Administrative Procedures – Final Proposed Rule Filing #### **Instructions:** In accordance with Title 3 Chapter 25 of the Vermont Statutes Annotated and the "Rule on Rulemaking" adopted by the Office of the Secretary of State, this filing will be considered complete upon filing and acceptance of these forms with the Office of the Secretary of State, and the Legislative Committee on Administrative Rules. All forms requiring a signature shall be original signatures of the appropriate adopting authority or authorized person, and all filings are to be submitted at the Office of the Secretary of State, no later than 3:30 pm on the last scheduled day of the work week. The data provided in text areas of these forms will be used to generate a notice of rulemaking in the portal of "Proposed Rule Postings" online, and the newspapers of record if the rule is marked for publication. Publication of notices will be charged back to the promulgating agency. ## PLEASE REMOVE ANY COVERSHEET OR FORM NOT REQUIRED WITH THE CURRENT FILING BEFORE DELIVERY! **Certification Statement:** As the adopting Authority of this rule (see 3 V.S.A. § 801 (b) (11) for a definition), I approve the contents of this filing entitled: **Investigation and Remediation of Contaminated Properties Rule** | Married Springer Spring Townson | on_ | 6/4/2019 | |---------------------------------|--|--------------| | | (signature) | (date) | | Printe | ed Name and Title: | | | Julie | Moore, Secretary, Agency of Natural Resources | | | | | | | | | | | | | RECEIVED BY: | | | | | | | CHOST SHEET OF EXPLAIN TO THE FEET OF THE PARTY PA | | | | Coversheet | | | | Adopting Page | | | | Economic Impact Analysis Environmental Impact Analysis | | | | Strategy for Maximizing Public Input | | | | Scientific Information Statement (if applicable) Incorporated by Reference Statement (if applicable) | | | 🗖 | Clean text of the rule (Amended text without annotation) | | | | Annotated text (Clearly marking changes from previous rule) | | | | ICAR Minutes Copy of Comments | | | | Responsiveness Summary | | Revised Oct 25, 2018 0 #### 1. TITLE OF RULE FILING: #### **Investigation and Remediation of Contaminated Properties Rule** - 2. PROPOSED NUMBER ASSIGNED BY THE SECRETARY OF STATE 19P-027 - 3. ADOPTING AGENCY: Agency of Natural Resources, Department of Environmental Conservation #### 4. PRIMARY CONTACT PERSON: (A PERSON WHO IS ABLE TO ANSWER QUESTIONS ABOUT THE CONTENT OF THE RULE). Name: Matthew Moran Agency: Agency of Natural Resources Mailing Address: 1 National Life Drive, Davis 1, Montpelier, VT 05620-3704 Telephone: 802 522 - 5729 Fax: 802 828 - 1011 E-Mail: matt.moran@vermont.gov Web URL(WHERE THE RULE WILL BE POSTED): https://dec.vermont.gov/waste- management/contaminated-sites #### 5. SECONDARY CONTACT PERSON: (A SPECIFIC PERSON FROM WHOM COPIES OF FILINGS MAY BE REQUESTED OR WHO MAY ANSWER QUESTIONS ABOUT FORMS SUBMITTED FOR FILING IF DIFFERENT FROM THE PRIMARY CONTACT PERSON). Name: Patricia Coppolino Agency: Agency of Natural Resources Mailing Address: 1 National Life Drive, Davis 1, Montpelier, VT 05620-3704 Telephone: 802 249 - 5822 Fax: 802 828 - 1011 E-Mail: patricia.coppolino@vermont.gov #### 6. RECORDS EXEMPTION INCLUDED WITHIN RULE: (DOES THE RULE CONTAIN ANY PROVISION DESIGNATING INFORMATION AS CONFIDENTIAL; LIMITING ITS PUBLIC RELEASE; OR OTHERWISE EXEMPTING IT FROM INSPECTION AND COPYING?) No IF YES, CITE THE STATUTORY AUTHORITY FOR THE EXEMPTION: PLEASE SUMMARIZE THE REASON FOR THE EXEMPTION: #### 7. LEGAL AUTHORITY / ENABLING LEGISLATION: (The specific statutory or legal citation from session law indicating who the adopting Entity is and thus who the signatory should be. THIS SHOULD BE A SPECIFIC CITATION NOT A CHAPTER CITATION). - 10 V.S.A. Section 6603 (1), 6604c(d) - 8. EXPLANATION OF HOW THE RULE IS WITHIN THE AUTHORITY OF THE AGENCY: Section 6603 of Title 10 authorizes the Agency to adopt and amend rules to implement the provisions of Title 10, chapter 159 related to the management of waste, including provisions governing the requirements to investigate and remediate releases of hazardous materials in environmental media. Additionally, Section 6604c requires that the Agency adopt rules to allow for the management of excavated soils requiring disposal that contain specified contaminants in a manner that ensures protection of human health and the environment. The proposed rule revisions make changes to the Agency's existing rule that are consistent with these provisions. - 9. THE FILING HAS CHANGED SINCE THE FILING OF THE PROPOSED RULE. - 10. THE AGENCY HAS INCLUDED WITH THIS FILING A LETTER EXPLAINING IN DETAIL WHAT CHANGES WERE MADE, CITING CHAPTER AND SECTION WHERE APPLICABLE. - 11. SUBSTANTIAL ARGUMENTS AND CONSIDERATIONS WERE NOT RAISED FOR OR AGAINST THE ORIGINAL PROPOSAL. - 12. THE AGENCY HAS INCLUDED COPIES OF ALL WRITTEN SUBMISSIONS AND SYNOPSES OF ORAL COMMENTS RECEIVED. - 13. THE AGENCY HAS INCLUDED A LETTER EXPLAINING IN DETAIL THE REASONS FOR THE AGENCY'S DECISION TO REJECT OR ADOPT THEM. - 14. CONCISE SUMMARY (150 WORDS OR LESS): The Rule established standards and requirements for the investigation and remediation of releases of hazardous materials in a manner that is adequately protective of public health and the environment. The Rule provides the process that must be followed for all contaminated properties from initial investigation to final cleanup, remediation, and site closure. #### 15. EXPLANATION OF WHY THE RULE IS NECESSARY: The proposed revisions to this rule, which was first promulgated on July 27,2017, are necessary to establish permanent requirements for per- and polyfluoroalkyl substances (PFAS) originally set forth in the emergency rule (effective January 8, 2019), to address changes in environmental media risk-based standards, to clarify sampling data evaluation, and to provide greater flexibility for soil management. #### 16. EXPLANATION OF HOW THE RULE IS NOT ARBITRARY: Vermont law (10 V.S.A. 6603) specifically authorizes the Agency to adopt rules to implement requirements in 10 V.S.A. chapter 159 pertaining to releases of hazardous materials to environmental media in the State. This proposed rule revision makes changes to the Agency's existing rule to incorporate relevant and current data sources and technology and continues to rely on additional objective factors such as environmental conditions and laboratory analytical results for representative samples of environmental media to support the Agency's decision-making processes. Additionally, the proposed revisions include a new data evaluation subchapter to provide clarity on and requirements for the evaluation of laboratory results. This change, along with existing provisions of the rule, are designed to ensure a scientific basis and methodology for regulatory decision-making in a manner that is adequately protective of human health and the environment. ## 17. LIST OF PEOPLE, ENTERPRISES AND GOVERNMENT ENTITIES AFFECTED BY THIS RULE: All entities involved in the investigation and remediation of releases of hazardous materials to the environment, who may include the public, private businesses, environmental consultants, developers, and State Agencies. #### 18. BRIEF SUMMARY OF ECONOMIC IMPACT (150 WORDS OR LESS): The proposed revisions decrease current economic impacts. For example, there are new provisions to exempt historical fill from specific procedural #### Final Proposed Coversheet requirements after an exemption request is submitted and approved by the Agency. Similar provisions were added that can exempt specific areas of redevelopment from the added time and cost of following our full corrective process, e.g., contaminated soil management related to underground storage tank closures, and public works projects such as water line (re)installations. Changes in environmental media standards will impact the level of site investigation and
remediation. #### 19. A HEARING WAS HELD. #### 20. HEARING INFORMATION (THE FIRST HEARING SHALL BE NO SOONER THAN 30 DAYS FOLLOWING THE POSTING OF NOTICES ONLINE). IF THIS FORM IS INSUFFICIENT TO LIST THE INFORMATION FOR EACH HEARING PLEASE ATTACH A SEPARATE SHEET TO COMPLETE THE HEARING INFORMATION. Date: 5/17/2019 Time: 10:30 AM Street Address: 1 National Life Drive, Montpelier Zip Code: 05620-3704 Date: 5/20/2019 Time: 05:30 PM Street Address: 190 Junction Road, Montpelier Zip Code: 05602 Date: Time: AM Street Address: Zip Code: Date: Time: AM Street Address: Zip Code: 21. DEADLINE FOR COMMENT (NO EARLIER THAN 7 DAYS FOLLOWING LAST HEARING): 5/27/2019 Final Proposed Coversheet KEYWORDS (PLEASE PROVIDE AT LEAST 3 KEYWORDS OR PHRASES TO AID IN THE SEARCHABILITY OF THE RULE NOTICE ONLINE). Investigation and Remediation of Contaminated Properties Rule IRule Contaminated sites Contamination #### Administrative Procedures – Adopting Page #### **Instructions:** This form must accompany each filing made during the rulemaking process: Note: To satisfy the requirement for an annotated text, an agency must submit the entire rule in annotated form with proposed and final proposed filings. Filing an annotated paragraph or page of a larger rule is not sufficient. Annotation must clearly show the changes to the rule. When possible, the agency shall file the annotated text, using the appropriate page or pages from the Code of Vermont Rules as a basis for the annotated version. New rules need not be accompanied by an annotated text. 1. TITLE OF RULE FILING: Investigation and Remediation of Contaminated Properties Rule 2. ADOPTING AGENCY: Agency of Natural Resources, Department of Environmental Conservation - 3. TYPE OF FILING (PLEASE CHOOSE THE TYPE OF FILING FROM THE DROPDOWN MENU BASED ON THE DEFINITIONS PROVIDED BELOW): - **AMENDMENT** Any change to an already existing rule, even if it is a complete rewrite of the rule, it is considered an amendment as long as the rule is replaced with other text. - **NEW RULE** A rule that did not previously exist even under a different name. - **REPEAL** The removal of a rule in its entirety, without replacing it with other text. This filing is AN AMENDMENT OF AN EXISTING RULE 4. LAST ADOPTED (PLEASE PROVIDE THE SOS LOG#, TITLE AND EFFECTIVE DATE OF THE LAST ADOPTION FOR THE EXISTING RULE): Emergency Rule SOS Log# 19-E01, Effective 1/8/2019 Investigation and Remediation of Contaminated Properties Rule #### Adopting Page Permanent Rule SOS Log# 17-P06, Effective 7/27/2017 Investigation and Remediation of Contaminated Properties Rule #### Administrative Procedures – Economic Impact Analysis #### **Instructions:** In completing the economic impact analysis, an agency analyzes and evaluates the anticipated costs and benefits to be expected from adoption of the rule; estimates the costs and benefits for each category of people enterprises and government entities affected by the rule; compares alternatives to adopting the rule; and explains their analysis concluding that rulemaking is the most appropriate method of achieving the regulatory purpose. Rules affecting or regulating schools or school districts must include cost implications to local school districts and taxpayers in the impact statement, a clear statement of associated costs, and consideration of alternatives to the rule to reduce or ameliorate costs to local school districts while still achieving the objectives of the rule (see 3 V.S.A. § 832b for details). Rules affecting small businesses (excluding impacts incidental to the purchase and payment of goods and services by the State or an agency thereof), must include ways that a business can reduce the cost or burden of compliance or an explanation of why the agency determines that such evaluation isn't appropriate, and an evaluation of creative, innovative or flexible methods of compliance that would not significantly impair the effectiveness of the rule or increase the risk to the health, safety, or welfare of the public or those affected by the rule. #### 1. TITLE OF RULE FILING: #### **Investigation and Remediation of Contaminated Properties Rule** #### 2. ADOPTING AGENCY: Agency of Natural Resources, Department of Environmental Conservation #### 3. CATEGORY OF AFFECTED PARTIES: LIST CATEGORIES OF PEOPLE, ENTERPRISES, AND GOVERNMENTAL ENTITIES POTENTIALLY AFFECTED BY THE ADOPTION OF THIS RULE AND THE ESTIMATED COSTS AND BENEFITS ANTICIPATED: All entities involved in the investigation and remediation of releases of hazardous materials to the environment, including the public, private businesses, environmental consultants, developers, and State Agencies. #### 4. IMPACT ON SCHOOLS: #### **Economic Impact Analysis** INDICATE ANY IMPACT THAT THE RULE WILL HAVE ON PUBLIC EDUCATION, PUBLIC SCHOOLS, LOCAL SCHOOL DISTRICTS AND/OR TAXPAYERS CLEARLY STATING ANY ASSOCIATED COSTS: Schools are subject to the requirements of this rule and proposed revisions only to the extent that a school is responsible for or impacted by a release of hazardous materials. As such, the impact on schools from the proposed Rule revisions is anticipated to be negligible. To the extent that a school is subject to the requirements of the proposed rule changes, some proposed changes are anticipated to provide greater flexibility in the management of certain contamination, may increase efficiencies and reduce costs. For example, contaminated soils generated during activities such as the closure or replacement of petroleum underground storage tanks may be handled using a soil management plan rather than going through the entire corrective action process, the latter of which requires more comprehensive Agency oversight and review, as well as an opportunity for public input. 5. ALTERNATIVES: Consideration of alternatives to the rule to reduce or ameliorate costs to local school districts while still achieving the objective of the rule. As stated above in the response to Question 4, the impact on schools from this proposed rule revision is anticipated to be minimal. Additionally, as stated above, the proposed revisions provide additional flexibility in the management of some contaminated media where it makes sense, e.g., soil management, and may serve to reduce the expenditure of resources. The rule also provides flexibility in meeting the rule's requirements based on the risks to human health and the environment by a specific release. #### 6. IMPACT ON SMALL BUSINESSES: INDICATE ANY IMPACT THAT THE RULE WILL HAVE ON SMALL BUSINESSES (EXCLUDING IMPACTS INCIDENTAL TO THE PURCHASE AND PAYMENT OF GOODS AND SERVICES BY THE STATE OR AN AGENCY THEREOF): The impact on small businesses from the proposed rule amendment are anticipated to be minor. As with schools, some of the changes allow greater flexibility for specific situations that will save time and money. For #### **Economic Impact Analysis** example, contaminated soils generated during activities such as the closure or replacement of petroleum underground storage tanks may be handled using a soil management plan rather than going through the entire corrective action process, which includes a 30 day public comment period. Additionally, the proposed rule amendment provides for a streamlined track for the management of historical fill. 7. SMALL BUSINESS COMPLIANCE: EXPLAIN WAYS A BUSINESS CAN REDUCE THE COST/BURDEN OF COMPLIANCE OR AN EXPLANATION OF WHY THE AGENCY DETERMINES THAT SUCH EVALUATION ISN'T APPROPRIATE. Under the proposed rule, one way a small business can reduce the burden of compliance that the Agency may exempt the historical fill from the site investigation and correction action requirements. The material must meet the rule's definition of historical fill and the exemption must be approved by the Secretary in writing. #### 8. COMPARISON: COMPARE THE IMPACT OF THE RULE WITH THE ECONOMIC IMPACT OF OTHER ALTERNATIVES TO THE RULE, INCLUDING NO RULE ON THE SUBJECT OR A RULE HAVING SEPARATE REQUIREMENTS FOR SMALL BUSINESS: A release of hazardous materials to the environment is prohibited under Vermont statute, and a clear and consistent process for addressing releases of hazardous materials to the environment is needed so that significant levels of contamination in soils and groundwater are cleaned up. The existing Rule and prior Agency procedures have been in place for more than 20 years. Therefore, changes in economic impact from the proposed rule revisions are minor. As discussed above under impacts to schools and small businesses, the proposed rule does add additional flexibility for specific situations that will reduce the burden of regulation. The absence of this Rule would allow for less control of releases of hazardous materials throughout the State. 