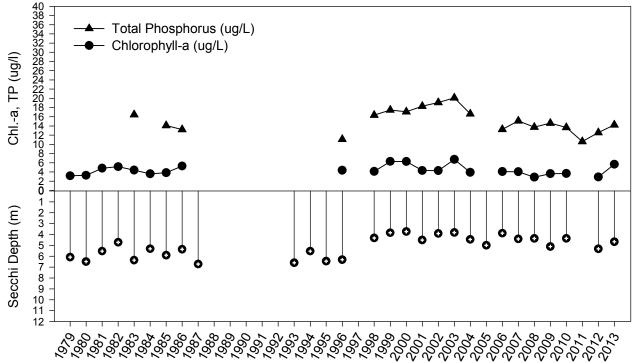

Poultney and Wells, VT


Lay Monitor: Mary Jo Teeter Former Lay Monitors: Phil Alden Harry Spindler Vincent Meyers

Lake St. Catherine is a large, coldwater lake.					
Lake Surface Area:	904	acres			
Drainage Basin Area	7,447	acres			
Maximum depth:	68 ft.	(19.5 m)			
Average Depth:	37 ft.	(10.7 m)			

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	/ / yy/ ا
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14


Lake outlined by its watershed

Lake St. Catherine

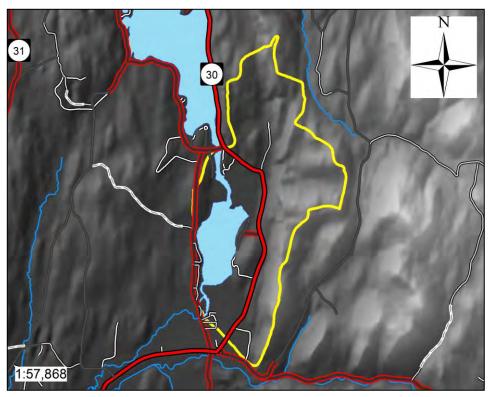
Annua	l Data						
	Days	Secch	i C	hloro-a	Summer 7	ГР	Spring TP
Year	Sampled	(m)	(ug/l)	(ug	;/l)	(ug/l)
1979	19	6.1		3.2			10
1980	14	6.5		3.3			12
1981	14	5.5		4.8			17
1982	13	4.7		5.1			19
1983	13	6.4		4.4		16	16
1984	13	5.3		3.6			15
1985	13	5.9		3.8		14	13
1986	13	5.4		5.3		13	12
1987	12	6.7					17
1993	13	6.6					
1994	12	5.5					10
1995	10	6.5					15
1996	13	6.3		4.4		11	16
1997	7						
1998	11	4.3		4.1		16	15
1999	12	3.9		6.3		17	15
2013	Summary	y					
Param	eter I	Days N	Ain	Mean	Max		
Secchi (10	3.3	4.7	6.0		
Chl-a (u	g/l)	10	3.6	5.7	6.7		
Summer	TP (ug/ID	9	13	14	16		

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	10	3.7	6.3	17	13
2001	11	4.5	4.3	18	9.8
2002	11	3.9	4.3	19	14
2003	11	3.8	6.7	20	
2004	10	4.5	3.9	17	14
2005	8	5.0			14
2006	10	3.9	4.1	13	17
2007	10	4.4	4.1	15	18
2008	9	4.4	2.9	14	12
2009	11	5.1	3.6	15	16
2010	11	4.4	3.7	14	
2011	8			11	
2012	11	5.3	2.9	13	13
2013	10	4.7	5.7	14	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

LITTLE LAKE of LAKE ST. CATHERINE

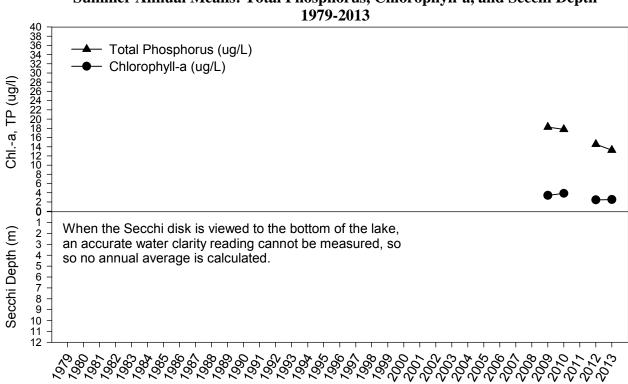
Poultney and Wells, VT


Lay Monitor: Mary Jo Teeter

Little Lake is a small, sh	allow, warm	water lake.
Lake Surface Area:	162	acres
Drainage Basin Area	8,989	acres
Maximum depth:	5ft.	(1.5 m)
Average Depth:	4ft.	(1.2 m)

Compared to other lakes, the trophic state is Eutrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / yy	ا/و <i>µ</i> 7.0×
<u>Mesotrophic</u>	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14



Lake outlined by its watershed

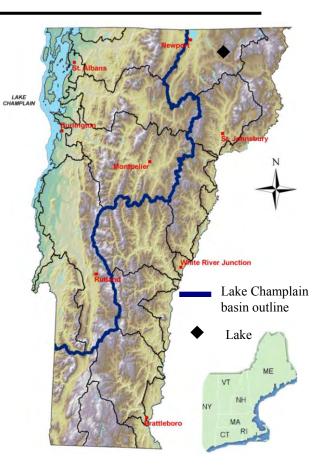
Little Lake

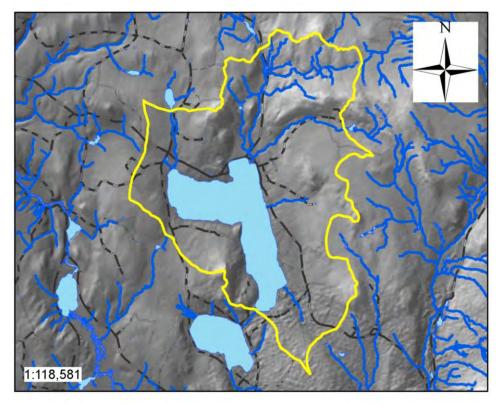
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2009	11		3.4	18	12
2010	11		3.9	18	
2011	7				
2012	10		2.5	15	12
2013	10		2.5	13	

2013 Summary						
Days	Min	Mean	Max			
10	1.5	1.6	1.8			
10	1.8	2.5	3.4			
10	12	13	15			
	10 10	10 1.5 10 1.8	10 1.5 1.6 10 1.8 2.5			

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth

SEYMOUR LAKE


Morgan and Charleston, VT


Lay Monitor: Tom Emery Former Lay Monitors: Joseph and Anna Puente Dan Barry Andrew Emery Robert Arnold Harold Kimball

Seymour Lake is a large,	deep, coldw	ater lake.
Lake Surface Area:	1,769	acres
Drainage Basin Area	12,920	acres
Maximum depth:	167 ft.	(50.9 m)
Average Depth:	70 ft.	(21.3 m)

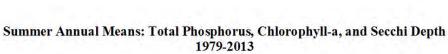
Compared to other lakes, the trophic state is Oligotrophic

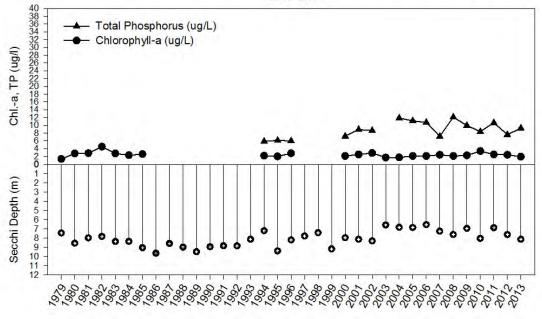
<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg/l	/ / 7.0 k
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Seymour Lake

Annual Data


Annual Data

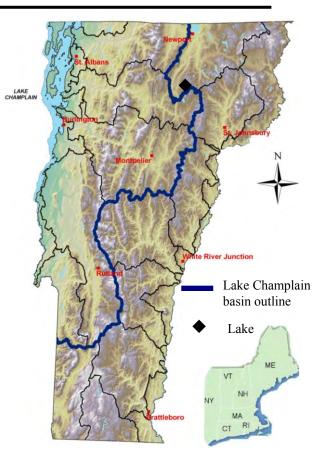

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	15	7.4	1.3		7.7
1980	13	8.5	2.8		8.7
1981	13	8.0	2.8		5.3
1982	13	7.8	4.5		10
1983	14	8.4	2.8		7.7
1984	13	8.3	2.3		8.3
1985	13	9.0	2.6		9.0
1986	12	9.6			7.7
1987	14	8.6			9.5
1988	13	9.0			
1989	12	9.5			
1990	14	8.9			
1991	13	8.8			
1992	12	8.8			
1993	13	8.1			
1994	13	7.2	2.2	5.9	6.1
1995	8	9.4	2.0	6.1	7.0
1996	8	8.2	2.8	6.0	
1997	13	7.8			
1998	11	7.4			6.0
1999	14	9.2			

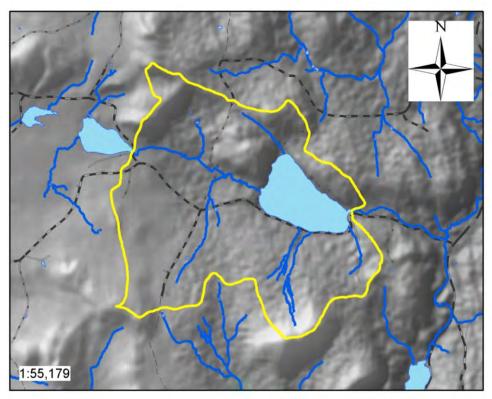
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
2000	11	8.0	2.1	7.2	9.9
2001	12	8.1	2.5	8.9	
2002	9	8.3	2.9	8.7	
2003	8	6.6	1.7		
2004	11	6.8	1.8	12	
2005	12	6.8	2.1	11	
2006	11	6.5	2.1	11	10
2007	10	7.2	2.4	7.2	11
2008	10	7.6	2.1	12	10
2009	10	6.9	2.3	10.0	10.0
2010	11	8.0	3.4	8.4	12
2011	10	6.9	2.5	11	
2012	10	7.6	2.4	7.6	7.9
2013	11	8.1	1.9	9.3	8.5