9. SUFFICIENCY: EXPLAIN THE SUFFICIENCY OF THIS ECONOMIC IMPACT ANALYSIS. This economic impact analysis provides the Agency's best assessment of the economic impact of this rule amendment based on the information available. #### Administrative Procedures – Environmental Impact Analysis #### **Instructions:** In completing the environmental impact analysis, an agency analyzes and evaluates the anticipated environmental impacts (positive or negative) to be expected from adoption of the rule; compares alternatives to adopting the rule; explains the sufficiency of the environmental impact analysis. Examples of Environmental Impacts include but are not limited to: - Impacts on the emission of greenhouse gases - Impacts on the discharge of pollutants to water - Impacts on the arability of land - Impacts on the climate - Impacts on the flow of water - Impacts on recreation - Or other environmental impacts #### 1. TITLE OF RULE FILING: #### **Investigation and Remediation of Contaminated Properties Rule** 2. ADOPTING AGENCY: Agency of Natural Resources, Department of Environmental Conservation - 3. GREENHOUSE GAS: EXPLAIN HOW THE RULE IMPACTS THE EMISSION OF GREENHOUSE GASES (E.G. TRANSPORTATION OF PEOPLE OR
GOODS; BUILDING INFRASTRUCTURE; LAND USE AND DEVELOPMENT, WASTE GENERATION, ETC.): The Rule does not directly or indirectly reduce greenhouse gases from the transportation sector. - 4. WATER: EXPLAIN HOW THE RULE IMPACTS WATER (E.G. DISCHARGE / ELIMINATION OF POLLUTION INTO VERMONT WATERS, THE FLOW OF WATER IN THE STATE, WATER QUALITY ETC.): - This Rule includes requirements for the remediation of contaminated hazardous sites throughout Vermont. Cleanup of hazardous sites reduces pollution to Vermont waters principally through remediation of contaminated groundwater that recharge surface waters. - 5. LAND: EXPLAIN HOW THE RULE IMPACTS LAND (E.G. IMPACTS ON FORESTRY, AGRICULTURE ETC.): - The rule can have a positive impact on contaminated #### **Environmental Impact Analysis** land and help restore it to productive use, e.g., the reuse of abandoned or underutilized land (brownfield sites). The Rule does not directly or indirectly impact land, other than the above exception of the remediation of contamination to land. - 6. RECREATION: EXPLAIN HOW THE RULE IMPACT RECREATION IN THE STATE: The Rule does not directly or indirectly impact recreation in the State. - 7. CLIMATE: EXPLAIN HOW THE RULE IMPACTS THE CLIMATE IN THE STATE: The Rule does not directly or indirectly impact climate. - 8. OTHER: EXPLAIN HOW THE RULE IMPACT OTHER ASPECTS OF VERMONT'S ENVIRONMENT: The Rule has requirements for investigating and cleaning up releases of hazardous materials that may contaminate groundwater, drinking water, surface water, soil (land), and indoor air. 9. SUFFICIENCY: EXPLAIN THE SUFFICIENCY OF THIS ENVIRONMENTAL IMPACT ANALYSIS. This environmental impact analysis provides the Agency's best assessment of the environmental impact of this rule amendment based on the information available. #### Administrative Procedures – Public Input #### **Instructions:** In completing the public input statement, an agency describes the strategy prescribed by ICAR to maximize public input, what it did do, or will do to comply with that plan to maximize the involvement of the public in the development of the rule. This form must accompany each filing made during the rulemaking process: #### 1. TITLE OF RULE FILING: #### **Investigation and Remediation of Contaminated Properties Rule** 2. ADOPTING AGENCY: Agency of Natural Resources, Department of Environmental Conservation 3. PLEASE DESCRIBE THE STRATEGY PRESCRIBED BY ICAR TO MAXIMIZE PUBLIC INVOLVEMENT IN THE DEVELOPMENT OF THE PROPOSED RULE: During drafting of this rule amendment, the Agency sought input from the general public and environmental community. Meetings were held throughout the state between May and October 2018 to solicit feedback on the rule. For over a year, the Agency has been meeting regularly with the Vermont Department of Health to refine the Agency process for evaluating risk. While drafting the rule, the Agency has also consulted with the Agency of Transportation on contaminated soil generated during road construction projects. During two public hearings and the formal public comment period on the rule, the Agency intends to engage with a variety of stakeholders including the regulated community, environmental consultants, a number of state agencies and non-governmental organizations. 4. PLEASE LIST THE STEPS THAT HAVE BEEN OR WILL BE TAKEN TO COMPLY WITH THAT STRATEGY: From May to October 2018, as part of pre-rulemaking, Agency employees traveled to six different areas of the State (Waterbury, St. Johnsbury, Essex, Rutland, Springfield and Bennington) to meet with any interested #### Public Input member of the public and environmental community. Attendees included representatives of regional planning commissions and development corporations, but were principally comprised of environmental consultants who generally represented the regulated community. The purpose of the outreach effort was to provide a forum to discuss the Investigation and Remediation of Contaminated Properties Rule, and to foster a more collaborative relationship with the environmental community. Prior to each event, agenda items were solicited from the environmental community. Areas of engagement included interpretation of the Rule, development soils, and vapor intrusion. In February and March 2019, the Agency engaged with environmental consultants representing the broader environmental community to solicit input on the draft revisions to the Rule. The Agency plans to post the draft rule amendment on the Agency's website, and will be responding to all comments received during the formal rulemaking process and posting them on our website. The Agency also plans to hold two public hearings on the draft Rule. 5. BEYOND GENERAL ADVERTISEMENTS, PLEASE LIST THE PEOPLE AND ORGANIZATIONS THAT HAVE BEEN OR WILL BE INVOLVED IN THE DEVELOPMENT OF THE PROPOSED RULE: The Vermont Department of Health has been working with our Agency on more substantive revisions to the rule amendment for over a year. In addition, the Agency has worked with the environmental consulting community, Agency of Transportation, Vermont Department of Buildings and General Services, and members of regulated and environmental consulting communities. Public Input #### Administrative Procedures – Scientific Information # THIS FORM IS ONLY REQUIRED WHEN INCORPORATING MATERIALS BY REFERENCE. PLEASE REMOVE PRIOR TO DELIVERY IF IT DOES NOT APPLY TO THIS RULE FILING: #### **Instructions:** In completing the Scientific Information Statement, an agency shall provide a brief summary of the scientific information including reference to any scientific studies upon which the proposed rule is based, for the purpose of validity. #### 1. TITLE OF RULE FILING: #### **Investigation and Remediation of Contaminated Properties Rule** 2. ADOPTING AGENCY: Agency of Natural Resources, Department of Environmental Conservation 3. BRIEF EXPLANATION OF SCIENTIFIC INFORMATION: The Vermont Department of Health generated risk-based numeric values for contaminants of public health concern for soil and indoor air. These values and the calculations used for developing them are included in the appendices of this rule. The Agency of Natural Resources defers to the Vermont Department of Health in its expertise in toxicology and risk assessment. 4. CITATION OF SOURCE DOCUMENTATION OF SCIENTIFIC INFORMATION: This documentation is included in Appendix A, E, and F of this rule. 5. INSTRUCTIONS ON HOW TO OBTAIN COPIES OF THE SOURCE DOCUMENTS OF THE SCIENTIFIC INFORMATION FROM THE AGENCY OR OTHER PUBLISHING ENTITY: This documentation is included in Appendix A, E, and F of this rule. Scientific Information #### Administrative Procedures – Incorporation by Reference # THIS FORM IS ONLY REQUIRED WHEN INCORPORATING MATERIALS BY REFERENCE. PLEASE REMOVE PRIOR TO DELIVERY IF IT DOES NOT APPLY TO THIS RULE FILING: #### **Instructions:** In completing the incorporation by reference statement, an agency describes any materials that are incorporated into the rule by reference and how to obtain copies. This form is only required when a rule incorporates materials by referencing another source without reproducing the text within the rule itself (e.g. federal or national standards, or regulations). Incorporated materials will be maintained and available for inspection by the Agency. #### 1. TITLE OF RULE FILING: #### **Investigation and Remediation of Contaminated Properties Rule** 2. ADOPTING AGENCY: Agency of Natural Resources, Department of Environmental Conservation - 3. DESCRIPTION (DESCRIBE THE MATERIALS INCORPORATED BY REFERENCE): The materials incorporated by reference are other Agency rules and regulations, as well as federal rules that pertain to the investigation and remediation of contaminated properties. - 4. FORMAL CITATION OF MATERIALS INCORPORATED BY REFERENCE: See attachment of materials incorporated by reference. - 5. OBTAINING COPIES: (EXPLAIN WHERE THE PUBLIC MAY OBTAIN THE MATERIAL(S) IN WRITTEN OR ELECTRONIC FORM, AND AT WHAT COST): Copies of all incorporated materials are available electronically online and can be made available for examination at the office of the Sites Management Section, Waste Management and Prevention Division, One National Life Drive, Davis 1, Montpelier, VT #### Incorporation By Reference 6. MODIFICATIONS (PLEASE EXPLAIN ANY MODIFICATION TO THE INCORPORATED MATERIALS E.G., WHETHER ONLY PART OF THE MATERIAL IS ADOPTED AND IF SO, WHICH PART(S)ARE MODIFIED): There were no modifications to the incorporated material. Run Spell Check ### Incorporated by reference | Referenced Documents | Section | |---|--| | Code of Federal Regulations, Title 40, Chapter 1, § 302.4: <u>Designation of Hazardous Substances</u> | 35-102(2)(3) | | US EPA Regional Screening Levels (Effective November 2018) | 35-401(c) | | State of Vermont, ANR, VTDEC, Chapter 12 of the Environmental Protection Rules: <u>Groundwater Protection Rule and Strategy</u> (Effective January 8, 2019) | Multiple | | State of Vermont, ANR, VTDEC, Chapter 29(a) of the Environmental Protection Rules: <u>Vermont Water Quality Standards</u> (Effective January 15, 2017) | 35-401(g) | | State of Vermont, ANR, VTDEC, Chapter 21 of the Environmental Protection Rules: Water Supply Rule (Effective September 24, 1992) | 35-1001(b)(11)(A-B) | | US EPA, Office of Solid Waste and Emergency Response, Directive no. 9234.2-25: <u>Guidance for Evaluating the Technical Impracticability of Ground-Water Restoration</u> (September 1993) | 35-APX-C1(b)(4) | | State of New Jersey, Department of Environmental Protection: <u>Technical</u> <u>Impracticability Guidance for Groundwater</u> (December 2013) | 35-APX-C1 | | State of Connecticut Department of Energy and Environmental Protection
<u>Draft</u> <u>Guidance for Applying Technical Impracticability of Groundwater</u> (February 2014) | 35-APX-C1 | | Documents Referenced in Definitions | | | 42 U.S.C. § 9601: Comprehensive Environmental Response, Compensation, and Liability Act (Effective December 11, 1980) | 35-201(7)(A-B)
and others | | 33 U.S.C. § 1251: Federal Water Pollution Control Act (Effective October 18, 1972) | 35-201(7)(c)(i) | | 15 U.S.C § 2601: <u>Toxic Substances Control Act</u> (Effective October 11, 1976) | 35-201(7)(c)(ii)
35-201(7)(G)(ii) | | 42 U.S.C § 300f: Safe Drinking Water Act (Effective December 16, 1974) | 35-201(7)(c)(iii) | | 42 U.S.C § 6921, 6924(u), 6928(h), 6991: Solid Waste Disposal Act (Effective 1965) | 35-201(7)(D)(i)
35-201(7)(E)(i)
35-201(7)(H) | | 26 U.S.C § 9508: <u>Leaking Underground Storage Tank Trust Fund</u> (Effective 1986) | 35-201(7)(H) | | State of Vermont, ANR, VTDEC, Chapter 6 of the Environmental Protection Rules: <u>Solid Waste Management Rules</u> (Effective March 15, 2012) | 35-201(13)(B) | | State of Vermont, ANR, VTDEC, Chapter 7 of the Environmental Protection Rules: <u>Hazardous Waste Management Rule</u> (Effective December 31, 2016) | 35-201(23), (36) | | State of Vermont, ANR, VTDEC, Chapter 8 of the Environmental Protection Rules: <u>Underground Storage Tank Rules</u> (Effective October 13, 2018) | 35-201(58) | # Environmental Protection Rules Chapter 35 ## INVESTIGATION AND REMEDIATION OF CONTAMINATED PROPERTIES RULE # STATE OF VERMONT AGENCY OF NATURAL RESOURCES DEPARTMENT OF ENVIRONMENTAL CONSERVATION WASTE MANAGEMENT AND PREVENTION DIVISION Final Adopted Rule Effective Date: #### Contents | SUBCHAPTE | R 1. GENERAL PROVISIONS | 5 | |------------------------|--|-----| | § 35-101. | AUTHORITY AND PURPOSE | 5 | | § 35-102. | RELEASE PROHIBITION; REPORTING; EMERGENCY RESPONSE | 5 | | § 35-103. | SEVERABILITY | 6 | | § 35-104. | SIGNATORIES | 6 | | § 35-105. | Deliverables | 7 | | § 35-106. | HAZARDOUS MATERIAL LISTING | 7 | | § 35-107. | HISTORICAL FILL EXEMPTION | 7 | | SUBCHAPTEI | R 2. DEFINITIONS | 8 | | § 35-201. | DEFINITIONS | 8 | | SUBCHAPTEI | R 3. SITE INVESTIGATION | 15 | | § 35-301. | APPLICABILITY AND REQUIREMENT TO PERFORM SITE INVESTIGATION | 15 | | § 35-302. | OBJECTIVES OF SITE INVESTIGATION | 15 | | § 35-303. | CONCEPTUAL SITE MODEL | 15 | | § 35-304. | SITE INVESTIGATION WORK PLAN | 16 | | § 35-305. | SITE INVESTIGATION WORK PLAN; SECRETARY REVIEW AND DETERMINATION | 17 | | § 35-306. | SITE INVESTIGATION REPORT | 17 | | § 35-307. | REVIEW OF SITE INVESTIGATION REPORT | 21 | | SUBCHAPTEI | R 4. DATA EVALUATION | 23 | | § 35-401. | EVALUATION OF ENVIRONMENTAL MEDIA LABORATORY ANALYTICAL RESULTS | .23 | | SUBCHAPTEI | R 5. RESPONSE ACTIONS; RELEASES OF HEATING FUELS | 27 | | § 35-501. | APPLICABILITY | 27 | | § 35-502. | INITIAL RELEASE INVESTIGATION | 27 | | § 35-503. | INITIAL RELEASE INVESTIGATION REPORT | 28 | | § 35-504. | RESPONSE TO REPORT | 28 | | § 35-505. | ADDITIONAL SITE INVESTIGATION | 28 | | § 35-506.