2013 Summary

Parameter	Days	Min	Mean	Max
Secchi (m)	10	6.2	8.1	9.5
Chl-a (ug/l)	11	1.2	1.9	2.6
Summer TP (ug/ID	10	6.3	9.3	13
Spring TP (ug/I)	1		8.5	

SHADOW LAKE


Glover, VT

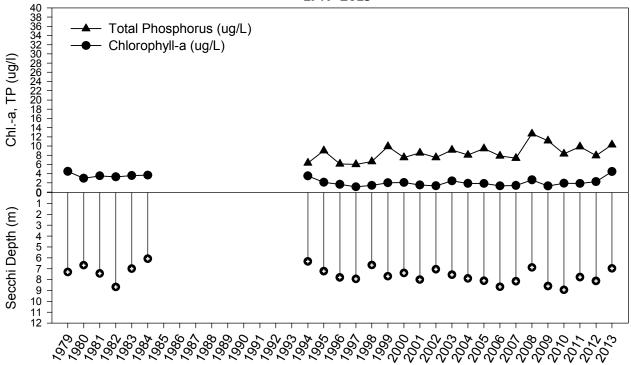

Lay Monitors: Sara and Larry Gluckman Former Lay Monitors: Susan Alexander Ed and Linda Zalenski

Shadow Lake is a small,	deep, coldw	ater lake.
Lake Surface Area:	210	acres
Drainage Basin Area	3,575	acres
Maximum depth:	139 ft.	(42.4 m)
Average Depth:	55 ft.	(16.8 m)

Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u>Oligotrophic</u>	> 5.5 meters	< 3.5 µg/l	<7.0 µg/1
Mesotrophic.	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Shadow Lake

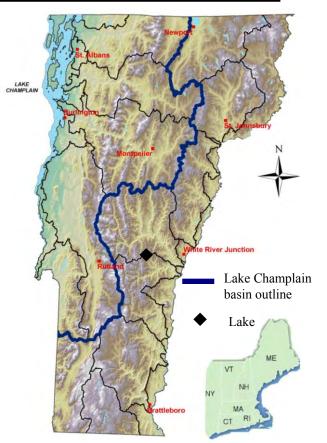
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1979	17	7.3	4.5		4.0
1980	14	6.7	3.0		5.0
1981	13	7.4	3.5		6.5
1982	13	8.7	3.3		5.5
1983	13	7.0	3.6		6.5
1984	9	6.1	3.7		5.5
1993	5				10
1994	9	6.3	3.5	6.3	
1995	10	7.2	2.1	9.0	
1996	10	7.8	1.7	6.1	
1997	9	7.9	1.1	6.0	
1998	8	6.7	1.4	6.6	
1999	10	7.7	2.0	9.9	9.4

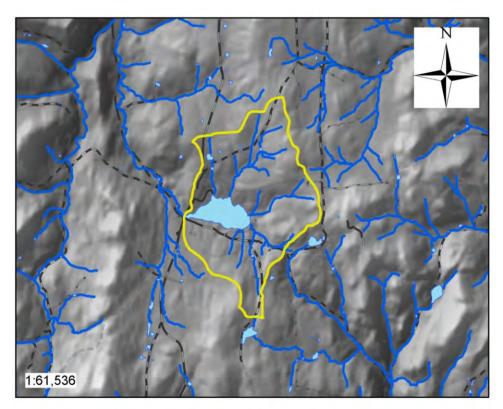
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	10	7.4	2.1	7.5	11
2001	10	8.0	1.5	8.5	5.5
2002	10	7.1	1.4	7.5	
2003	9	7.6	2.4	9.1	
2004	10	7.9	1.9	8.1	7.3
2005	9	8.1	1.9	9.5	
2006	9	8.7	1.3	7.9	
2007	10	8.2	1.4	7.4	11
2008	9	6.9	2.6	13	
2009	10	8.6	1.3	11	10
2010	9	8.9	1.9	8.3	9.3
2011	10	7.8	1.9	9.9	
2012	10	8.1	2.3	7.9	10.0
2013	9	7.0	4.5	10	

2013 Summary						
Parameter	Days	Min	Mean	Max		
Secchi (m)	9	5.5	7.0	9.5		
Chl-a (ug/l)	9	2.9	4.5	6.1		
Summer TP (ug/ID	9	7.7	10	12		

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

SILVER LAKE


Barnard, VT


Lay Monitors: Craig Hadden Former Lay Monitors: Lloyd and Susan Randolph Don Munroe Jack Frake George Roy

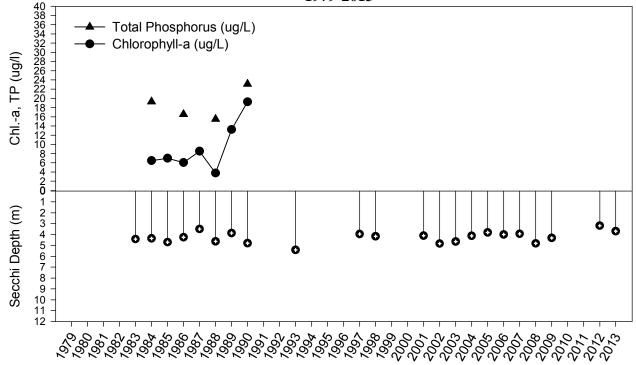
Silver Lake is a small, warmwater lake.				
Lake Surface Area:	84	acres		
Drainage Basin Area	1,091	acres		
Maximum depth:	32 ft.	(9.8 m)		
Average Depth:	16 ft.	(4.9 m)		

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y	/ / yy/ ا
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Silver Lake


Annual Data

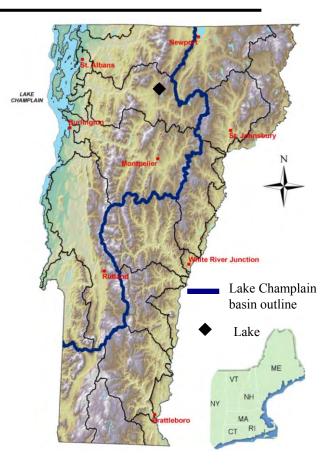
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1983	10	4.4			21
1984	11	4.4	6.5	19	16
1985	9	4.7	7.0		16
1986	9	4.3	6.1	17	13
1987	10	3.5	8.5		8.0
1988	8	4.6	3.8	16	11
1989	8	3.9	13		20
1990	10	4.8	19	23	
1991	5				
1993	9	5.4			
1994	4				
1997	14	4.0			11
1998	8	4.2			
1999	5				

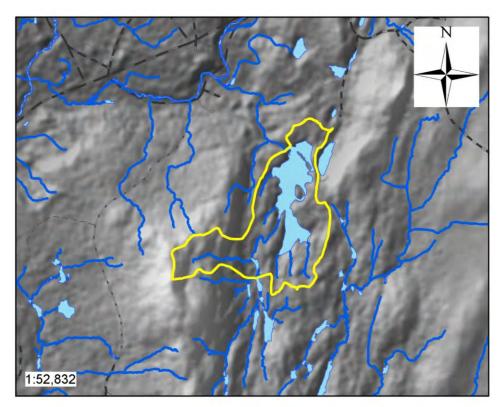
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	6				
2001	9	4.1			10
2002	8	4.8			
2003	9	4.7			
2004	8	4.1			
2005	9	3.8			
2006	9	4.0			17
2007	10	3.9			
2008	9	4.8			
2009	9	4.3			
2011	6				11
2012	12	3.2			
2013	11	3.7			

2013 Summary					
Paramet	ter	Days	Min	Mean	Max
Secchi (m)	11	3.5	3.7	4.0

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

SOUTH POND


Eden, VT


Lay Monitors: Chandler and Madonna Parker

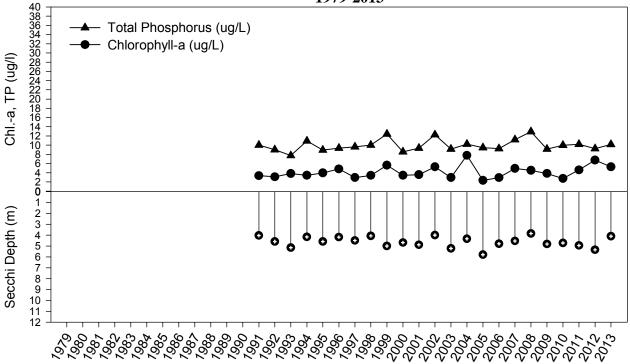
South Pond is a moderately sized, warmwater lake.Lake Surface Area:103Drainage Basin Area1,382Acres1,382Maximum depth:66 ft. (20.1 m)

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y/	ا∕وµ(7.0×
Mesotrophic	3.0 - 5.5	3.5-7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

South Pond


Annual Data

	Days	Secchi	Chloro-a	Summer TP	Spring TP
 Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1991	11	4.0	3.4	10	
1992	13	4.6	3.1	9.0	
 1993	13	5.2	3.8	7.7	
 1994	13	4.2	3.4	11	
 1995	13	4.6	4.0	8.9	
 1996	12	4.2	4.8	9.3	
 1997	13	4.5	3.0	9.6	
1998	11	4.1	3.4	10	6.7
1999	12	5.0	5.6	12	8.7