Implement | ADDITIONAL SITE INVESTIGATION WORK PLAN; APPROVAL AND | 29 | | § 35-507. | ADDITIONAL SITE INVESTIGATION REPORT SUBMISSION AND REVIEW | 30 | | SUBCHAPTE | R 6 CORRECTIVE ACTION | 31 | | § 35-601. | APPLICABILITY | 31 | | § 35-602. | EXEMPTIONS | 31 | | Marcl | h 1 | l8, | 20 | 19 | |-------|-----|-----|----|----| | | | | | | | § 35-603. | OBJECTIVES OF CORRECTIVE ACTION | 31 | |-----------------------|--|----| | § 35-604. | EVALUATION OF CORRECTIVE ACTION ALTERNATIVES | 32 | | § 35-605. | SECRETARY EVALUATION OF CORRECTIVE ACTION ALTERNATIVES | 35 | | § 35-606. | CORRECTIVE ACTION PLAN | 35 | | § 35-607. | CORRECTIVE ACTION PLAN REVIEW; PUBLIC NOTICE; FINAL DECISION | 38 | | § 35-608. | CORRECTIVE ACTION CONSTRUCTION COMPLETION REPORT | 39 | | § 35-609. COMPLETION | REVIEW AND FINAL DECISION OF CORRECTIVE ACTION CONSTRUCTION REPORT | 40 | | § 35-610. | CORRECTIVE ACTION PERFORMANCE MONITORING AND O&M | 40 | | § 35-611. | SITE GENERATED WASTES. | 40 | | SUBCHAPTER | 7 LONG TERM MONITORING | 42 | | § 35-701. | APPLICABILITY | 42 | | § 35-702. | LONG TERM MONITORING WORK PLAN | 42 | | § 35-703. | GENERAL REQUIREMENTS FOR LONG TERM MONITORING | 42 | | § 35-704. | REPORTING | 42 | | § 35-705. | SECRETARY REVIEW OF LONG TERM MONITORING REPORT | 44 | | SUBCHAPTER | 8 CONTAMINATED SOIL | 45 | | § 35-801. | APPLICABILITY | 45 | | § 35-802. | EXEMPTIONS | 45 | | § 35-803. | Non-Hazardous Waste Contaminated Soil | 45 | | § 35-804. | SOIL MANAGEMENT PLANS | 48 | | § 35-805. | DEVELOPMENT SOILS | 49 | | SUBCHAPTER | 9. INSTITUTIONAL CONTROLS | 52 | | § 35-901. | INSTITUTIONAL CONTROL PLAN | 52 | | § 35-902. | NOTICE TO THE LAND RECORDS | 54 | | § 35-903. | Environmental Easement | 54 | | § 35-904. | LAND USE RESTRICTIONS WITHIN A CERTIFICATE OF COMPLETION | 55 | | SUBCHAPTER | 10. SITE CLOSURE | 57 | | § 35-1001. | SITE MANAGEMENT ACTIVITIES COMPLETE | 57 | | § 35-1002. | CERTIFICATE OF COMPLETION | 58 | | | 11. REQUESTS FOR REIMBURSEMENT FOR MUNICIPAL WATER LIN FROM THE PETROLEUM CLEANUP OR ENVIRONMENTAL | E | | · · | REIMBURSEMENT OF MUNICIPALITIES TO PROVIDE ALTERNATE WATER S | SUPPLIES | |-------------|--|----------| | APPENDIX A. | ENVIRONMENTAL MEDIA STANDARDS | 63 | | §-APX-A1. | SOIL STANDARDS | 63 | | §-APX-A2. | VAPOR INTRUSION STANDARDS | 63 | | §-APX-A3. | SEDIMENT STANDARDS | 63 | | APPENDIX B. | ESTABLISHMENT OF BACKGROUND CONCENTRATIONS | 83 | | § 35-APX-B1 | . ESTABLISHMENT OF SITE SPECIFIC BACKGROUND LEVELS | 83 | | APPENDIX C. | SITE MANAGEMENT WAIVERS | 85 | | § 35-APX-C1 | . TECHNICAL IMPRACTICALITY | 85 | | APPENDIX D. | HAZARDOUS MATERIALS LISTING | 87 | | APPENDIX E. | CUMULATIVE RISK ASSESSMENTS | 88 | | APPENDIX F. | TOXICITY EQUIVALENCE FACTORS | 99 | #### SUBCHAPTER 1. GENERAL PROVISIONS #### § 35-101. AUTHORITY AND PURPOSE - (a) Authority. This rule is adopted by the Secretary of the Agency of Natural Resources pursuant to the authority granted by 10 V.S.A. chapters 47, 59, and 159. - (b) Purpose. This rule is intended to protect public health and the environment by establishing procedures and requirements for conducting investigations and corrective actions at properties where a release of hazardous materials has occurred. This includes procedures for identifying hazardous material contamination to environmental media as well as requirements for source treatment, removal, or containment, long term monitoring, institutional controls, and site closure. #### § 35-102. Release Prohibition; Reporting; Emergency Response - (a) Release prohibition. The release of hazardous materials into the surface or groundwater, or onto the land of the State is prohibited. - (b) Releases and suspected releases. Any person required by 10 V.S.A. § 6617 shall immediately report any of the following releases or suspected releases: - (1) A release of hazardous material that exceeds two gallons. - (2) A release of hazardous material that is less than or equal to 2 gallons and poses a potential or actual threat to human health or the environment. - (3) A discharge of hazardous waste, or release of hazardous material that equals or exceeds its corresponding reportable quantity under CERCLA as specified under 40 CFR 302.4. - (4) The detection of non-aqueous phase petroleum liquid (NAPL) at a thickness greater than 0.01'. - (5) An exceedance of an environmental media standard other than an exceedance for which notification is required under subdivision (c) of this subsection. - (c) Notification of exceedances. Verbal notification within 24 hours of an exceedance of environmental media standard and written analytical results within five business days of the exceedance shall be provided to the Secretary under the following circumstances: - (1) When drinking water supply laboratory analytical results report an exceedance of the groundwater enforcement standards; and - (2) When indoor air quality laboratory analytical results report an exceedance of an indoor air standard. - (d) Reporting and notification under subsections (b) and (c) of this section must be directed to: Monday through Friday, 7:45 AM to 4:30 PM; Waste Management & Prevention Division at (802) 828-1138. At all other times including State holidays: Department of Public Safety Division of Emergency Management and Homeland Security at (800) 641-5005. #### (e) Emergency response. - (1) Notwithstanding the site investigation and corrective action requirements of this rule, the Secretary may require or undertake an emergency response pursuant to 10 V.S.A. § 6615 when the Secretary determines that a release may cause an immediate and serious threat of harm to human health or the environment. - (2) When undertaking emergency responses pursuant to 10 V.S.A. § 1283, notification to the potentially responsible party (PRP) in advance of undertaking emergency response is not required, unless: - (A) The Secretary determines that there is need for additional investigation of the release to determine the impact to sensitive receptors and to human health and that it is appropriate for the PRP to conduct the investigation; or - (B) The Secretary determines that an additional response is necessary to address short-term impacts to sensitive receptors, impact to human health, and that it is appropriate for the PRP to conduct the additional response. - (3) The Secretary may direct the PRP to conduct a limited site investigation to determine if the release requires further site investigation or corrective action. As used in this subsection, "limited site investigation" means the steps the Secretary deems necessary to determine whether additional site investigation or corrective action is necessary to respond to the release of hazardous materials. In the event the PRP is unwilling,
unable, or unknown, the Secretary may perform these actions and seek redress from the PRP at a later date as allowed by 10 V.S.A. § 1283. #### § 35-103. SEVERABILITY The provisions of any section of this rule are severable. If any provision of this rule is invalid or if any application of this rule to any person or circumstance is invalid, the invalidity shall not affect other provisions or applications that can be given effect without the invalid provision or application. #### § 35-104. SIGNATORIES All deliverables required by § 35-102 (emergency response; limited site investigation); § 35-304 (site investigation work plan), § 35-306 (site investigation report); § 35-503(response actions; releases of heating fuels; initial release investigation report); § 35-505 (additional site investigation); § 35-507(a) (response actions; releases of heating fuels; additional site characterization report); § 35-604 (evaluation of corrective action alternatives); § 35-606 (corrective action plan); § 35-608 (corrective action construction completion report); § 35-610 (corrective action performance monitoring and O&M); § 35-702 (long term monitoring work plan); and § 35-704 (long term monitoring; reporting) shall be prepared, signed, and certified by an environmental professional. Deliverables shall be signed with the following certification: "I certify under penalty of perjury that I am an environmental professional and that all content contained within this deliverable is to the best of my knowledge true and correct." #### § 35-105. DELIVERABLES All deliverables shall be submitted electronically via text searchable PDF. Paper copies are to be submitted only upon request of the Secretary. Raw data, field notes, billing records, time sheets, or any other supporting documentation used to create the deliverable shall be made available upon request by the Secretary. #### § 35-106. HAZARDOUS MATERIAL LISTING Pursuant to 10 V.S.A. § 6602(16)(A)(iv) any chemical or substance listed in Appendix D is a hazardous material. #### § 35-107. HISTORICAL FILL EXEMPTION The Secretary shall make a determination in writing that historical fill is present at a site and may exempt the historical fill from the site investigation and corrective action requirements of this rule. No exemption shall apply without the prior, written approval by the Secretary. #### SUBCHAPTER 2. DEFINITIONS #### § 35-201. DEFINITIONS As used in this rule, terms shall have the following meanings: - (1) "Aboveground storage tank" or "AST" means any tank, other than an underground storage tank, used to store any of the following petroleum products: gasoline, diesel, kerosene, used oil, or heating oil. - (2) "Agency" means the Vermont Agency of Natural Resources. - (3) "Analysis" or "analyze" means to test for the presence of hazardous materials using a standard US Environmental Protection Agency (US EPA) method or an alternative approved by the Secretary. - (4) "Area of contamination" means a defined area on a site where contaminated environmental media that is a hazardous waste has been generated by site remediation activities (e.g., excavated). - (5) "Background" means naturally occurring constituents where the concentration detected in the environmental media sampled is not influenced by site related activities. - (6) "Background Air Quality" means pollutant concentrations due to: (1) natural sources;(2) nearby sources other than the one(s) currently under consideration; or (3) unidentified sources other than the one(s) currently under consideration. - (7) "Brownfield" means real property, the expansion, redevelopment, or reuse of which may be complicated by the presence, or perceived presence of, a hazardous material. "Brownfield" does not include any of the following: - (A) A facility that is the subject of a planned or ongoing removal action under CERCLA. - (B) A facility that is listed as a CERCLA site or is proposed for listing. - (C) A facility that is the subject of any State or federal administrative or court order under any of the following authorities: - (i) 33 U.S.C. § 1251 et seq. (federal Water Pollution Control Act) or 10 V.S.A. chapter 47 (water pollution control); - (ii) 15 U.S.C. § 2601 et seq. (Toxic Substances Control Act); - (iii) 42 U.S.C. § 300f et seq. (Safe Drinking Water Act) or 10 V.S.A. chapter 56 (public water supply). - (D) A facility that is subject to either of the following: - (i) corrective action under 42 U.S.C. §§ 6924(u) or 6928(h); - (ii) corrective action permit or order issued or modified to require the implementation of corrective measures. - (E) A land disposal unit in regard to which both of the following apply: - (i) a closure notification under subtitle C of 42 U.S.C. § 6921 et seq. has been submitted; - (ii) closure requirements have been specified in a closure plan or permit. - (F) A facility that is subject to the jurisdiction, custody, or control of any instrumentality of the United States, except for land held in trust by the United States for an Indian tribe. - (G) A portion of a facility to which both the following apply: - (i) a release of polychlorinated biphenyls has occurred; - (ii) is subject to remediation under 15 U.S.C. § 2601 et seq. (Toxic Substances Control Act). - (H) A portion of a facility for which assistance for response activity has been obtained under subtitle I of 42 U.S.C. § 6991 et seq. (Solid Waste Disposal Act) from the Leaking Underground Storage Tank Trust Fund established under 26 U.S.C. § 9508. - (8) "BRELLA" means the Vermont Brownfields Reuse and Environmental Liability Limitation Act. - (9) "Category one underground storage tank" means any underground storage tank, regardless of its capacity, except: - (A) Fuel oil storage tanks used only for on-premises heating purposes; or - (B) Farm or residential tanks used for storing motor fuel. - (10) "Compliance point" means: - (A) the point of compliance as defined in the Vermont Groundwater Protection Rule and Strategy; and - (B) any point established in an approved corrective action plan established to evaluate a release's impact on a sensitive receptor. - (11) "Conceptual Site Model" or "CSM" is a written description of the physical, chemical, and biological processes that control the transport, migration, and actual and potential impacts of contamination (in soil, groundwater, soil gas, indoor air, sediment, or surface water) to sensitive receptors. CSM may include illustrations as appropriate. - (12) "Contamination" or "Contaminated" means the presence of any hazardous material in soil, groundwater, soil gas, indoor air, sediment, surface water, or any other material at a concentration that has the potential to adversely affect human health or the environment. This term does not include naturally occurring substances at or below background levels. - (13) "Development soil" means unconsolidated mineral and organic matter overlying bedrock that contains only PAHs, arsenic, or lead in concentrations that: - (A) exceed the relevant Vermont Soil Standard; - (B) when managed in accordance with § 35-804 or the Vermont Solid Waste Management Rule: - (i) pose no greater risk than the Agency-established soil standard for the intended reuse of the property; and - (ii) pose no unreasonable risk to human health through a dermal, inhalation, or ingestion exposure pathway; - (C) do not leach compounds at concentrations that exceed groundwater enforcement standards; and - (D) do not result in an exceedance of Vermont Groundwater Enforcement Standards. - (14) "Direct contact" means physical exposure to contaminants or naturally occurring compounds in environmental media including soil, groundwater, soil gas, indoor air, sediment, or surface water via incidental ingestion, dermal contact, inhalation of vapors, or March 18, 2019 - fugitive dust via a completed contact pathway. - (15) "Environmental easement" means a legal restriction on a property that grants a real property interest to the State to enforce maintenance requirements, monitoring requirements, or land use restrictions. - (16) "Engineered control" means any physical barrier, system, technology, or method that removes or reduces exposure to a hazardous material by sensitive receptors. - (17) "Environmental media" means components of the environment including soil, groundwater, soil gas, indoor air, sediment, or surface water. - (18) "Environmental media standards" means numeric or narrative criteria adopted by the Secretary to protect human health and the environment. - (19) "Environmental professional" means a person who possesses the following education, training, and experience: - (A) A current professional engineer's (with certification within relevant area of expertise) or professional geologist's license or registration from a state, tribe, or U.S. territory (or the Commonwealth of Puerto Rico) and the equivalent of three years of relevant fulltime experience; - (B) A license or certification by the federal government, a state, tribe, or U.S. territory (or the Commonwealth of Puerto Rico) to perform environmental site work equivalent to that required by this rule and have the equivalent of three years of relevant fulltime experience; - (C) A baccalaureate or higher degree from an accredited institution of higher education in a discipline of engineering, geology, hydrogeology, or an applicable science and the equivalent of five years of relevant fulltime experience; or - (D) The equivalent of ten years of relevant fulltime experience in a discipline of engineering, geology, hydrogeology, or an applicable science. - (20) "Emergency response" means a response action to a situation that may cause immediate and serious threat of harm to human health or the environment. - (21) "Groundwater" means water below the land surface in a zone of saturation. - (22) "Hazardous material": - (A) means all petroleum and toxic, corrosive, or other chemicals and related sludge included in any of the following: -