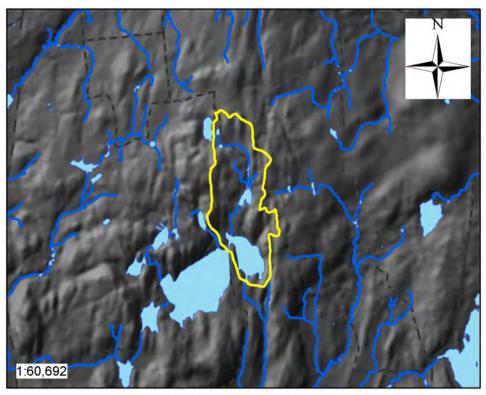
A	nnua	l Data				
		Days	Secchi	Chloro-a	Summer TP	Spring TP
	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
	2000	13	4.7	3.4	8.5	8.4
	2001	12	4.9	3.6	9.3	
	2002	12	4.0	5.3	12	
	2003	13	5.2	3.0	9.2	
	2004	12	4.3	7.8	10	
	2005	11	5.8	2.3	9.5	
	2006	11	4.8	2.9	9.2	
	2007	12	4.5	4.9	11	13
	2008	12	3.8	4.5	13	
	2009	12	4.8	3.8	9.1	
	2010	12	4.7	2.8	10.0	
	2011	12	4.9	4.6	10	10
	2012	12	5.3	6.7	9.2	
	2013	10	4.1	5.3	10	

2013 Summary					
Parameter	Days	Min	Mean	Max	
Secchi (m)	10	2.8	4.1	5.5	
Chl-a (ug/l)	10	1.6	5.3	12	
Summer TP (ug/ID	10	7.5	10	12	

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

SUNRISE LAKE


Benson and Orwell, VT


Lay Monitors: Richard and Sherry Moesch Former Lay Monitors: Dolores and Nick Mobilio

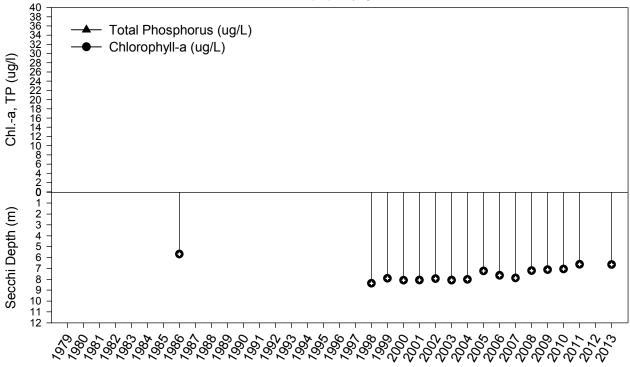
Sunrise Lake is a small, warmwater lake.					
Lake Surface Area:	57	acres			
Drainage Basin Area	1,775	acres			
Maximum depth:	43 ft.	(13.1 m)			
Average Depth:	26 ft.	(7.9 m)			

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphoru
<u> Oligotrophic</u>	> 5.5 meters	/ / e/l	/ / q/l
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Sunrise Lake


Annual Data

	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1986	9	5.7			14
1998	12	8.4			12
1999	12	7.9			

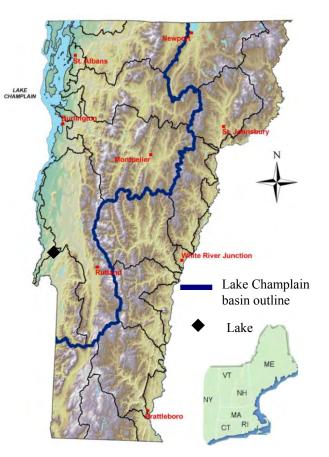
Annua	al Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	11	8.1			
2001	14	8.1			
2002	12	7.9			11
2003	10	8.1			
2004	10	8.0			14
2005	10	7.2			
2006	11	7.6			14
2007	10	7.9			
2008	10	7.2			
2009	10	7.1			
2010	10	7.1			
2011	9	6.6			15
2013	8	6.7			

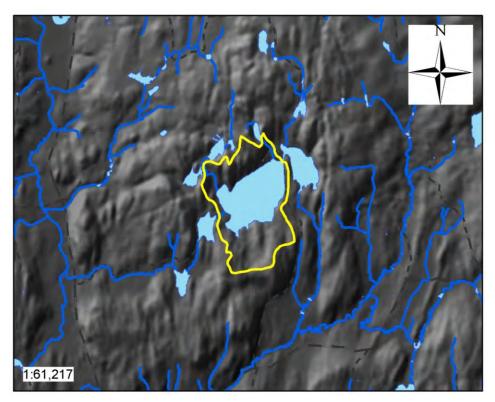
Parameter	Days	Min	Mean	Max
Secchi (m)	8	5.0	6.7	9.2

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

SUNSET LAKE

Benson and Orwell, VT


Lay Monitors: Jamie Longtin and Harry Saxon


Sunset Lake is a small, deep, coldwater lake.

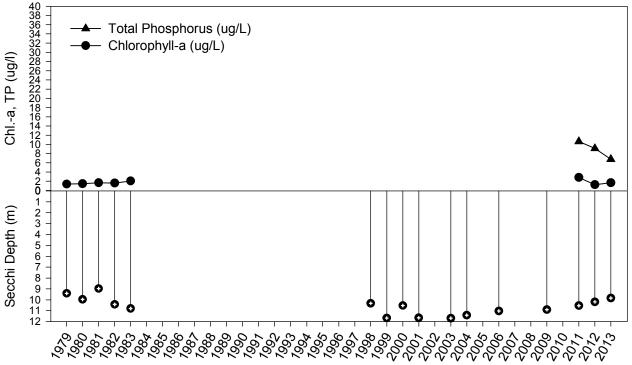
Lake Surface Area:	202	acres
Drainage Basin Area	1,192	acres
Maximum depth:	118 ft.	(36 m)
Average depth:	50 ft.	(15.0 m)

Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5µg/l	<7.0 µg/1
Mesotrophic.	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Sunset Lake


Annual Data

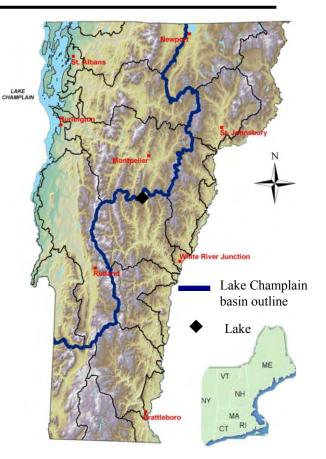
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)
1979	19	9.4	1.4		8.0
1980	16	10.0	1.5		7.0
1981	13	9.0	1.7		8.0
1982	13	10	1.6		10
1983	14	11	2.1		4.5
1998	11	10			9.5
1999	13	12			

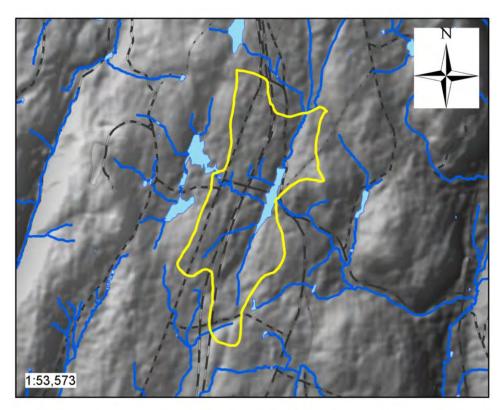
Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	13	11			
2001	13	12			
2002	11	14			
2003	11	12			
2004	13	11			7.3
2005	13	12			
2006	12	11			6.1
2008	11	13			
2009	12	11			
2010	10	13			
2011	11	11	2.8	11	6.8
2012	9	10	1.3	9.1	
2013	10	9.9	1.7	6.8	

2013 Summary							
Parameter	Davs	Min	Mean	Max			
Secchi (m)	10	8.2	9.9	12			
Chl-a (ug/l)	10	1.3	1.7	2.1			
Summer TP (ug/ID	10	5.7	6.8	8.2			
Summer TP (ug/ID	10	5.7	6.8	8.2			

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

SUNSET LAKE

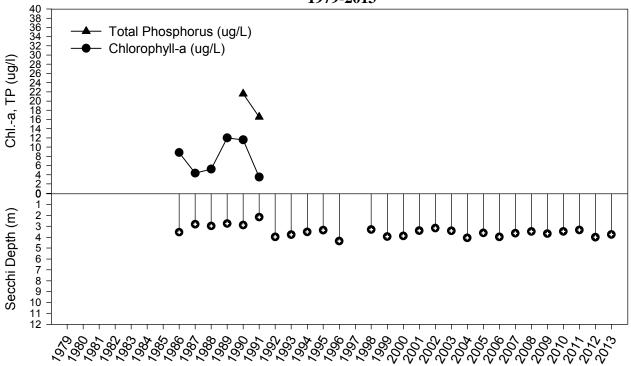

Brookfield, VT


Lay Monitors: Ed Koren Former Lay Monitors: Rachel Brownstein Jack Russel

Sunset Lake is a small, narrow lake.					
Lake Surface Area:	25	acres			
Drainage Basin Area	2,664	acres			
Maximum depth:	32 ft.	(9.8 m)			

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / y/	ا/و <i>µ</i> 0.7>
Mesotrophic	3.0 - 5.5	3.5-7.0	7.0-14
Eutrophic.	< 3.0	>7.0	> 14