(i) any substance defined in section 101(14) of the federal Comprehensive Environmental Response, Compensation and Liability (CERCLA) Act of 1980; - (ii) petroleum, including crude oil or any fraction thereof; - (iii) hazardous wastes as defined by the Vermont Hazardous Waste Management Regulations; or - (iv) a chemical or substance that, when released, poses a risk to human health or other living organisms and that is listed by this rule. - (B) does not include herbicides and pesticides when applied consistent with good practice conducted in conformity with federal, state, and local laws and regulations and according to manufacturer's instructions. - (23) "Hazardous waste" means any waste subject to regulation as hazardous waste under the Vermont Hazardous Waste Management Regulations. - (24) "Heating fuel" means heating oil, kerosene, or other dyed diesel fuel that is not used to propel a motor vehicle and which is typically used to heat a structure. Includes any blend of petroleum and biodiesel used to heat a structure. - (25) "Historical fill" means non-indigenous material deposited to raise the topographic elevation of the site, which, if contamination exists in such material, is not resultant from the land use or activities at the location of emplacement. Material is "historical fill" if, based on the weight of evidence the material is determined by the Secretary to meet the following criteria: - (A) was emplaced before May 20, 1985 (the effective date of § 6615.V.S.A.); - (B) is not primarily composed of, construction and demolition debris, reworked soils, dredge spoils, coal, coal ash, wood ash or other solid waste material; - (C) was contaminated with metals, hydrocarbons, or polycyclic aromatic hydrocarbons where such contamination occurred prior to emplacement and exists at concentrations consistent with the pervasive use and release of such materials prior to 1985; - (D) does not contain oil or hazardous materials originating from operations or activities at the location of emplacement; - (E) is not and does not contain a generated hazardous waste; - (F) does not contain chemical production waste, manufacturing waste, or waste from processing of metal or mineral ores, residues, slag or tailings; and - (G) does not contain waste material disposed in a municipal solid waste dump, burning dump, landfill, waste lagoon or other waste disposal location. - (26) "Impervious surface" means those fabricated surfaces, including paved and unpaved roads, parking areas, roofs, driveways, and walkways, from which precipitation runs off rather than infiltrates - (27) "Institutional controls" means non-engineered instruments, such as administrative and legal controls, that help minimize the potential for exposure to a hazardous material or protect the integrity of a remedy. - (28) "Investigation derived waste" means all waste generated during the site investigation or corrective action including, but not limited to, soil cuttings, groundwater, cleaning fluids and wash water, or disposable equipment. - (29) "Land record notice" means a notice on a property land record that informs individuals of the release of a hazardous material on a property and any steps necessary to address this release or residual contamination under the direction of the Secretary. - (30) "Legal description of property" is a description that identifies the location, boundaries, and any existing easements on the property, also referred to as metes and bounds. - (31) "Linear construction project" means construction and development activities, such as waterline and sewer line improvements, that take place within a public or private roadway, railroad, utility line, or their respective rights-of-way where contamination is encountered. - (32) "Long term monitoring" means sampling and analysis of environmental media for contaminants of concern in accordance with an approved monitoring plan. The purpose of long-term monitoring is to demonstrate that the selected remedial method is protective of human health and the environment. - (33) "Method detection limit" means the minimum concentration of a hazardous material that can be quantified consistently and reliably using methods approved by US EPA or another method approved by the Secretary. - March 18, 2019 - (34) "Non-aqueous phase liquid" or "NAPL" means a liquid solution contaminant that does not dissolve in or easily mix with water, such as oil, gasoline, coal tar, or chlorinated solvents. A NAPL may be denser than water, sinking below the water table, or lighter than water, floating on the water table. - (35) "Non-hazardous waste contaminated soil" means soils that are contaminated with hazardous materials at concentrations above the Residential Vermont Soil Standard that are not hazardous wastes under the Vermont Hazardous Waste Management Rule. - (36) "Non-hazardous petroleum contaminated soil" means soils that are contaminated with petroleum but meet the exemption requirements of the Vermont Hazardous Waste Management Regulations in § 7-203(p) and may be managed in accordance with this Rule. - (37) "Non-residential" means any property or portion thereof that is designated as non-residential by municipal zoning ordinance or has a restriction prohibiting residential use. - (38) "Polyencapsulation" means action of storage of contaminated soil by stockpiling on plastic sheeting and enclosing the stockpile with plastic sheeting. - (39) "Potable water supply" means the source, treatment, and conveyance equipment used to provide water used or intended to be used for human consumption, including drinking, washing, bathing, the preparation of food, or laundering. This definition does not include any internal piping or plumbing, except for mechanical systems, such as pump stations and storage tanks or lavatories, that are located inside a building or structure and that are integral to the operation of a potable water system. This definition also does not include a potable water supply that is subject to regulation as a public water supply. - (40) "Potentially Responsible Party" or "PRP" means any individual or organization that is potentially liable for a release of hazardous materials pursuant to 10 V.S.A. § 6615. - (41) "Public water source protection area" means a surface and subsurface area from or through which contaminants are reasonably likely to reach a public water system source. - (A) "Public water system" shall have the same meaning as set forth in the 10 V.S.A. §1671. - (42) "Receiving site" means a location approved by the Secretary where excavated development soils are disposed in accordance with this rule. - (43) "Recognized environmental condition" means the presence or likely presence of a hazardous material at a property: - (A) due to a release; - (B) under conditions indicative of a release to the environment; or - (C) under conditions that pose a material threat of a future release to the environment. - (44) "Release" means any intentional or unintentional action or omission resulting in the spilling, leaking, pumping, pouring, emitting, emptying, dumping, or disposing of hazardous materials into the surface or groundwaters, or onto the lands in the State, or into waters outside the jurisdiction of the State when damage may result to the public health, lands, waters, or natural resources within the jurisdiction of the State. - (45) "Remedy" means an action that results in either a reduction of exposure to human - health to contaminants, or a lessening of risk to a sensitive receptor. - (46) "Residential" includes all locations used as or for residences as well as parks, playgrounds, schoolyards and child care facilities. - (47) "Residual contamination" means hazardous materials that remain in any environmental media above screening values or standards after all required site investigation and correction action has been completed and that the Secretary has determined does not pose a threat to human health or the environment given the current condition or location of the hazardous materials. - (48) "Secretary" means the Secretary of the Vermont Agency of Natural Resources or the Secretary's duly authorized representative. - (49) "Sensitive receptor" means any natural or human-constructed feature that may be adversely affected by a hazardous material and includes public health, public water sources, other sources of potable water supplies, groundwater, surface waters, wetlands, soils, sensitive ecological areas, outdoor and indoor air, and enclosed spaces such as basements, sewers, and subsurface utilities. - (50) "Site" means the area where a release is known or suspected to have occurred, including the extent of contamination resulting from the release. A site may not be limited by legal property boundaries. - (51) "Substantial completion" means: - (A) the site is enrolled in the BRELLA program; and - (B) the property has a remediation system constructed in accordance with an approved corrective action plan; and - (i) the remediation system is operating as designed following implementation of corrective action; - (ii) the institutional controls for the property have not been finalized; or - (iii) long term monitoring is necessary to determine whether remedial objectives are being achieved. - (52) "Surface water" includes all rivers, streams, creeks, brooks, reservoirs, ponds, lakes, springs and all bodies of surface waters, artificial or natural, which are contained within, flow through or border upon the State or any portion of it. - (53) "Surface soil" means soil present at 0-18 inches below ground surface. - (54) "Survey benchmark" means a feature on a site or nearby to which the surveyed elevation of all monitoring wells and site features are referenced. - (55) "Suspected release" means when there is knowledge, information, or other evidence that a release has likely occurred. An exceedance of an environmental media standard shall be presumed to be a suspected release and shall be
reported pursuant to § 35-102(b). Knowledge and information of a suspected release may include review of maintenance and operation records, land use history, or industry standard process details. - (56) "Treatment" means any method, technique, or process designed to change the physical, chemical, or biological character or composition, or remove, any contaminant in environmental media. - (57) "Underground Storage Tank" or "UST" shall be defined as set forth in the Vermont Underground Storage Tank Rule. - (58) "Urban Background Area" means any area designated by the Secretary, for reuse of - March 18, 2019 - development soils that are below the applicable urban background values. - (59)"US EPA" means United States Environmental Protection Agency. - (60)"Vapor intrusion" means the migration of volatile or semi-volatile chemicals from contaminated environmental media or product into a building, subsurface conduit or structure. - (61)"Volatile Organic Compound (VOC)" are volatile carbon containing compounds which have a high vapor pressure at room temperature or dissolve into water. - "Volatile Organic Compound (VOC) field screening instrument" means a (62)photoionization detector, flame ionization detector, field portable gas chromatograph/mass spectrometer or another portable instrument approved by the Secretary to detect VOCs. - (63)"Water table" means the top of the saturated zone where the fluid pressure equals the atmospheric pressure. #### SUBCHAPTER 3. SITE INVESTIGATION #### § 35-301. APPLICABILITY AND REQUIREMENT TO PERFORM SITE INVESTIGATION - (a) This section applies to any release or suspected release that is not fully investigated pursuant to § 35-102 (emergency response), or Subchapter 5 (response action; heating fuel) of this rule. - (b) A person who may be liable for the release or suspected release of a hazardous material as established in 10 V.S.A. § 6615 shall conduct a site investigation in accordance with the requirements of this chapter. #### § 35-302. OBJECTIVES OF SITE INVESTIGATION Objectives of a site investigation are to: - (a) Develop a Conceptual Site Model (CSM) in accordance with § 35-303; - (b) Identify the source, degree, and spatial extent of contamination in all impacted or potentially impacted environmental media; - (c) Identify pathways that are conveying or could convey hazardous materials to sensitive receptors; - (d) Identify sensitive receptors that have been or may be impacted by the release; - (e) Identify data gaps that must be addressed to confirm the CSM or evaluate corrective action alternatives; and - (f) Identify the need to conduct further investigation or corrective action based on the results of all site characterization data gathered to date. #### § 35-303. CONCEPTUAL SITE MODEL - (a) A preliminary CSM shall be developed during the preparation of the site investigation work plan required by § 35-304. The CSM shall be further refined as new site data is collected. - (b) The CSM is a tool to identify sources, receptors, and pathways associated with the site and should support scientific and technical decisions. A CSM is an iterative process of characterizing site contamination based on available site data and both historical and existing conditions. The CSM shall evaluate and present the data in a narrative format that depicts the fate and transport of site contaminants, addresses the threat or potential threat to human health and the environment from the site contaminants, and identifies data gaps. - (c) The CSM shall identify the following or identify how the information will be obtained in the context of the site investigation: - (1) Source(s) of the release; - (2) The location, depths, and characteristics of existing and former engineered structures, subsurface infrastructure, tanks, and containers, from which or through which the suspected contaminants may have been released, transported, or may impact a sensitive receptor; - (3) Historical and current land uses and activities for the site and immediate surrounding area; - (4) Sources and contaminants; - (A) Identify all potential hazardous materials and all potential and actual sources of a release; - (B) Identify, to the extent possible, the release date(s), location(s) known volume(s), and any prior remedial actions; - (C) Identify all hazardous material phases (e.g. NAPL, sorbed to matrix, dissolved in groundwater or soil moisture, and in vapors in the vadose zone); - (D) Identify all hazardous material physical properties and the likely behavior (mobility, physical state, and persistence) of each chemical within environmental media; - (E) If known, an estimate of the amount of hazardous material mass on the site; and - (F) If known, an estimate of the amount of contaminated soil. - (5) Identify the environmental media that is affected or threatened from the release. - (6) Geology. A brief description of regional and site-specific soils and bedrock. Boring logs, well logs and groundwater confining layers shall be included, if available and not been previously submitted to the Secretary. If applicable, values for soil bulk density, porosity, fraction organic content, pH and reduction-oxidation potential, shall be included. If available include geologic maps, fracture trace maps, geophysical data, and cross sections; - (7) Hydrogeology. Describe regional and site-specific hydrogeology, horizontal and vertical groundwater flow gradients and direction, and an assessment of the potential for preferential pathways and multiple aquifers. If available, hydraulic conductivity, transmissivity, and other parameters shall be included; - (8) Contaminant fate and transport. Describe the hazardous material distribution, migration pathways, the amount of migration occurring, the predicted migration of the contamination over time, and if available, the adsorption, desorption, absorption, and retardation of the hazardous material, and naturally occurring degradation processes. If historical groundwater quality data have been collected, estimate the duration of groundwater contamination to determine if groundwater reclassification is warranted per the Groundwater Protection Rule and Strategy; - (9) Receptor study and evaluation. Identify all potentially threatened sensitive receptors and complete exposure pathways. A list of the names and addresses of impacted or threatened third parties shall be included, if applicable. Compare all measured concentrations of hazardous materials with applicable environmental media standards; and - (10) If appropriate, a figure illustrating the site setting and key contaminant migration mechanisms and pathways, both complete and incomplete. ## § 35-304. SITE INVESTIGATION WORK PLAN (a) General requirements. - A site investigation work plan shall be submitted to the Secretary no later than 30 (1) days of the date the Secretary was notified of a release or upon request by the Secretary, unless the Secretary approves an alternative schedule. - (2) A site investigation work plan shall be approved by the Secretary prior to the initiation of site work. - (b) Content requirements. A site investigation work plan shall include the following: - Site information. Table of names, addresses, email addresses, and phone numbers of (1) the following: - (A) Property owner and operator; and - Any person or entity who released a hazardous material at the site. (B) - Current land use and activities of the property. (2) - (3)Land uses and activities of properties adjacent to the site. - Site description. A physical and environmental description of the site. **(4)** - Site characterization objectives and strategy. This strategy shall address known data (5)gaps and include contaminant characterization methods, sampling locations and methods, and how this strategy will meet the site investigation objectives; - Identification of analytical methods. (6) - A list of consultant standard operating procedures to be used during the site (7)investigation, which shall be submitted to the Secretary upon request. - A CSM and a description on how the site investigation will gather information to (8)further develop and refine the CSM. - (9)A discussion of how investigation derived waste will be managed, which shall be in accordance with § 35-611(c). - A quality assurance and quality control (QA/QC) plan. (10) - (11)Maps. Unless otherwise required by the Secretary, a vicinity map in accordance with \S 35-306(b)(14)(A) and a site map in accordance with \S 35-306(b)(14)(B) showing proposed environmental media sampling locations shall be included. - Latitude/longitude of the site, as close as possible to the known or suspected release (12)location or locations, referenced to the WGS1984 coordinate system (Mercator), in decimal degrees with a minimum acceptable accuracy of plus-or-minus 15 feet. - (13)Estimated costs, if requested by the Secretary. - (14)A site investigation implementation schedule. - Signature. A site investigation work plan shall be signed by the environmental (15)professional in accordance with § 35-104. #### § 35-305. SITE INVESTIGATION WORK PLAN; SECRETARY REVIEW AND DETERMINATION - The Secretary shall only approve, in writing, a site investigation work plan upon finding the (a) investigation will meet the objectives of § 35-302. - (b) A PRP shall implement an approved site investigation work plan no later than 60 days from the date of the Secretary's approval, unless an alternate implementation timeline is approved by the Secretary. #### § 35-306. SITE INVESTIGATION REPORT - (a) A site investigation report shall be submitted to the Secretary within 90 days of receipt of final laboratory data, or within an alternate schedule approved by the Secretary. - (b) A site investigation report shall include the following: - (1) Executive summary. A site investigation report shall include an executive summary of the site investigation, consisting of a summary of findings, conclusions, and recommendations based
upon the data collected during the site investigation. - (2) Site contact information. Table of names, addresses, email addresses, and phone numbers of the following: - (A) Property owner and operator. - (B) Any Potentially Responsible Party who caused or may have caused a release a hazardous material at the site. - (3) Current use or uses of the property. - (4) Land uses and activities of properties adjacent to the site. - (5) Site description. A physical and environmental description of the site. - (6) Latitude/longitude of the site, as close as possible to the known or suspected release location or locations, referenced to the WGS1984 coordinate system (Mercator), in decimal degrees. Minimum acceptable accuracy is plus-or-minus 15 feet. - (7) Property history. Past and present land use, waste storage or disposal areas, potential sources of contamination, and hazardous waste and hazardous materials disposal practices, including any associated EPA ID numbers. The property history section shall include a description of current and historical property uses in the surrounding area. A list of all recognized environmental conditions should be provided if an ASTM Phase I or Phase II Environmental Site Assessment has been completed. Presentation may include copies of historical maps (including Sanborn Fire Insurance Maps, town maps) and copies of town directories. - (8) Site contaminant background. A description of all known releases of hazardous materials, including the following information: - (A) The date and a description of each release, if known, the discovery date of each release, the location of each release, and the PRP for each release. - (B) The date each release was reported to the Secretary. - (C) A description of response actions taken for each release. - (D) A list of any previous environmental investigations and reports (including Phase I Environmental Site Assessments) pertinent to the site relating to a release of hazardous materials, including a summary of findings. - (E) A copy of any previous investigation or report relating to a release of hazardous materials, if not already on file with the Secretary. - (F) A list of governmental records reviewed relating to the site. - (9) A CSM as detailed in § 35-303. - (10) Work plan protocol deviations. Any deviations from the approved work plan shall be identified and discussed. - (11) Sample-collection documentation. Documentation of the sample location, method of collection, and well identification number. - (12) Contaminated media characterization. Analytical results from the Site Investigation and applicable prior investigations shall be tabulated and compared to the applicable environmental media standard in accordance with Subchapter 4, unless a site-specific risk assessment was conducted pursuant to § 35-306(b)(13) or a site-specific background study was performed in accordance with Appendix B (in which case the analytical results from the Site Investigation will be compared with these alternative values). - (13) As applicable, a site-specific risk assessment that includes use of chemical and endpoint specific toxicity values and site-specific exposure assumptions may be performed for both current and potential future site uses. A site-specific risk assessment shall follow standard U.S. E.P.A. risk assessment methodology to determine if an incremental lifetime cancer risk of 10⁻⁶ or a hazard index of 1.0 is exceeded. - (14) Maps. All maps shall include the location of the site, physical and environmental features, the Vermont Department of Environmental Conservation Hazardous Site number, legend, graphical scale bar, and a base map source reference. All maps shall be accurate and to scale. The following maps shall be included: - (A) Vicinity map. Prepared using the Vermont Agency of Natural Resources online Natural Resource Atlas as a base map including property boundary lines, surrounding land use, buildings, hazardous sites, hazardous materials sources, street names, drinking water sources, surface water bodies and any other sensitive receptors identified in § 35-303(c)(9) within 2,000 feet of the site. Alternative base maps and fewer map elements may be used if approved by the Secretary. - (B) Site map. A site investigation map shall include the following: - (i) Surface topography spot elevations or contours. - (ii) Property boundary lines. - (iii) Environmental media sample locations. - (iv) Contaminant source areas, including former or current tank locations, release areas, chemical storage or process areas, waste storage and disposal locations, or other areas as appropriate. - (v) Engineered structures, including asphalt parking surfaces, concrete sidewalks, drainage ways, diversion ditches, drain tiles, manholes, lined areas, leachate collection systems, septic systems, sewer lines, floor drains, drywells. - (vi) Survey benchmark. A permanent and recoverable site feature shall be assigned as the site survey benchmark. The use of the top of monitoring well risers, road box covers, or concrete pads as a benchmark is prohibited. - (C) Groundwater contour map. The groundwater contour map shall include the location of all monitoring points and data collected to create groundwater elevation contours. Multiple maps may be needed to show groundwater flow in different aquifers. A groundwater contour map will not be required if the site investigation did not include the installation of groundwater monitoring wells. - (D) Contaminant distribution map. A contaminant distribution map shall include the location of all monitoring points and laboratory analytical result (including non-detect) for that monitoring point. As applicable, based on the site-specific geology and distribution of contaminants of concerns (i.e. exceeding a standard), isopleths shall be used to indicate the approximate location of compound-specific contaminant plumes that exceed the applicable environmental media standard. Multiple maps may be required to illustrate multiple contaminants or multiple aquifers. Maps solely depicting total contaminants (e.g. total VOCs) will not be accepted, unless otherwise approved by the Secretary. At sites where isopleth maps are not appropriate, contaminant concentrations shall be plotted on the maps adjacent to the sampling points. - (15) Discussion. The discussion shall include a descriptive analysis of how the data gathered further refines the CSM, how the CSM has been updated, and how the site investigation objectives in § 35-302(a) have been met. The discussion shall also establish that the data collected are suitable to determine the existing and future exposure to sensitive receptors and, the need for further characterization. Only data that meets quality assurance quality control (QA/QC) criteria will be accepted. A discussion of data which doesn't meet QA/QC criteria shall be included. The report shall evaluate if the data demonstrates that Vermont Groundwater Enforcement Standards (VGES) are met at compliance points, and if not, the estimated timeframe for meeting VGES at compliance points. - (16) Data presentation. All collected data shall be organized in a narrative, tabular, and graphical form; data shall be presented on maps and cross sections when appropriate. All detected hazardous material concentrations shall be reported. Hazardous materials that are not detected shall be reported as less than the numerical detection limit. Detection limits shall be below the environmental media standards and shall be provided in tabular format with the analytical results. All laboratory data qualifications must be included in tabulated data presentations. - (17) QA/QC sample results. At a minimum, a trip blank, a method blank and a duplicate sample will be required. If field analytical methods are approved in the work plan, the Secretary may require that a subset of samples be analyzed at a fixed base laboratory. Additional QA/QC samples (e.g. field blanks) may be required by the Secretary depending on the complexity of the investigation or sampling methods used. Any deviations from QA/QC procedures or acceptable limits shall be identified and discussed. Only data that meets quality assurance quality control (QA/QC) criteria specified in the QA/QC Plan will be accepted. - (18) Investigation derived waste. All investigation derived waste generated during the site investigation shall be managed in accordance with § 35-611(c). A discussion of how the investigation derived waste was managed shall be included in the site investigation report. - (19) Conclusions and recommendations. The site investigation report shall include a discussion of the findings of the investigation that substantiate the revised CSM, and, specifically, the risk that hazardous materials pose to identified sensitive receptors. Further this section shall identify completed exposure pathways, data gaps, and potential corrective actions. The PRP shall make recommendations on proposed monitoring and frequency and need for further investigation, an evaluation of corrective action alternatives, corrective action, institutional control, or site closure. - If additional data collection is necessary in order to identify an appropriate corrective action, then additional site investigation will be required. - Signature and certification. A site investigation report shall be certified by the (20)environmental professional that it was conducted in accordance with the approved workplan and signed in accordance with § 35-104. - (21)Appendices. - (A) Standard operating procedures. A list of consultant standard operating procedures (SOPs) that were used during site investigation. SOPs shall be provided to the Secretary upon request. - (B) Monitoring well and soil boring logs. At a minimum, logs shall include a description and discussion of monitoring well, soil boring and test pit installation. Logs shall include well boring or test pit location with latitude and longitude. In addition, logs