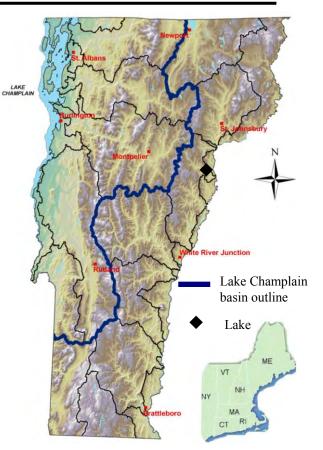
Lake outlined by its watershed

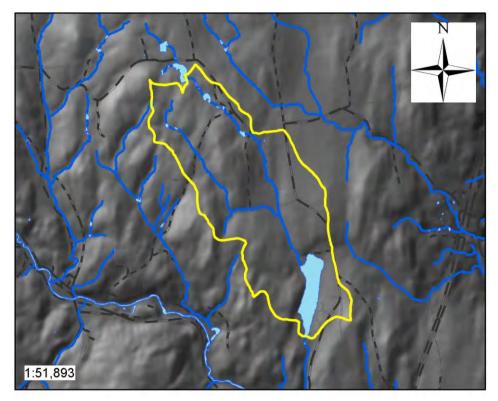
Sunset Lake

Annual	l Data					Annua	l Data				
Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring TP (ug/l)	Year	Days Sampled	Secchi (m)	Chloro-a (ug/l)	Summer TP (ug/l)	Spring Tl (ug/l
1986	9	3.5	8.8			2000	12	3.9			
1987	9	2.8	4.3		8.5	2001	11	3.4			8.2
1988	8	3.0	5.2			2002	12	3.2			
1989	8	2.7	12		13	2003	13	3.4			
1990	10	2.9	12	22	8.5	2004	11	4.1			
1991	9	2.2	3.5	17	8.5	2005	12	3.6			
1992	8	4.0				2006	13	4.0			14
1993	14	3.8				2007	13	3.6			
1994	13	3.5				2008	12	3.5			
1995	12	3.4				2009	12	3.7			
1996	9	4.4				2010	14	3.5			
1997	7					2011	14	3.3			11
1998	11	3.3			5.8	2012	13	4.0			
1999	9	4.0				2013	13	3.8			
2013	Summary	7		Man		2013	13	3.8			
Paramo Secchi (I		avs Mi 13 2.		<u>Max</u> 4.8							

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

TICKLENAKED POND


Ryegate, VT

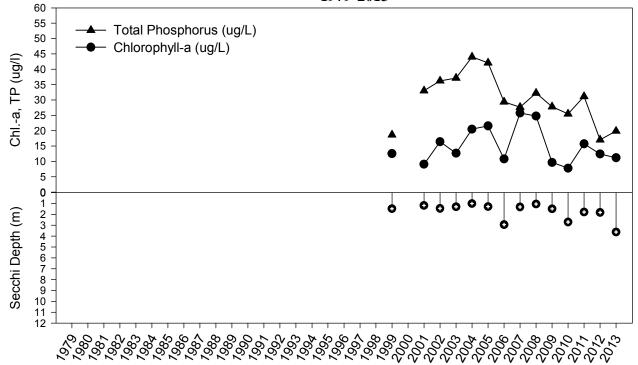

Lay Monitors: Peter and Mary Wood Former Lay Monitors: Polly and Chuck Hebble Kristine Elder

Ticklenaked is a small, warm water pond.						
Lake Surface Area:	54	acres				
Drainage Basin Area	1,444	acres				
Maximum depth:	51 ft.	(15.5 m)				
Average depth:	16 ft.	(4.9 m)				

Compared to other lakes, the trophic state is Eutrophic

Trophic State	Average Secchi Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg∕ l	//و <i>µ</i> 7.0
Mesotrophic.	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed


Ticklenaked Pond

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1999	8	1.5	13	19	54

Annual Data Summer TP Days Secchi Chloro-a Spring TP Year Sampled (m) (ug/l) (ug/l) (ug/l) 1.2 9.1 1.5 1.3 1.0 1.3 2.9 1.3 1.0 1.5 9.7 2.7 7.8 1.8 1.8 3.6

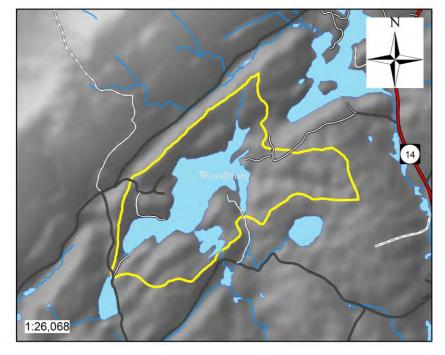
2013 Summary							
Parameter	Days	Min	Mean	Max			
Secchi (m)	9	2.0	3.6	6.6			
Chl-a (ug/l)	9	3.7	11	18			
Summer TP (ug/ID	9	16	20	26			
Spring TP (ug/I)	1		54				
-							

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

VALLEY LAKE

Woodbury, VT

Lay Monitors: Dave and Meg Bawtinheimer Former Lay Monitors: Arthur Orlandi Susan Jennings Douglas McConnell Nelson and Gene Perry


Lake Surface Area:	88	acres
Drainage Basin Area:	472	acres
Maximum depth:	70 ft.	(21 m)
Average depth:	24 ft.	(7.3 m)

Compared to other lakes, the trophic state is Mesotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	/ / e/	//eµ
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0-14
Eutrophic	< 3.0	>7.0	> 14

Lake Champlain **Basin Boundary**

Lake outlined by its watershed

Valley Lake

Annua	l Data				
	Days	Secchi	Chloro-a	Summer TP	Spring TP
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
1980	11	7.2	7.1		15
1981	11	6.7	6.9		28
1982	13	6.8	8.5		33
1983	12	7.6	6.7		35
1984	13	6.0	4.4		34
1985	8	4.7			66
1986	9	6.0			
1987	7				
1988	9	7.3			
1989	11	5.3			
1991	6				
1998	6				
1999	12	6.9			
2013	Summary				

Parameter

Secchi (m)

Chl-a (ug/l)

Summer TP (ug/ID

Davs

10

10

9

Min

5.4

5.1

16

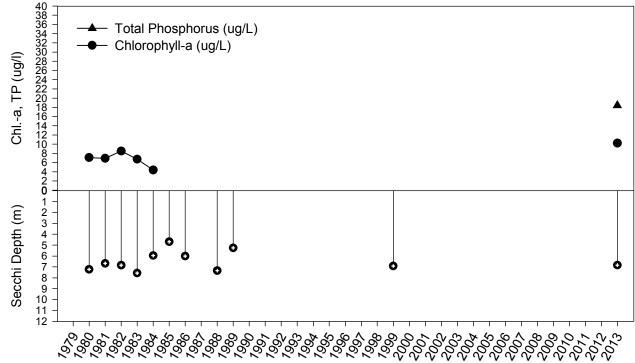
Mean

6.8

10

18

Max 8.3


39

23

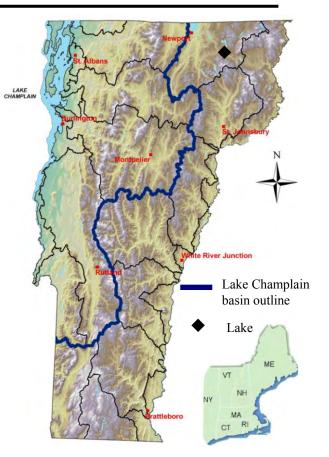
Annual DataDaysSecchiChloro-aSummer TPSpring TPYearSampled(m)(ug/l)(ug/l)(ug/l)2013106.81018

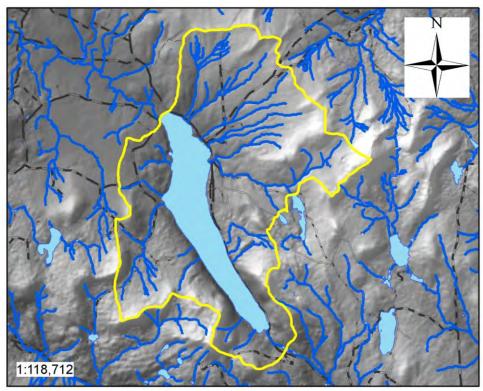
Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth	1

1979-2013

LAKE WILLOUGHBY

Westmore, VT


Lay Monitor: John Alexander


Former Lay Monitors: Roy Hill Ethan Swift

Lake Willoughby is a large, deep, cold water lake.Lake Surface Area:1,687Drainage Basin Area12,256Maximum depth:308 ft.Average depth:140 ft.

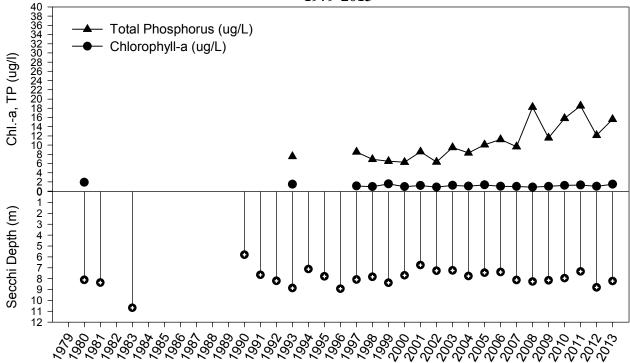
Compared to other lakes, the trophic state is Oligotrophic

<u>Trophic</u> State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5 µg/l	<7.0 µg/1
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	>7.0	> 14

Lake outlined by its watershed

Lake Willoughby

Annua	ıl Data					Annua	l Data		
	Days	Secchi	Chloro-a	Summer TP	Spring TP		Days	Secchi	Chloro-a
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)	Year	Sampled	(m)	(ug/l)
1980	13	8.1	1.9		3.0	2000	10	7.7	1.0
1981	11	8.4			4.7	2001	9	6.8	1.2
1983	11	11			5.0	2002	11	7.3	0.9
1990	10	5.8				2003	10	7.3	1.3
1991	12	7.6				2004	15	7.8	1.1
1992	13	8.2			5.0	2005	12	7.5	1.4
1993	12	8.9	1.5	7.5		2006	10	7.4	1.1
1994	12	7.1				2007	13	8.1	1.0
1995	12	7.8				2008	11	8.3	0.9
1996	15	8.9				2009	13	8.2	1.0
1997	16	8.1	1.1	8.5	3.7	2010	14	8.0	1.2
1998	18	7.8	1.0	6.9	3.3	2011	13	7.3	1.3
1999	10	8.4	1.6	6.5		2012	13	8.8	1.1


2013 Summary							
Parameter	Days	Min	Mean	Max			
Secchi (m)	11	6.0	8.2	11			
Chl-a (ug/l)	11	0.5	1.5	2.9			
Summer TP (ug/l)	11	11	16	26			