shall include the installation method, blow count data, elevation, total depth, depth to groundwater, soil or rock descriptions, well construction, hole backfill, or sealing information, odors noted, and field screening results. - (C) Photographic documentation. Color images showing work performed at the site (UST closure, soil stockpiles, etc.) and pertinent site or vicinity features shall be included as an appendix. Each photographic presentation shall include the date and time, location, and orientation. - (D) Field notes. Copies of the original field notes shall be attached as an appendix and the field notes shall contain the following minimum content: the date the work was performed, name of the person conducting the work, tasks completed, date, documentation of weather conditions, sampling timeline with locations, sampling logs, field monitoring results, and calibration information for each type of field analytical equipment. - (E) Laboratory results. A copy of the laboratory results, chains of custody documentation and all QA/QC data, as specified in the approved work plan shall be included. - (F) Calculations. All calculations, such as contaminant mass or volume, travel and migration time, natural attenuation, Cumulative Risk Assessment and groundwater gradients. If computer modeling is conducted, a reference to the model used, the data inputs, and data output package shall be included. - If a quantitative human health risk assessment is conducted, the full risk (G) assessment report, including summary tables and electronic copies of calculating spreadsheets, shall be included. - (H) Hydrogeologic cross sections. When requested by the Secretary or approved in a work plan. #### REVIEW OF SITE INVESTIGATION REPORT § 35-307. (a) The Secretary shall review the site investigation report for completeness with the requirements of § 35-306(b) and shall provide written notification to the PRP of one of the following determinations: - (1) The site investigation has met the objectives of § 35-302, has adequately defined the degree and extent of contamination, and risks to sensitive receptors have been appropriately evaluated and are absent or have been adequately managed, and that: - (A) The site is eligible for closure in accordance with Subchapter 10; - (B) Long-term monitoring may be required in accordance with Subchapter 7; or - (C) Institutional Controls may be required in accordance with Subchapter 9. - (2) The site investigation has not met the objectives of § 35-302 and/or has not adequately defined the scope and extent of contamination or risk to sensitive receptors. The PRP shall submit a supplemental site investigation work plan that meets the requirements of § 35-304(b) within 30 days of the Secretary's notification to address data gaps or other deficiencies identified by the Secretary. - (3) The site investigation report is incomplete. The site investigation report will be returned to the PRP for additional information and resubmittal within a timeframe established by the Secretary; or - (4) The site investigation has met the objectives of § 35-302 and has adequately defined the degree and extent of contamination but risks to sensitive receptors are present or have not been adequately managed. An evaluation of corrective action alternatives, or corrective action plan shall be completed in accordance with Subchapter 6. If requested by the Secretary, a work plan or cost estimate for an Evaluation of corrective action alternatives (ECAA) and/or CAP may be required. ### SUBCHAPTER 4. DATA EVALUATION # § 35-401. EVALUATION OF ENVIRONMENTAL MEDIA LABORATORY ANALYTICAL RESULTS - (a) Applicability. A PRP shall evaluate laboratory analytical data for samples collected from environmental media as part of site characterization or to document corrective action implementation and completion. Acceptable methods for data evaluation include direct comparison to environmental media standards and cumulative assessment of risk. Specific environmental data evaluation methods shall be utilized as provided in this Subchapter. - (b) Applicable standards comparison. All analytical results shall be compared to the applicable standard set forth in Appendix A, the Vermont Groundwater Protection Rule and Strategy and the Vermont Water Quality Standards. In the absence of an applicable standard, a PRP shall refer to the applicable and most current US EPA Regional Screening Level. - (c) Soil analytical results comparison. All soil sample results for each sample shall be compared to the Vermont Soil Standards in Appendix A of this Rule. Laboratory analytical results shall be compared to Vermont Residential Soil Standards unless the property is zoned for non-residential use only. - (d) The following methods shall be applied to determine risk to public health, as applicable: - (1) Method 1 Soil Screening employs a direct comparison of individual soil sample laboratory analytical results to the applicable Vermont Residential or Non-residential Soil Standards as follows: - (A) All detected contaminant concentrations shall be compared to the applicable Vermont Soil Standard (VSS). - (B) All laboratory results that are estimated shall be compared to the VSS using the value reported from the lab. Alternatively, the sample may be re-analyzed by a more sensitive laboratory method to lower the MDL to generate a value that is not estimated. - (C) Any non-detect result for contaminants of concern with an MDL that exceeds the VSS shall be considered a detected concentration equivalent to the MDL. - (D) If the sample was collected from a depth of 0 to 18 inches below ground surface and detected compound concentrations for contaminants of concern do not exceed any VSS, a Method 2 cumulative risk assessment for surface soils shall be performed. - (2) Method 2 Cumulative Risk Assessments (CRA) for surface soils. The Method 2 CRA determines if an incremental lifetime cancer risk (ILCR) of 10⁻⁶ or a hazard index (HI) of 1.0 is exceeded based on direct contact. The risk is expressed as the total (summed) risk made up of each individual compound. - March 18, 2019 - Compounds with non-detect results shall be not be included in the Method 2 (A) CRA. - (B) A Method 2 CRA shall be performed by using the calculations provided in Appendix E. - (3) Method 3 Site-Specific Risk Assessment. A PRP may elect to perform a site-specific risk assessment (SSRA). The Method 3 SSRA determines if an incremental lifetime cancer risk of 10⁻⁶ or a hazard index of 1.0 is exceeded. - Vapor intrusion evaluations. If indoor air sampling is required based on existing soil gas or (e) groundwater analytical data, the presence of non-aqueous phase liquid, and an assessment of vapor intrusion pathways, then an evaluation shall be conducted in accordance with this subsection. - Soil gas analytical results. All detected compound concentrations shall be compared (1) to the Vapor Intrusion Standards (VIS) for soil gas provided in Appendix A of this rule. - **(2)** Groundwater analytical results. All detected compound concentrations shall be compared to the VISs for groundwater provided in Appendix A of this rule. - (f) Indoor air sample analytical results. All indoor air sample results attributable to a release shall be compared to the applicable Vermont Indoor Air Standards found in Appendix A. Laboratory analytical results shall be compared to Vermont Residential Indoor Air Standards unless the property is zoned for non-residential use only. - (g) The following methods shall be applied to determine risk to public health, as applicable: - (1) Method 1 Indoor Air Screening employs a direct comparison of detected indoor air analytical concentrations in each sample to the applicable Vermont Indoor Air Standards (VIAS) as follows: - All detected analytical concentrations shall be compared to VIAS. (A) - All laboratory estimated concentrations shall be compared to VIAS. (B) - Any non-detect result for contaminants of concern where the MDL exceeds (C) the VIAS shall be considered a detection above a standard. - (D) If detected analytical concentrations for contaminants of concern do not exceed the VIAS, a Method 2 cumulative risk assessment shall be performed. - (2)Method 2 CRA for indoor air. - (A) Compounds with non-detect results shall be not be included in the Method 2 CRA. - (B) Method 2 CRA shall be performed by using the calculations provided in Appendix E. - March 18, 2019 - Method 3 SSRA. A PRP may elect to perform a site-specific risk assessment. The (3) Method 3 SSRA determines if an incremental lifetime cancer risk of 10⁻⁶ or a hazard index of 1.0 is exceeded. - (h) Groundwater analytical results. All detected compound concentrations shall be compared to the Vermont Groundwater Enforcement Standards. - (i) Drinking water analytical results. All detected compound concentrations shall be compared to the Vermont Groundwater Enforcement Standards or, when available, the Vermont Action Levels. - (j) Surface water analytical results. All detected compound concentrations shall be compared to the Vermont Water Quality Standards. - (k) Sediment analytical results. All detected compound concentrations shall be compared to the Threshold Effect Concentration (TEC) and Probable Effects Concentration (PEC) provided in Appendix A. - (l) Data evaluation for specific contaminant classes. - (1) Some chemicals are members of the same family or group and have been shown to exhibit similar toxicological properties; however, each chemical may differ in the degree of toxicity. In such instances, a toxicity equivalence factor (TEF) or relative potency factor (RPF) shall be applied to convert the reported concentration of each member of the group to a toxicity equivalence quotient (TEQ) relative to the toxicity of the index chemical for the group. The index chemical is assigned a TEF of 1. Total TEQ for a sample shall then be compared to the value for the index chemical. - **(2)** Evaluating classes
of contaminants such as dioxins, carcinogenic polycyclic aromatic hydrocarbons, and polychlorinated biphenyls shall be reported as follows: - (A) Dioxins, furans, and dioxin-like PCBs. Soil and sediment results must be compared to (2,3,7,8) tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalency as follows: - (i) Laboratory results must include the 2,3,7,8-TCDD TEFs employed, raw concentrations and TEQ values for each individual dioxin-like compound. The TEF are found in Appendix F of this rule. - (ii) For dioxin-like compounds that are non-detect, a value equal to one half the reported MDL shall be used to calculate the TEQ. - (iii) The total TEQ per sample shall be reported. - Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs). cPAHs shall be (B) evaluated as follows: - (i) Soil analytical results for cPAHs shall be reported as benzo(a)pyrene TEQ. - (ii) For cPAH compounds that are non-detect, a value equal to one half the reported MDL shall be used for calculating the TEQ.Sediment shall be compared to the individual PAH in Appendix A.Relative potency factors are found in Appendix F. - (C) Polychlorinated Biphenyls (PCBs). Analytical results for PCBs shall be evaluated as follows: - (i) If results are analyzed as PCB Aroclors, analytical results shall be totaled and used to estimate total PCBs and compared to the VSS or VGES as applicable. - (ii) If PCBs are reported as homologs, the sum of all homologs will be used as an estimate of total PCBs and shall be compared to the VSSs located in Appendix A, or appropriate groundwater enforcement standards or VISs. If PCBs are reported as congeners, dioxin-like congeners shall be segregated and assessed and included in estimates of 2,3,7,8-TCDD TEQ, per the above section. Non-dioxin-like congeners shall be summed and compared to the VSS. - (iii) If PCBs are included in a Method 2 CRA, PCB Aroclor and homolog concentrations shall be added to the concentration for PCBs. PCB congener data shall be separated as described above. - (iv) The total PCBs will be evaluated for noncancer hazard based on the noncancer toxicity value of Aroclor 1254. - (m) Data Quality Assurance/Quality Control Analytical Results. - (1) Depending on site-specific conditions and quality assurance/ quality control (QA/QC) objectives included in the QA/QC plan, a trip blank, a method blank and a duplicate sample may be required. - (2) If field analytical methods are approved in the work plan, the Secretary may require that a subset of samples be analyzed at a fixed base laboratory. - (3) Additional QA/QC samples (e.g. field blanks) may be required by the Secretary depending on the complexity of the investigation or sampling methods used. - (4) Any deviations from QA/QC procedures or acceptable limits shall be identified. - Only data that meets quality assurance quality control (QA/QC) criteria specified in the QA/QC Plan will be accepted. # SUBCHAPTER 5. RESPONSE ACTIONS; RELEASES OF HEATING FUELS # § 35-501. APPLICABILITY This subchapter applies to the release of heating fuel from underground storage tanks or aboveground storage tanks used for storage of heating fuel. At the Secretary's discretion, responses to releases of heating fuel may be managed under Subchapter 3 (site investigation) or Subchapter 6 (corrective action) of this rule. # § 35-502. INITIAL RELEASE INVESTIGATION - (a) Soil removal. Following approval from the Secretary, a PRP may remove impacted soil in the area where a release of heating oil occurred. Removal shall occur until: - (1) VOC field screening instrument readings are below 10 ppmv, or - (2) the water table or bedrock is encountered, or - (3) a predetermined volume as approved by the Secretary is achieved. - (b) Soil treatment or disposal. Soil treatment or disposal shall be approved in writing by the Secretary and performed in accordance with Subchapter 8. A Soil Management Plan shall be required if requested by the Secretary. - (c) Soil analysis. Discrete post excavation soil samples shall be collected for laboratory analysis to document removal of contamination or to characterize soil contamination remaining in place. If removal of all contaminated soil is not possible due to physical constraints, the PRP shall: - (1) Collect and analyze a discrete sample of soil remaining in place from the area(s) determined to be the most contaminated based on VOC field screening instrument results; and - (2) If groundwater is encountered, collect a groundwater sample for laboratory analysis from the excavation area. - (d) Additional site investigation. If contaminated soil excavation is not feasible, additional site investigation in accordance with § 35-505 shall be required as directed by the Secretary. The Secretary shall have discretion to determine the feasibility of excavation of soil for purposes of this provision. - (e) Bedrock. If soil excavation is performed following approval from the Secretary, the excavation shall be extended to the soil bedrock interface to determine if contaminated soil is present unless: - (1) the vertical extent of contaminated soil is delineated and determined to be adequately separated from the bedrock surface; - (2) the water table is encountered; or - (3) excavation to bedrock is physically impossible, a confining soil layer is present, or an alternate remedial approach is approved by the Secretary. - (f) Drinking water. If a water supply well is located within 200 feet of the release, a sample shall be collected from this water supply for appropriate laboratory analysis. - (g) Vapor intrusion. If any building is located within 30 feet of the release, indoor air shall be screened with a VOC field screening instrument. - (h) Surface waters. If visual observations or VOC field screening instrument readings indicate that a release may have impacted surface water, the PRP shall immediately take measures to abate any continuing release to surface water and remove to the extent possible any heating fuel in the surface water. # § 35-503. INITIAL RELEASE INVESTIGATION REPORT - (a) Within 30 days of receipt of laboratory data, or upon an alternate timeframe approved in writing by the Secretary, a PRP shall provide the Secretary a report that contains the following: - (1) Site description, in accordance with $\S 35-306(b)(5)$. - (2) Property history, in accordance with § 35-306(b)(7). - (3) Results of contaminated environmental media characterization, in accordance with § 35-306(b)(12). - (4) Maps, in accordance with $\S\S 35-306(b)(14)(A)$ and 35-306(b)(14)(B). - (5) Data presentation, in accordance with § 35-306(b)(16). - (6) Conclusions and recommendations, in accordance with $\S 