					0
Year	Sampled	(m)	(ug/l)	(ug/l)	(ug/l)
2000	10	7.7	1.0	6.3	
2001	9	6.8	1.2	8.6	
2002	11	7.3	0.9	6.3	
2003	10	7.3	1.3	9.5	5.0
2004	15	7.8	1.1	8.3	5.7
2005	12	7.5	1.4	10	
2006	10	7.4	1.1	11	7.4
2007	13	8.1	1.0	9.7	9.0
2008	11	8.3	0.9	18	6.2
2009	13	8.2	1.0	12	6.5
2010	14	8.0	1.2	16	5.3
2011	13	7.3	1.3	19	
2012	13	8.8	1.1	12	5.8
2013	11	8.2	1.5	16	

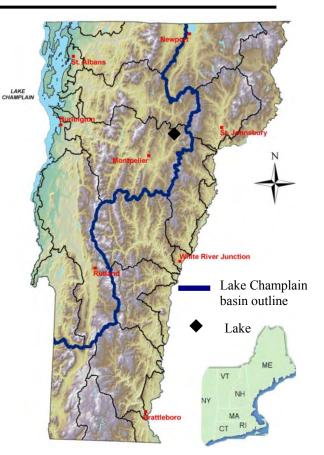
Summer TP

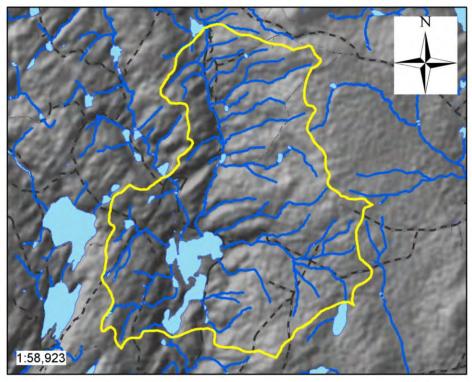
Spring TP

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

WOODBURY LAKE

Woodbury, VT

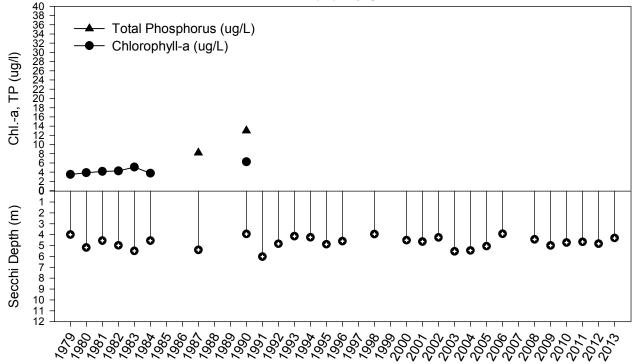

Lay Monitor: Bob and Susan Martin


Woodbury Lake is a moderately sized, warm water lake composed of three basins separated by shallow channels. It is also called Sabin Pond.

142	acres
9,014	acres
58 ft.	(17.6 m)
18 ft.	(5.5 m)
	9,014 58 ft.

Compared to other lakes, the trophic state is Mesotrophic

Trophic State	Average <u>Secchi</u> Clarity	Ave. Chlorophyll-a	Ave. Total Phosphorus
<u> Oligotrophic</u>	> 5.5 meters	< 3.5µg/l	ا/و <i>ر</i> 7.0×
Mesotrophic	3.0 - 5.5	3.5 - 7.0	7.0 -14
Eutrophic	< 3.0	> 7.0	> 14



Lake outlined by its watershed

Woodbury Lake

nnual Da	ta					Annua	l Data				
Γ	Days	Secchi	Chloro-a	Summer TP	Spring TP		Days	Secchi	Chloro-a	Summer TP	Spring T
Year Samp	pled	(m)	(ug/l)	(ug/l)	(ug/l)	Year	Sampled	(m)	(ug/l)	(ug/l)	(ug
1979	16	4.0	3.5		6.7	2000	10	4.5			
1980	11	5.2	3.9		5.7	2001	9	4.6			
1981	8	4.6	4.1		8.0	2002	10	4.3			1
1982	10	5.0	4.3		8.7	2003	11	5.5			
1983	9	5.5	5.1		10	2004	9	5.5			1
1984	9	4.6	3.8		8.7	2005	10	5.1			9.
1985	3				9.7	2006	11	3.9			1
1986	6				9.3	2007	10	4.2			1
1987	10	5.4		8.2	12	2008	9	4.4			1
1988	6					2009	8	5.0			1
1989	7					2010	11	4.7			1
1990	10	4.0	6.2	13		2011	12	4.7			
1991	10	6.0				2012	10	4.8			1
1992	11	4.9				2013	11	4.3			
1993	10	4.1									
1994	9	4.3									
1995	10	4.9									
1996	9	4.6			11						
	8	4.0									

Summer Annual Means: Total Phosphorus, Chlorophyll-a, and Secchi Depth 1979-2013

1979 - 2013	
- Participation,	Inland Lakes
Appendix 1	

5013 5013	SP		ш		S	1	- I -	S	S	- I -	S		S	တ	- L -	S	S	1	S		S		S	S	- L	S	S	S	1	S	S			S	SP	1	ΒР	S	S
0,000	1		В	ı	S	1	1	S	S	1	S			S		S	S	1	S	-	S	-	S	S		SP	S	S	1	S	s S		1	S	s S	-	SE		S
1102			В	1	s S	1		S	S	1	S			s S		S	S		SP	-	S		s S	s S	1	s S		S	1	s S	s S			S	S		S		S
5010			В		s, S	-		S	S		S S			s, S		S	S		s S	-	S	-	s, S	s, S		-	S	S		S	s, S				S	S	s		s, S
5002		-	В		е, Ю	1	_	s	s	-	s, S			s, S		s S	-	1	s; S	-	s		s; S	s; S	1	_	s	s		s; S	s, S	-		s	s	s	-		s, S
8002			ВР	1	— В	1	1	S	S	1	S S			s, S		S	-		s S	-	S	-	S	s S		-	S	S	1	S	s, S		1	S	S	S	S	s, S	s S
2002		-	В	1	— В	1		S	S	1	s, S			s, S		S	S		s S	-	S	-	s, S	s, S	1			S	1	s, S	s, S		1	s	s			s, S	S S
2002			В	1	— В	1		S	S		S			s S		S	S		S		S		s S	s S	1			S	ı	s S	s S		1		S	1		S	s S
5002		1	В	ı	В	1	1	S	S		S		S	1		S	S		S	1	S	1	ш	S			1	S	В	S	Ш		1		S	1	S		S
5004		1	В	S	В	1	1	S	S		S		S	1		S	S		S	1	В	1	ш	S			1	S	ı	S			1	S	S	1	В		S
5003		1	В	S	В	1	1	S	S	1	S	SP	S	1	1	S	S	1	S	1		1		S	1		S	S	В	S			ı	S	S	1	В	S	S
2002		1	В	S	В	1	1	S	S	ı			S		ı	S	S	1	S	1		ı	В	S	1		S	S	В	S		ı	ı	S	S	1	В	S	S
1002		1	В	S	В	ı	ı	S	S	ı	S	S	S	1	ı	S	S	ı	S	1		ı	В	S	1		SP	S	В	S			ı	S	S	1	В	S	SP
5000		ı	В	S	В	ī	ı	S	S	ı	S	Т	S	1	ı	S	S	ı	S	1		T	В	S	S		s	S	В	S		1	ı	S	S	1	В		S
6661	ı	•	В	S	В	ı	1	S	S	ı	S	1	S	,	ı	S	S	ı	S	В	•	ı	В	S	S	•	S	S	В				1	S	S	•	В	В	S
866 L	•	В	ВΡ	В	В	ī	ı	S	S	ΒР	S	ī	S	ı	ı	S	S	ı	S	В		ī	SР	S	S		S	S	В			1	ΒР	S	S	1	ı	В	S
266 l	·	-	В	В	В	ī	ı	S	S		S	ī	S	ı	ı	В	S	ı	S	В		ī	S	S	SР	S	В	S	В			ı	ı	S	S	ı	ı	В	S
966 L	·	ı	В	ī	В	ī	ı	S	S	ΒР	ш	т	S	ı	ı	S	S	ı	В	В		ī	S	S	ī	S	В	В	В	•	•	·	S	S	ı	ı	ı	В	В
3661	·	ı	В	ı	В	ī	ı	S	S	SP		ı.	S	ı	ı	S	S	ı	В	S	ı	ī	S	S	ı	S	В	В	В	ı	ı	ı	S	S	ı	ı	ı	В	В
1694	·	ı	S	I	В	ı	ı	S	S	SP	•	ı.	ა	ı	ı	S	S	ı	В	S	•	ī	S	ш	ı	•	S	В	Ю	•		ı	S	В	ī	SP	ı	В	В
1693	·	ı	В	I	В	ı	ı	S	В	S	•	ı.	ა	ı	ı	ı	S	ı	В	S	•	ī	S	ш	ı	•	S	В	Ю	•		ı	S	ΒР	ī	SP	ı	В	В
1992	ı	-	В	ı	В	SP	ı	S	В	S	I.	Т	В	ı	ı	ı	ı	ı	ı	S	•	ВΡ	S	В	ī	-	S	В	Ю	S	-	1	В	В	ı	SP	ı	В	В
1661	ı	ı	ВΡ	I	В	S	I	S	В	SP	1	Т	S	ı	ı	I	I	I	ı	S	ı	ВΡ	S	В	ı	•	S	В	SP	SP	-	ı	SP	В	I	SP	I	S	В
066 L	ı.	ı	ВΡ	I	В	S	Т	S	ı	S	•	I.	S	ı	ı	ı	-	Т	ı	S	ı	S	ЧS	ΒР	ı	•	S	В	ı	S	-	-	S	В	ı	S	I	S	•
686 l	ŀ	თ	ВΡ	ı	ш	ī	ч	S	ı	ı	•	i.	ი	ı	ı	ı	ı	ч	ı	ı	ı	S	S	ш	ı	ı	S	В	ı	ı	ı	ı	S	Ю	ı	ı	ı	S	•
886 l	ı.	თ	В	ı	ш	ı	ı	S	ı	ı		ı	თ	ı	ა	ı	ı	ı	ı	ı	ı	ı	ı	S	ı	•	S	В	ı	•	•	ı	ı	S	ı	ı	S	S	'
286 l	١	თ	ВΡ	I	ш	ı	S	S	ı	ı	1	1	١	ı	S	ı	ı	ı	ი	ı	ı	ı	ı	S	ı	В	S	В	ı	ı	ı	ш	ı	S	ı	ı	S	S	SP
986 l	٢	თ	В	ı	В	1	S	S	S	ı	•	1	١	١	S	ı	1	S	S	1	S	1	'	S	'	В	S	В	ı	'	'	Ш	ı	S	ı	1	S		S
1982	٢	S	В	ı	В	ı	S	S	S	ı	•	'	თ	١	S	ı	١	S	S	١	S	ı	•	S	ı	S	S	S	ı	•	•	Ш	ı	S	•	١	S		SP
1984	٢	თ	S	ı	В	ı	S	S	S	ı	•	1	١	١	S	ı	ı	S	S	ı	S	ı	ı	S	ı	S	S	S	ı	١	1	ВР	ı	S	·	ı			S
1983			S	ı	Ш	T			S	ı	'		ა	'	S	ı	'	S	1	'	S	'	'	ш	'			S	S	•	'	В	ı	•	'	'	SP	S	
1985			S	T	В		В	SP	S	ı	1		S	'	'	ı	-	S	S	-	В	1	'	'	'			S	ВР	'	'	В	ı	•	'	-		S	
1981			S	I	В	I		_	S	I	•		S	'	ı	I	1	I	ı	1	S	1	1	1	1	SP		S	ı	-	1	1	В	1	1	1		S	
0861	'		S	ı	S	1			S	I	•	'	S	'	1	I	1	1	В	1	S	1	'	'	1			S	ı	o BP	•	1	В	1	•	1		S	
6261	'	1	S	I	S	1	ВР	S	ВР	I	•	'	'	'	ı	I	1	1	В	1	В	1	1	1	1	S	1	S	ı	ВР	'	1	В	1	1	В	ВР	В	S
Lake	Amherst	Arrowhead Mountain	Beebe	Bliss	Bomoseen	Buck	Burr	Carmi	Caspian	Cedar (Monkton)	Chipman	Colchester	Cole	Coles	Crystal	Curtis	Danby	Derby	Dunmore	East Long	Echo (Charleston)	Echo	Eden	Elfin	Elligo	Elmore	Fairfield	Fairlee	Fern	Forest (Nelson)	Fosters	Glen	Great Averill	Great Hosmer	Green River	Greenwood	Groton	Halls	Harvey's

1979 - 2013	
- Participation,	Inland Lakes
Appendix 1	

2013	ВΡ	ı	S	S	В	S	S	ı	ı	•	т	S	ı	SP	ı	ı	S	S	S	S	S	ı	S	ı	S	S	ı	В	ı	S	S	S	S	S	S	S	ı	ш	S
2012		1	S	S	В	S	S	ı		•	ı	S	ı	S			S	S	S	S	S	ı	S	1	S	S	ı	ı	ı	S	S	S	S	S	S	S	ı	В	S
1102	ı	·	ı	S	В	S	S	ı	ı		1	S	ı	S	ı	ı	S	ı	S	ī	S	ī	S	•	S	S	ı	В	ı	S	S	S	S	S	S	S	ı.	В	S
2010	ı	ı	S	S	В	S	S	ı	ı	S	ı.	S	ı	S	ī	ı	S	ī	S	т	S	т	S	ı	S	S	ı	В	ı	S	S	S	S	S	S	S	•	ı	S
5009	ı	ı	ı	S	В	S		ı	ı	S	ı	S	ı	S	ı	ı	S	ı	S	ı	S	ı	S	ı	S	S	ı	В	ı	S	S	S	S	S	S	S	ı	В	S
2008	ı	ı	-	S	В	S		ı	I	S	ı	S	ı	S	S	I	SP	I	S	ī	S	ī	S	ı	S	S	ı	ī	ı	S	S	S	S	S	S	S	ı	В	S
2002	ı	ı	-	В	В	S		ı	ı	-	I	S	ı	S	S	1	S	ı	S	ī	S	ī	S	ı	S	•	ı	ī	ı	S	S	S	S	S	S	S	ı	В	S
9002	ı	ı	ı	ı	В	S		ı	ı	•	ა	S	ı	S	SP	ı	ı	ı	ა	ī	ა	ī	S		S	ш	ı	ī	ı	S	S	S	S	S	S	S	ı	ш	S
2002	ı	ı	•	Ю	В	S		ı	ı	•	ı	S	ı	S	S	ı	ı	S	S	ı	ა	ı	S	SP	S	ш	ı	В	ı	S	В	S	В	S	S	S	ı	ш	S
2004	ı	1	1	Ш	В	S		ı	1	•	S	S	ı	S	'	١	١	В	S	Т	S	Т	1	S	S	В	ı	В	ı	S	1	S	S	S	S	S	١	ш	S
2003	ı	١	1	В	В	В		В	SP	•	S	S	I	T	1	ı	1	1	S	Т	S	Т	١	١	S	В	ı	В	I	S	'	S	S	S	S	S	ı	Ш	S
2002	'	'	1	В	В	В		В	SP	'	S	S	ı	1	'	1	1	'	S	T	S	T	'	'	S	В	١	T	ı	S	•	S	S	S	S	S	'	В	S
1002	1	1	•	В		В		В	S	•		S	I	1	1	S	1	1	S	S	S	T	S	1	S	В	ı	T	I	1	'	S	S	S	S	S			S
2000	1	1	1	B	BP	В		I	S	•	S	S	I	1	1	S	1	1	S	1	S	1	S	1	S	1	ı	В	I	1	1	S	S	S	S			о ВР	S
666 L	1	1	-	В	'	1		I	S	•	В	S	I	1	'	S	1	'	S	1	S	1	S	1	S	'	ı	В	'	1	'	-	S	В		S	1	ш	S
8661	'	В	•	B	'	'		1	S	•	В	S	1	'	'	S	'	'	S	1	S	1	S	'	S	'	'		BP	'	'	SP	S c	'	В	S	'		S
2661	1	B	-	B	-	-			S	-	1	S	1	S	'	'	-	'	S	1	Ш	1	S	'	S	1	1	1	В	'	'	'	SP ('	B		1		S
9661		8 8		SB	BB	- В			s s	-	· ·	SS	'	s s	-	s s	-	'	B	'	י ג	'	'	'	s s	•		'	B BP	'	' -	-	B S	-	s s		'		s s
9661	•	BB	•	s S	_	B		'	-	-	'	s S	' -	s S	-	s S	-	-	S	'	s S	В	•	В	s S	•	•	'	В	-	' -		B		s S	s S	'	~	s
1694	•	В	•	s S	В	B		•			· ·	s S	•	s	•	-	B	•	s S	•	s S	-		В	s, S	•	•	•	В	-	•		B		B	BP (s
2661		В		s	В	-		1	1		1	S	1	1	1	1	BP	1	SP	1	1	В			В		В	1	В	1		1	-	В	В	ш ,			S
1661	1	ВΡ		S	1	1	_	ı	1	-	1	S	ı	S	1	1	SP E		s S	1	S	В		В	S	1	S	1	ΒР	В	•	S	1	В	В	1	S	SP	S
0661	1	В	ı	S	В	ı		ı	ı		ı	S	ı	S	ı	ı	SP (ı	S	ı	S	В		1	S		ı	ı	В	ı	1	ı	ı	S	В	ı	S		•
686 L	ı	В	ı	S	В	ΒР		ı	ı	•	ī	S	ı	S	ı	ı	SP	ı	S	ī	ı	ВΡ	·	S	S	·	ı	S	В	ı	ı	ı	ı	S	В	ī	S	S	•
886 L	·	В	•	S	В			ı	ı	•	ı	ı	ı	S	ı	ı	S	ı	S	ī	ı	В	·	S	S	S	ı	S	SP	ı	•	ı	ı	S	В	ī	S	S	1
7891	ı	В	ı	S	В	S		ı	ı	•	S	ı	ı	S	ı	ı	S	ı	S	ī	ı	S	ı	S	S	S	ı	S	S	ı	·	ı	В	S	В	ī	S	S	-
986 l	ı	ı	-	S	В	S		ı	ı	•	S	ı	SP	S	ı	S	S	ı	S	ı	ı	S	ı	SP	S	S	ı	S	S	ı	ı	ı	S	S	В	ı	S	S	•
1982	ı	В	-	S	S	S		ı	ı	-	S			S	ı	S	S	ı	S	I.	ı	S	-	•••	S	S	•	I.	S	ı	1	ı	S	S	S	I.	ı.	S	1
1984	ı	S	•	S	S			ı	ı	•	S	ı	SP	ı	ı	S	ı		S	ı		S	·	SP	S	S	ı	ВΡ	S	S	ı	ı	S	ı	S	S	ı	ა	•
1983	'	S		S	-	SP		ı	'	•	S	ı	S	'		S	'	'	SP	1		SP	'	SP		ш	ı			S	'	'	S	'	S		'	ш	'
1985		S		S		В		ı	ı	1	ı	ı	S	ı		S	ı		S	ı		SP	•		S	ı	ı	ı	•••	S	ı		S	ı	S		ı	ı	1
1981		S		S		o SP		ı	'	'	ı	В	S	1	1	S	•		S	T		S	'	SP	S	ı	١	T		S	'		S	'	S		1	ı	'
0861		S		S	S	BP		1	'	'		В	SP	1	'	1	•		S	1	1	1	'		S	1	ı	1	ı	S	BP				S	_	'	1	'
626I	'	S	1	S	ВР	В		I	'	•	1	В	1	1	'	-	1	'	S	1	1	1	'	'	S	'	1	1	I	-	В	'	S	В	S	S	'	1	-
Lake	Holland	Hortonia	Indian Brook Reservoir	Iroquois	Island Pond	Joes	Little	Long	Lowell	Lower	Lyford	Maidstone	Martins	Memphremagog	Memphremagog South Bay	Metcalf	Miles	Mirror	Morey	Newark	Nichols	Ninevah	North Montpelier	Paran	Parker	Peacham	Pensioner	Perch	Pinneo	Raponda	Rescue	Runnemede	St. Catherine	Salem	Seymour	Shadow	Shelburne	Silver	South