35-306(b)(19)$. - (7) Photographic documentation in accordance with § 35-306(b)(21)(C). - (8) Laboratory reports, in accordance with § 35-306(b)(21)(E). - (9) Waste disposal manifests, bill of lading, and weight slips as appropriate. - (10) Recommendations for no further action, additional release characterization, or corrective action, as appropriate. # § 35-504. RESPONSE TO REPORT - (a) The Secretary shall respond, in writing, to the investigation and reporting required by this section and shall provide written notification to the PRP of one of the following determinations: - (1) No further action is required; - (2) An additional site investigation in accordance with § 35-505 is required; - (3) A site investigation in accordance with Subchapter 3 or corrective action in accordance with Subchapter 6 is required; or - (4) The report is incomplete and will be returned to the PRP for revision and resubmission. # § 35-505. ADDITIONAL SITE INVESTIGATION - (a) If required by the Secretary under § 35-504 of this subchapter, a PRP shall prepare an additional site investigation work plan and provide it to the Secretary for review and approval prior to implementation. - (b) An additional site investigation work plan shall include: - (1) Soil borings. Soil borings shall be advanced to characterize the degree and extent of petroleum impacts to soil and evaluate risk to groundwater. Soil borings shall be advanced: - (A) within the former UST location or AST release (if this/these area(s) have not been adequately characterized under § 35-502); and - (B) until VOC field screening instrument readings are below 10 ppmv for at least five consecutive feet, or other such depth as is required by the Secretary. - (2) Soil analysis. If required by the Secretary, soil samples shall be collected for laboratory analysis from each boring: - (A) at the water table or the deepest point of the boring if soil screening results from a VOC field instrument are non-detect throughout the soil boring, or - (B) from the location of the highest VOC field instrument reading if contamination is present. - (3) Groundwater monitoring wells. If VOC field screening instrument results exceed 10 ppmv in any boring at or within five feet of the water table, the PRP shall install monitoring wells to determine the extent of impacts to groundwater and groundwater flow direction and shall collect groundwater samples for appropriate laboratory analysis. - (4) Surface water and sediment. If applicable, representative samples shall be collected for laboratory analysis to determine whether there are exceedances of environmental media standards in surface water and sediment. # § 35-506. ADDITIONAL SITE INVESTIGATION WORK PLAN; APPROVAL AND IMPLEMENTATION - (a) The Secretary shall approve an additional site investigation work plan if the work plan is designed to adequately characterize the degree and extent of the release and provides sufficient information to evaluate the impact of the release on any sensitive receptor. The Secretary's final decision under this section shall be made in writing. - (b) A PRP shall implement the approved additional site investigation work plan within 30 days of the date of the approval or within an alternate timeframe approved by the Secretary. The work plan shall be implemented under the
supervision of an environmental professional. (c) Any deviations to the approved work plan dictated by site conditions during site investigation implementation shall be approved by the Secretary prior to the change. # § 35-507. ADDITIONAL SITE INVESTIGATION REPORT SUBMISSION AND REVIEW - (a) An additional site investigation report shall be submitted within 90 days of receipt of laboratory data or in accordance with an alternate schedule approved by the Secretary. The additional site investigation report shall include the elements of a site investigation report in § 35-306(b) that were approved by the Secretary per §35-506(a). - (b) Upon review of the additional site investigation report, the Secretary shall, in writing, notify the PRP of one of the following conclusions: - (1) The additional site investigation has adequately defined the degree and extent of contamination and risks to sensitive receptors have been appropriately managed. No further action will be required following proper decommissioning of any monitoring wells or other remedial equipment. - (2) The additional site investigation has not adequately defined the degree and extent of contamination and the PRP is required to conduct additional investigation of the site in accordance with Subchapter 3. - (3) The additional site investigation has adequately defined the degree and extent of contamination but risks to sensitive receptors have not been mitigated, and the PRP shall develop a corrective action plan in accordance with Subchapter 6 of this rule. - (4) The additional site investigation has adequately defined the degree and extent of contamination exceeding applicable environmental media standards and risks to sensitive receptors have been appropriately managed. An institutional control will be required in accordance with Subchapter 9. - (5) The additional site investigation report is inadequate and requires revisions. The Secretary shall identify the inadequacies and a revised report and any additional information shall be submitted within 30 days or an alternate schedule approved by the Secretary. ### SUBCHAPTER 6 CORRECTIVE ACTION # § 35-601. APPLICABILITY Except as exempted in § 35-602 of this section, a PRP shall initiate corrective action upon a finding by the Secretary that a site investigation has adequately defined the extent of contamination but risks to sensitive receptors have not been appropriately managed. # **§ 35-602.** EXEMPTIONS - (a) The following are exempt from the requirements of §35-604, §35-606, §35-608, and §35-610 in this Subchapter: - (1) An emergency response performed pursuant to § 35-102 of this rule. - (2) A response action to address the release of heating fuels pursuant to Subchapter 5 of this rule. - (3) Following approval from the Secretary, removal of petroleum contaminated soils during the closure or replacement of an underground storage tank. - (4) Management of contaminated soils under an approved soil management plan per Section § 35-804 of this rule. - (b) A PRP shall not be required to conduct corrective action in accordance with this Subchapter upon conclusion of a site investigation report that: - (A) there are no exceedances of any applicable Vermont Groundwater Quality Standards (Vermont Groundwater Enforcement Standards or Vermont Action Levels) at drinking water sources, vapor intrusion is not occurring and there are no other impacts that may present a threat to human health or the environment; - (B) groundwater contamination is confined to the same property where the release occurred; - (C) a demonstration that contamination will not migrate at concentrations exceeding standards, given the current data that is available, and concentrations are stable or declining; - (D) the hazardous material release has been addressed through a removal of a limited amount of contaminated material; - (E) the site investigation demonstrates that there are no direct contact threats; and - (F) the Secretary has approved an institutional control plan that meets the requirements of Subchapter 9 of this rule. ## § 35-603. OBJECTIVES OF CORRECTIVE ACTION - (a) Corrective actions shall be designed to mitigate the impact of hazardous materials to sensitive receptors to the maximum extent practicable by implementing the following approaches, in order of priority: - (1) Treatment of environmental media to the maximum extent practicable, or to levels where the risk may be managed via engineered controls or institutional controls; - (2) Removal and proper disposal of environmental media impacted by hazardous materials; - (3) Use of engineered and other controls to contain hazardous materials and to mitigate impacts to environmental media and sensitive receptors; and - (4) Use of institutional controls to mitigate exposure to sensitive receptors. # § 35-604. EVALUATION OF CORRECTIVE ACTION ALTERNATIVES - (a) Evaluation required. At sites that are not exempt in accordance with § 35-602 or subsection (b) of this section, the PRP shall evaluate corrective action alternatives prior to submitting a corrective action plan to the Secretary. If pilot testing or additional data collection is necessary as part of the evaluation, a work plan shall be submitted for approval by the Secretary. - (b) Exemption. A PRP may submit a corrective action plan without conducting an evaluation of corrective action alternatives pursuant to this section, provided all the following have been demonstrated to the satisfaction of the Secretary: - (1) The site investigation report demonstrates that there are no impacts to drinking water sources and vapor intrusion is not occurring. - (2) For impacted groundwater, the site investigation report demonstrates that the groundwater contamination meets Vermont Groundwater Enforcement Standards at established compliance points or will meet VGES at established compliance points within ten years as established in the Vermont Groundwater Protection Rule and Strategy. - (3) Any direct contact threats to sensitive receptors can be addressed through removal of a limited amount of source material or capping with an engineered barrier. - (4) A corrective action plan will document that the proposed remedy, with respect to the hazardous material in question, has been utilized at other sites and has been demonstrated to be reliable, cost effective, and effective in addressing remediation of the hazardous material. - (5) For development soil receiving sites, all requirements in § 35-805(d) have been met, and a corrective action plan which addresses potential direct contact with development soils by the public, including capping and land use restrictions, has been approved by the Secretary. - (c) Identification of corrective action alternatives. The PRP shall identify corrective action alternatives that will eliminate exposure pathways to sensitive receptors. The number and type of alternatives to be considered shall be determined by taking into account the scope, characteristics, and complexity of the problem being addressed. At each site, at least the following alternatives shall be considered: - (1) An alternative that reduces the toxicity, mobility, or volume of the hazardous materials released to the extent feasible. This alternative shall minimize the need for long term management at the site; and - (2) An alternative that involves little or no treatment, but controls impacts to sensitive receptors through engineered controls, containment, long term monitoring, and institutional controls. - (d) Evaluation of corrective action alternatives (ECAA). For each proposed corrective action alternative, the PRP shall evaluate and document the following: - (1) Overall protection of human health and the environment. Alternatives shall be assessed to determine whether they can adequately protect human health and the environment, by either eliminating, reducing, or controlling exposures to levels established by the corrective action objectives consistent with § 35-603. Overall protection of sensitive receptors shall also assess long-term effectiveness and permanence, short-term effectiveness, and compliance with federal, state, and local laws. - (2) Compliance with legal requirements. Alternatives shall be evaluated to determine whether the PRP can obtain all federal, state, and local permits for the proposed alternative as well as describe how the alternative will meet those regulatory requirements. - (3) Long-term effectiveness and permanence. Alternatives shall be assessed for long-term effectiveness and permanence. Adequacy and reliability of the proposed alternative such as containment systems and institutional controls that are necessary to manage treatment residuals and untreated waste. This factor addresses the uncertainties and risks associated with long term management of the remedy. - (4) Land use restrictions. Alternatives shall identify whether and what type of land use restrictions are required following implementation of the remedy. - (5) Reducing toxicity, mobility, or volume through treatment. The degree to which alternatives reduce toxicity, mobility, or volume shall be assessed, including how treatment is used to address the principal threats posed by the site. Factors that shall be considered include the following: - (A) The treatment or recycling processes the alternatives employ and materials they will treat; - (B) The amount of hazardous materials that will be destroyed, treated, or recycled; - (C) The degree of expected reduction in toxicity, mobility, or volume of the hazardous materials due to treatment or recycling and the specification of which reduction(s) are occurring; - (D) The degree to which rebound of contaminants may occur; - (E) The type and quantity of residual contamination that will remain following treatment, considering the toxicity, mobility, propensity to bioaccumulate, and persistence of such hazardous materials and their constituents; and - (F) The degree to which treatment reduces the
inherent hazards posed by principal threats at the site. - (6) Short-term effectiveness. The short-term impacts of alternatives shall be assessed by considering the following: - (A) Short-term risks that might be posed to sensitive receptors during implementation of an alternative; - March 18, 2019 - (B) Potential impacts to workers during corrective action and the effectiveness and reliability of protective measures; and - (C) Potential environmental impacts of the corrective action and the effectiveness and reliability of mitigation measures during implementation. - (7)Implementability. The relative degree of difficulty in implementing the alternatives shall be assessed by considering the following: - Technical feasibility, including technical difficulties and uncertainty (A) associated with construction and operation of a corrective action, the reliability of the technology, ease of undertaking additional corrective actions, and the ability to monitor the corrective action's effectiveness; - (B) Administrative feasibility, including activities needed to coordinate with other offices and agencies and the need to obtain any necessary approvals and permits; and - Availability of services and materials, including the adequate off-site (C) treatment, storage capacity, and disposal capacity and services; the availability of necessary equipment and subcontractors, and any necessary additional resources. - (8)Cost. The types of costs that shall be assessed include the following: - (A) Capital costs; - (B) Annual operation and maintenance (O&M) costs; - (C) Costs to implement land use restrictions; and - Net present value of capital and O&M costs. (D) - (9)Environmental impact and sustainability. Include a discussion of waste generation and disposal requirements, as well as a discussion of methods to implement best management practices to reduce the environmental impact of the proposed remedies in accordance with US EPA guidance or ASTM Standard Guide for Greener Cleanups. - (10)Community acceptance. This assessment includes determining which components of the alternatives interested persons in the community may support, have reservations about, or oppose. The Secretary may require a public comment period and informational meeting on the alternatives or consider community acceptance in the context of public input on the corrective action plan. - (e) Required elements. The PRP shall provide the Secretary with an ECAA report that contains the following: - (1) An executive summary of the corrective action alternatives