tion, 1979 - 2013	ikes
cipa	I La
artio	land
- P2	In
-	
Appendix	

2013	ı	Т			S	в	S	S		S			S	
2013		-			s, S	В	s; S	-		s	-	В	s, S	1
1102		_	-	Ш	s, S	В	s, S	_	1	s	-	В	s, S	1
0102		1		В	В	В	s, S	-		S	-	B	S	1
5000		1		— В	— В	– В	s, S	-		S	-	— В		1
8002				В	В	В	S	-		S	S	В	S	1
2002	1	1		В		В	S			S		В		1
9002	т	ı	S	В	В	В	S	•		S		В		1
5005	ı	1	S	В	В	В	S			S		В		ī
2004	ı	ı	S	В	В	В	S	•	•	S	•	В	•	T
5003	ı	ı	S	В	В	В	S		ı	S		В		ī
2002	ı	ı	•	В	ш	В	S	•	·	S	•	В	•	1
1002	ı	ı	S	В	ш	В	S	•	·	S	ı	В	•	T
2000	S	١	S	В	в	В	SP	•	•	S	•	В	•	В
666 L	S	В	S	В	В	В	S	В	·	S	·	ı.	•	В
866 I	S	ı	S	В	ш	В	ı	ΒР	ı	S	ı	В	ı	1
266 l	S	ı	•	ı	·	ВР	ı	•	ı	S	-	-	В	I
966 l	S	ı	ı	ı	ı	В	ı	•	ı	S	-	В	SP	ВΡ
966 L	S	I	-	-	-	В	-	-	-	В	-	В	S	Т
166¢	В	1	-	-	-	В	-	-	-	В	-	В	ЧS	ΒР
1663	В	ΒР	-	-	-	В	-	-	-	S	S	В	S	В
266 I	ш	ı	·	·	·	SР	·	•	·	В	-	В	·	i.
1661	S	ı	ı	ı	ı	S	ı	SP	ı	В	1	Ю	ı	ВΡ
066 l	S	ı	•	١	•	S	١	•	ш	В	1	S	•	1
686 I	S	SP	'	'	'	S	'	В	Ш	'	•	SP	'	ВР
8861		S	1	ı	ı	S	ı	В	S	ВР	1	BР	1	ВΡ
2861	S	S	'	'	'	S	'	ВР	S	В	•	S	'	В
986 l	S	S	•	S	•	S	1	В	S	S	1	BP	S	S
986 I	ı	ı	1	ı	1	1	ı	В	S	S	•	ВР	1	S
4861	1	1	'	'	'	'	'	S	S	S	-	S	'	S
1983	'	'	'	'	S	'	'	S	S	S	-	S	S	S
1985	1	1	'	'	S	'	'	S	'	'	1	S	S	SP
1981	'	- Ч	'	•	S	'	'	S	1	S	•	S	S	S
0861	'	S SP	•	•	s S	•	•	S	•	S .	•	s S	•	'
6261	'	0)	'	-	0)	'	'	•	'	-	'	0	'	'
Lake	Spring	Star	Stratton	Sunrise	Sunset (Benson)	Sunset (Brookfield)	Ticklenaked	Valley	Wapanacki	Willoughby	Winona	Woodbury	Woodford/Big Pond	Woodward

2013	ı	SP	ı	S	S	I	S	I	S	S	S	I	I	ı	SP	I	I	ı	I	S	S	I	I	I	I	ı	S	S	ı	I	S	ı
2012	ı	SP (S	S	S	S	ı	S	S	S	ı	ı	ı	SP (ı	ı		S	S		ı	ı	ı	ı		S	S	,	ı	S	
1102	ı	SP (SP	S	S	S	S	ı	S	S	S	S	1	ı	S	S	S	S	ı	S		S	ı	ı	ı	ī	S	S	S	ı	S	
2010	ı	S	S	S	S	S	S	ı	S	S	S	S	ı	ı	S	S	S	ı	S	SP	1	S	ı	ı	ı	ı	S	SP	S	ı	S	
5009	ı	S	S	S	S	S	S	ı	S	S	S	S	ı	ı	S	S	S	ı	S	S		S	ı	ı	ı		S	S		ı	S	•
2008	ı	S	S	SP	S	S	S	ı	S	S	S	SP	ı	ı	S	S	S	ı	ı	S		S	ı	ı	ı		ı	S	SP	ı	S	ı
2002	ı	ı	S	S	S	S	S	ı	S	S	S	S	ı	ı	S	ı	ı	ı	S	ı	·	ı	ı	ı	ı		S	·	S	ı	S	•
5006	ı	S	S	S	S	S	S	Т	S	S	S	SP	I	ı	S	S	ı	ı	S	S	ı	ı	Т	ı	ı	ı	·	S	SP	ı	S	·
5005	ı	S	ı	S	S	S	S	ı	S	S	S	S	1	I	ı	SP	SP	ı	ı	S	ı	ı	ı	ı	ī	ı		S	S	I	S	
5004	ı	S	ı	S	SP	S	S	ı	S	S	S	S	1	I	ı	SP	SP	ı	S	S	ı	ı	ı	ı	ī	ı	S	S	S	I	S	
5003	ı	S	ı	S	S	S	I	ı	S	S	S	S	ı	ı	ı	SP	S	ı	S	S	ı	ı	I	I	I	ı	S	SP	S	ı	S	ı
2002	I	S	•	S	S	S	S	I	S	S	S	S	-	I	I	SP	S	ı	S	S	-	S	I	I	1	-	•	S	S	I	S	SP
2001	I	S	ı	S	S	S	S	I	S	S	S	S	-	I	ı	S	S	ı	S	S	1	S	I	I	I	-	·	S	SP	I	S	SP
5000	I	S	·	S	S	S	SP	I	S	S	S	S	-	S	ı	SP	S	·	SP	S	-	S	I	I	I	-	•	S	S	I	S	•
666 L	I	S	ı	S	S	ı	I	I	S	S	S	S	-	I	ı	I	I	ı	S	S	SP	S	I	I	I	-	·	S	S	I	S	·
866 L	I	S	S	S	SP	S	S	I	S	S	S	S	-	I	ı	I	S	ı	S	S	S	S	I	I	I	-	·	S	S	I	S	·
266 l	I	S	S	S	S	S	S	I	S	S	S	ı	-	I	ı	I	S	ı	S	S	S	S	I	I	I	-	·	S	ı	I	ЗP	·
966 l	I	S	S	S	S	S	SP	Т	S	S	S	I	Т	S	I	Т	S	ı	SP	S	S	S	I	SP	Т	ı	ı	S	ı	I	S	ı
966 L	ı	S	S	S	S	S	S	ı	SP	S	S	S	ı	S	S	SP	S	SP	S	S	ı	S	ı	S	ı	ı	ı	S	S	I	S	ı
766 L	ı	S	S	S	ı	S	S	ı	ı	S	S	S	SP	S	S	ı	S	S	SP	S	S	S	ı	ı	ı	ı	လ	S	S	SP	SP	ı
1663	ı	S	SP	S	ı	S	ı	ı	ı	S	S	S	SР	S	S	SP	S	S	S	S	S	S	ı	S	ı.	ı	S	S	S	S	S	•
1992	S	S	SP	S	S	S	S	,	S	S	S	S	-	ı	S	SP	SP	S	S	S	S	SP	S	S		S	•	S	S	S	S	S
1661	S	S	S	S	S	S	S	S	•	S	S	S	-	ı	S	SP	S	S	S	S	SP	S	S	SP		S	SP	S	S	ı	•	•
066 L	ı	SP	•	S	ı	S	SP	S	ı.	SP	S	S	ı	ı	S	SP	S	S	S	S	S	SP	S	ı	ı	SP	S	S	S	ı	•	•
686 l	S	S	S	S	ı	S	ı	S	ı	SP	S	ı	ı	ı	S	ı	S	ı	ı	S	S	ı	S	ı	ı	S	S	S	ı	ı	•	ı
886 I	SP	S	S	S	S	S	S	S	SP	ı	S	ı	SP	SP	S	ı	S	S	ı	S	S	ВР	S	ı	ı	ı	S	S	ı	I	•	'
2861	SP	S	ı	S	SP	SP	S	S	ı	SP	S	SP	SP	SP	S	SP	S	S	S	S	S	ВР	S	ı	ı	S	S	S	ı	I	•	'
986 l	ı	S	ı	S	ı	S	ı	S	ı	ı	ı	ı	S	ı	S	S	S	S	S	ı	S	ı	S	S	S	ı	S	S	ı	ı	•	ı
386 L	ı	S	ı	S	SP	S	SP	S	S	S	S	SP	S	S	S	S	S	S	S	SP	S	ВР	S	S	S	SP	S	SP	ı	I	•	'
1984	ı	S	S	SP	S	ı	S	SP	'	S	S	SP	S	S	S	S	S	S	S	S	В	BP	ı	SP	1	S	ı	S	ı	ı	ı	ı
1983	ı	S	S	S	S	ı	ı	S	SP	'	S	S	'	S	S	S	S	S	S	S	В	ВΡ	'	SP	SP	S	S	S	'	ı	'	'
1985	S	S	S	ı	S	S	S	S	ı	ı	I	ı	SP	S	S	ı	S	S	S	ı	В	В	ВΡ	S	S	S	S	•	1	I	•	•
1961	S	S	S	•	S	S	S	S	S	S	S	ı	'	S	В	S	S	S	S	S	ВΡ	В	'	ı	1	ı	•	'	ı	ı	•	'
086 L	S	S	S	S	S	S	S	S	-	S	S	В	SP	S	В	S	S	S	S	'	В	ı	ı	ı	ı	•	ı	'	1	ı	ı	1
626I	S	S	S	'	S	S	S	S	SP	S	S	В	1	S	В	ВΡ	S	S	S	S	В	ı	ı	ı	ı	ı	'	'	'	ı	'	'
Lake Champlain Stations	#1 - Whitehall	#2 - Larrabee's Point	#3 - Crown Point	#4 - Button Bay-Broad Lake	#5 - Thompson's Point	#6 - Shelburne Bay	#7 - Burlington-Broad Lake	#8 - Willsboro Point	#9 - Colchester Shoals	#10 - Outer Malletts Bay	#11 - Inner Malletts Bay	#12 - Fish Bladder Island	#13 - Cumberland Bay	#14 - Treadwell Bay-Broad Lake	#15 - The Gut	#16 - Ball Island	#17 - St. Albans Bay	#18 - Butler Island	#19 - Point Au Fer	#20 - Missisquoi Bay	#21 - Keeler Bay	#22 - Maquam Bay	#23 - Alburg Passage	#24 - Inner Missisquoi Bay	#25 - Pelots Point	#26 - Kellogg Bay	#29 - Carry Bay	#30 - Alburg Bridge	#31 - Sandbar	#32 - Valcour Island	#33 - Burlington Bay	#34 - Potash Point

B = basic monitoring, Secchi water clarity only
 S = supplemental monitoring - Secchi water clarity, total phosphorus and chlorophyll-a
 P = partial data

Appendix 1 - Participation, 1979 - 2013 Lay Monitoring Lake Champlain Stations

Lake Champlain Stations	6261	0861	1981	1983	1984	4891 7885	3801 9801	2801 9861	8861 2861	6861	0661	1661	1995	1993	1994	966 L	966 l	266 l	866 L	666 L	2000	1002	2002	2003	5004	5005	5006	2002	8002	5000	2011 2010	2012	5013	
#36 - West Haven	ı		'	'	'	'	•	•	'	I	ı	1	ı	S	S	S	ı	S	S	I	ı	ı	ı	S	ı	I	ı	ı	1	S	•		'	
#37 – Outer Carry Bay	ı		'	'	-	-	-	-	-	I	I	ı	I	ı	I	ı	ı	ı	ı	I	ı	ı	ı	S	S	I	1	S	S	s	s S	s S	SS	(0)
#38 – Town Farm Bay	ı		'	'	'	'	•	•	' '	I	ı	1	ı	ı	ı	ı	ı	ı	ı	I	ı	ı	ı	I	ı	I	ı	1	S	s	s S	s S	SS	(0)
#39 – Inner Thompson point	ı		-	-	' '	' '		-	-	1	ı	I	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	S	-		· 	'	
#40 - North Beach	ı		-	'	-	-	· ·	•	-	I	I	ı	I	ı	I	ı	ı	ı	ı	I	ı	ı	ı	I	ı	I	ı	ı	1	s	s S	s S	SS	(0)
#41 - Queneska Island	ı		'	'	1	'	•	•	' '	I	ı	1	ı	ı	ı	ı	ı	ı	ı	I	ı	ı	ı	I	ı	I	ı	ı	ı	ı	۔ د	SP S	S S	(0)
#42 - Champlain Bridge	•	1	•	•	•	•	•	•	-	'	'	'	1	'	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	1	ı	ı			1	•		' S	

B = basic monitoring, Secchi water clarity only
 S = supplemental monitoring - Secchi water clarity, total phosphorus and chlorophyll-a
 P = partial data

Appendix 4 Glossary

ALGAE - Simple aquatic plants which are usually microscopic in size. Algae can grow suspended in the water or attached to plants or the lake bottom. Algae do not have true roots, flowers, and leaves.

ANAEROBIC - (also anoxic) - Environment in which oxygen is absent.

BACTERIA - Microscopic single cell organisms that are similar to plants but lacking in chlorophyll.

BLOOM - A very large algal population that may cause a green coloration of the water or form large floating mats. Such a large population may be stimulated by high nutrient levels, warm-water temperatures and long periods of sunlight. Seasonal spring and fall algal blooms usually are part of the normal cycle of a productive lake.

CHLOROPHYLL - The photosynthetic, green pigment contained in all green plants.

CULTURAL EUTROPHICATION - The acceleration by human activities of the natural aging process in a lake evidenced by increasing nutrient concentrations.

DRAINAGE BASIN - (also **watershed**) - The land area draining into a body of water. The surface area of the lake is included in the calculation of the drainage basin surface area.

ECOLOGY - The study of the relationships between organisms and their environment.

EROSION - The loosening and subsequent transport of soil away from its native site. In Vermont, erosion typically results from the removal of vegetation, which is a soil stabilizer.

EUTROPHIC - A general classification of lakes which have a high level of nutrients. Eutrophic lakes are often shallow, warm, seasonally deficient in oxygen in the lower depths of the lake, and supportive of large algal and/or aquatic plant populations.

EUPHOTIC ZONE - The layer of lake water where light penetrates through the water and is useable by plants and algae.

EUTROPHICATION - The natural aging process of a lake whereby nutrients and sediments increase in the lake over time, increasing its productivity and eventually turning it into a marsh. If the process is accelerated by human-made influences, it is referred to as "cultural eutrophication."

FECAL COLIFORM BACTERIA - Bacteria found in the feces of warm-blooded animals. Fecal coliform bacteria are used as indicators of recent sewage contamination. Fecal coliform bacteria are not harmful themselves, rather they indicate the potential presence of other disease-causing organisms.

GROUNDWATER - Water that lies beneath the earth's surface in water-filled layers of sand, gravel, clay or cracked rock.

LAKE BASIN - A depression in the surface of the land that forms a lake when full of water. Lakes may be composed of more than one basin.

LIMITING NUTRIENT - The nutrient whose demand exceeds its supply such that growth is restricted until more is available.

LIMNOLOGY - The study of the physical, biological, and chemical aspects of inland ponds (generally freshwater), lakes, and streams.

MACROPHYTES - Rooted aquatic plants which grow in or on the water. They have true roots, flowers, and leaves.

MEAN - (also **average**) - Calculated by adding the values of all the data points and dividing this sum by the number of data points.

MESOTROPHIC - A general classification of lakes between the levels of oligotrophic and eutrophic. Mesotrophic lakes have a moderate level of nutrients and are somewhat productive (supportive of moderate growths of algae and aquatic plants).

METER - A measure of length in the metric system, approximately equivalent to 3.25 feet. One meter (m) equals 39.37 inches or 1.0936 yards.

MICROGRAM - (µg) - The unit of measurement used to express one part per million (ppm).

NON-POINT SOURCE POLLUTION - Pollution that comes from a diffuse area, as opposed to a discharge pipe, and that enters lakes or streams via runoff, groundwater, or tributary streams. Examples are soil erosion, septic system pollution, and manure runoff.

NUTRIENT - A chemical required for growth, development or maintenance by a plant or animal. Examples are nitrogen and phosphorus.

OLIGOTROPHIC - A general classification of lakes which have a low level of nutrients. Oligotrophic lakes are usually deep and cold. They usually have a sufficient amount of oxygen at all depths and they support little algal and aquatic plant growth.

ORGANIC COMPOUND - A chemical compound containing carbon as the base element. Some kinds of organic compounds can be toxic to plant and animal life.

OVERTURN - The thorough mixing of the water in a lake during the spring and during the fall when the water is uniform in temperature and density.

PHOSPHORUS - A nutrient required by plants, including algae, for growth. In lakes, phosphorus is usually the nutrient in shortest supply relative to other nutrients. The addition of phosphorus to a lake will stimulate plant and algal growth.

PHOTOSYNTHESIS - Production of organic compounds using light by chlorophyll-containing cells.

PHOTIC ZONE - The lighted region of a lake where photosynthesis takes place.

PHYTOPLANKTON - Small plants, usually microscopic, suspended in the water, that drift in the water with waves or currents.

POINT SOURCE POLLUTION - Pollution from discharge pipes or outfalls from sources, such as wastewater treatment plants or industrial facilities.

RIPARIAN - A term used to describe the shoreland area of lakes, ponds and streams.

SECCHI DISK - A white and black disk 8 inches (20 cm) in diameter used to measure transparency of water.

SEDIMENT - Bottom material in a lake that has been deposited after the formation of a lake basin. Sediment results from the accumulation of decomposing remains of aquatic organisms, chemical precipitation of dissolved minerals, and erosion of surrounding lands. Sediment particles may also be suspended in the water.

SEDIMENTATION - The sinking of silt, algae, and other particles through the lake water column and their deposition on the lake bottom (where they form sediment). Sedimentation is an important process in the life of a lake, transferring nutrients throughout the lake's layers and providing a critical link between surface plankton and bottom-dwelling organisms.

STRATIFICATION - The formation of thermal zones in deep lakes during the summer. These zones are referred to as the epilimnion (warm upper region), hypolimnion (cold lower region), and metalimnion (thin boundary between the other two layers).

TROPHIC LEVEL - A relative level of productivity. Three trophic levels of Vermont lakes are eutrophic, mesotrophic and oligotrophic.

TURBIDITY - A measurement of water clarity. High turbidity (low water clarity) is caused by suspended particles such as silt, soil or algae which reduce light penetration.

WATER TABLE - The upper surface of groundwater below which the soil is saturated with water.

WATERSHED - (also **drainage basin**) - The land area draining into a body of water. The surface area of the lake is included in the calculation of the drainage basin surface area.

WETLAND - An area that is inundated by surface or ground water with a frequency sufficient to support significant vegetation or aquatic life dependent on saturated or seasonally saturated soil conditions for growth and reproduction.

ZOOPLANKTON - Small aquatic animals, often microscopic in size and capable of mobility.