considered, including a recommended alternative, based on criteria in subsection (d) of this section. - (2)Tabulated results and a narrative discussion of any pilot testing completed during the evaluation. - (3) A proposal for any site-specific background standards that the PRP proposes to apply to the site in accordance with Appendix B of this rule. - **(4)** A proposal for any waiver that the PRP proposes to apply to the site in accordance with Appendix C of this rule. - A detailed evaluation of the criteria established under subsection (d) of this section (5)for each remedial option selected under subsection (c) of this section. - March 18, 2019 - A proposal for additional pilot testing or data collection to refine the remedial design (6)for the selected remedy. - A detailed justification for the selected remedy. (7) #### § 35-605. SECRETARY EVALUATION OF CORRECTIVE ACTION ALTERNATIVES - The Secretary shall evaluate each corrective action alternative presented in the evaluation of (a) corrective action alternative report utilizing the criteria of § 35-604(d). - (b) The Secretary shall provide a written response to the PRP that: - (1) Approves the corrective action alternative recommended in the report; - (2)Approves an alternate alternative that was considered but not recommended; - (3) Requires additional alternatives to be evaluated; - Requires additional analysis, pilot testing, or data collection to support further (4) evaluation of the alternatives reviewed as a part of the report; or - The report is inadequate and will be returned to the PRP and the environmental (5)professional for revisions. - (c) The PRP shall, within 30 days of the Secretary's response or within an alternate schedule approved by the Secretary), provide the Secretary with a response to any comment provided by the Secretary including a revised evaluation of corrective action alternatives or a corrective action plan for the selected alternative. #### § 35-606. CORRECTIVE ACTION PLAN - (a) Except as exempted in § 35-602 of this section, a PRP shall submit a corrective action plan to address impacts or risks to sensitive receptors that are not managed. - (b) A corrective action plan shall include the following: - (1) Executive summary. An executive summary that includes a description of the contamination, a review of the results of the investigation, remediation and remedial objectives, a summary of the alternatives considered, a description of the chosen corrective action technology, a statement of site operations and monitoring activities, and an estimate of the duration of the remedial action. - (2)Site history and updated Conceptual Site Model. - (3) Public notice; parcel map. A list of the persons who will receive notice under § 35-607(b)(1), including contact names, addresses, email addresses, and phone numbers. A parcel boundary map shall be included showing all such parcels. - (4) Performance standards, to include the following: - (A) A discussion of how the corrective action achieves the corrective action objectives identified in § 35-603. - (B) A list of environmental media standards that apply to the site. - (C) A map identifying the compliance points that will be used to monitor compliance with the environmental media standards. - (D) A narrative explanation as to why these compliance points were chosen. - (E) A narrative explanation as to how any corrective action will ensure that there are no completed pathways that would result in an impact to a sensitive receptor. - (F) An estimate of the contaminant mass or volume and expected removal rates. - (G) Identify performance standards for demonstrating substantial completion of the corrective action for sites receiving a Certificate of Completion. - (H) Estimated duration of active remediation and transition to long-term monitoring or site closure. - (5) Permits. A list of all local, state, and federal permits required for the project, and the contacts necessary to obtain these permits and a demonstration of compliance with all local, state, and federal rules and regulation. - (6) Remedial construction plan. Any corrective action involving construction of a treatment system, engineered system, including a cap, a containment system, or any other control that requires an engineered design, shall include the following: - (A) Detailed plans and specifications of the corrective action remedial design and related calculations. - (B) Tabulated results and narrative discussion of any additional analysis or pilot testing performed. - (C) A Vermont licensed professional engineer's signature of review of the remedial system design. - (7) Waste management; contaminated soil plan. A discussion of any waste material that will be generated by the corrective action, including a hazardous waste determination. If managing contaminated soil, the plan shall also include a plan for managing contaminated soil in accordance with Subchapter 8 and § 35-611. - (8) Implementation schedule. An implementation schedule that contains milestones for implementing the corrective action and dates for when those milestones will be reached. The schedule shall include proposed deliverables including the CACCR report and initial performance monitoring or operation and maintenance reporting, as applicable. - (9) Corrective action operation and maintenance plan. The plan shall describe the following: - (A) A description of how any engineered solution will be monitored and maintained to ensure that it continues to operate as designed. - (B) A discussion of the performance monitoring and data collection strategy during active remediation. - (C) A description of how any institutional controls will be monitored and maintained. - (D) As requested by the Secretary, a cost estimate for the implementation of the corrective action maintenance plan and a financial responsibility instrument to assure the implementation of the corrective action stewardship plan. Financial assurance under this rule shall be accomplished in the same manner as financial assurance under 40 C.F.R. Part 264 Subpart H. - March 18, 2019 - (E) A discussion of the operation and maintenance of any active remedial option after its construction until it attains the corrective action objectives established in § 35-603. - (F) A discussion of how any treatment system will be deconstructed or decommissioned once remedial objectives have been met. - (10) Institutional control plan. The corrective action plan shall include an institutional control plan in accordance with § 35-901, unless the Secretary determines that no residual contamination remains in exceedance of any applicable environmental media standards. - (11) Long term monitoring plan. Where long term monitoring is the remedy or will be required following the completion of corrective action, a long-term monitoring work plan in accordance with § 35-702 will be required. - (12) Redevelopment and Reuse Plan. If applicable, the corrective action plan shall include the redevelopment and reuse plan for the property following implementation of the corrective action. Changes or modifications to this plan may require an amendment to the corrective action plan to ensure that sensitive receptors are not adversely impacted. - (13) Quality Assurance and Quality Control (QA/QC) Plan. The corrective action plan shall contain the following: - (A) A list of the Standard Operating Procedures (SOPs) appropriate to
the technologies being proposed for the corrective action. The SOP's shall be provided to the Secretary upon request. - (B) A Quality Assurance/Quality Control plan. What methods will be employed to ensure the validity and accuracy of the data and technologies implemented. - (14) Cost Estimate. - (A) Applicability. A corrective action plan shall include a cost estimate if State or federal funding will be utilized, if the project is enrolled in the BRELLA program, or if requested by the Secretary. - (B) Contents. A cost estimate shall be broken down by task, materials, labor costs, sub-contractor costs, and equipment costs. Estimates for sub-contractors shall also be itemized into labor, materials, and equipment costs when available. The cost estimate shall contain a separate itemized cost estimate for Corrective Action Plan implementation and system operations and maintenance (O&M). - (15) An updated set of maps as per § 35-306(b)(14). - (16) Tabular, time series summaries of contaminant concentrations in environmental media in accordance with § 35-305(b)(16). - (17) Cross-sections of the contaminated zone depicting well or boring depths, soil stratigraphy, recent soil contaminant concentrations, and recent water levels as appropriate to site-specific conditions. - (18) A list of all proposed contractors, sub-contractors, including contacts, addresses, email addresses, and phone numbers. # § 35-607. CORRECTIVE ACTION PLAN REVIEW; PUBLIC NOTICE; FINAL DECISION - (a) Review of draft corrective action plan. The Secretary shall approve a proposed corrective action plan upon finding: - (1) That the corrective action plan demonstrates that the proposed corrective action meets the criteria of § 35-603 and § 35-606, and that the proposed corrective action either: - (A) ensures that no sensitive receptor will be adversely impacted by the corrective action; or - (B) that the corrective action is an interim measure that addresses a portion of the release and that further corrective action is planned to ensure that no sensitive receptor will be adversely impacted; and - (2) The applicable requirements of 10 V.S.A. chapter 170 (pertaining to public notice) have been satisfied. - (b) Public notice of administratively complete draft corrective action plan. - (1) Upon a determination by the Secretary that the corrective action plan is administratively complete, a PRP shall provide notice of the draft corrective action plan to all property owners impacted by the release and to all impacted adjoining property owners on a form provided by the Secretary. - (2) The applicant shall provide signed certification to the Secretary that all adjoining property owners have been notified of the corrective action plan. - (3) The Secretary will post a copy of the draft corrective action plan electronically on the Environmental Notice Bulletin for public comment in accordance with 10 V.S.A. chapter 170. - (c) The Secretary will approve the draft corrective action plan upon a finding that the requirements of § 35-607(a) have been met. The Secretary shall provide notice, in writing, to the potentially responsible party and other interested parties of the final corrective action plan approval. - (d) Corrective action plan. The corrective action plan shall be implemented within 90 days of the approval or in accordance with a schedule approved by the Secretary. - (e) Amendments to a corrective action plan. - (1) Major amendments. All amendments that necessitate technical review shall be noticed in the same manner as required by subsection (b) of this section. - (2) Minor amendments. All amendments that require a change in a condition or requirement but do not necessitate technical review and are not administrative amendments shall be processed pursuant to 10 V.S.A. § 7715 (Type 4), except the Secretary need not provide notice of an administratively complete plan. (3) Administrative amendments. All amendments that correct typographical errors, changes the name or mailing address of an individual, or makes other similar changes to a plan that do not require technical review or the imposition of new conditions or requirements shall not require review under 10 V.S.A. chapter 170. # § 35-608. CORRECTIVE ACTION CONSTRUCTION COMPLETION REPORT - (a) A corrective action completion report shall be submitted within 90 days of completing the construction of any remedy, as applicable, or in accordance with the schedule approved in the corrective action plan. - (b) A corrective action completion report shall include the following elements, as applicable: - (1) Corrective Action Objectives. - (2) Description of work performed including preliminary data collection. - (3) Description of remedial system installed. - (4) A description of any field-based minor amendments to the corrective action and a justification for them. - (5) Site plans reflecting post-CAP implementation conditions. - (6) Mechanical system layout and list of major components with serial numbers. - (7) Piping, control, and instrumentation diagrams along with any modifications to the O&M chapters of the corrective action plan for the installed system. - (8) Photo documentation, including: - (A) contamination encountered during the corrective action; - (B) the installed remedy; and - (C) the site before and after implementation of the CAP. - (9) Initial remedial system operation data, including: - (A) Flow rate; - (B) Pressure or vacuum radius of influence; - (C) Contaminant removal rates; and - (D) Treatment system influent and effluent sample results. - (10) Injection program specifications, including: - (A) Reagent mixing data; - (B) Flow rates and pressures; - (C) Volume of injected material; - (D) Amendment distribution; and - (E) Initial post-injection data. - (11) Documentation that the site has been stabilized, physical hazards have been minimized, restored to the restoration plan included in the approved corrective plan; - (12) Recovery or injection well boring logs; - (13) Copies of all federal, state, and local permits; - (14) Waste disposal manifests and bills of lading; - (15) Applicable inspection results including building, zoning, plumbing, and electrical; - (16) Recommendations for additional work; and - (17) A certification that the activities were performed in accordance with the Corrective Action Plan. # § 35-609. REVIEW AND FINAL DECISION OF CORRECTIVE ACTION CONSTRUCTION COMPLETION REPORT - (a) The Secretary shall review a corrective action completion report and determine whether the corrective action conforms to the CAP approved by the Secretary. The Secretary will respond, in writing, that either: - (1) The corrective action conforms to the CAP; - (2) The corrective action does not conform to the CAP and that additional work is required to bring the corrective action into compliance with the CAP; or - (3) The corrective action is not functioning as designed and additional investigation is required to determine the cause, to develop an effective remedy, or to implement additional corrective action at the site. # § 35-610. CORRECTIVE ACTION PERFORMANCE MONITORING AND O&M - (a) In accordance with the schedule approved by Secretary, periodic performance monitoring and O&M reports shall be submitted to the Secretary. - (b) As applicable, performance monitoring or O&M reports shall include a recommendation for: - (1) continued performance monitoring or O&M; - (2) discontinuance of corrective action due to poor system performance; - (3) modifications to the approved corrective action plan; or - (4) cessation of corrective action when the objectives specified in § 35-603 have been met. - (c) The Secretary shall provide a written response to the PRP in response to recommendations outlined in the report. # § 35-611. SITE GENERATED WASTES - (a) Unless approved by the Secretary for management in an Area of Contamination, site generated hazardous waste shall be managed in accordance with the Vermont Hazardous Waste Management Rules. - (b) The Secretary may allow for the on-site remediation of a site contaminated with a hazardous material without requiring hazardous waste certification and permitting provided such activity is conducted in accordance with an approved Corrective Action Plan. - (c) Investigation derived wastes shall be managed and disposed as follows: - (1) If a hazardous waste, in accordance with the Vermont Hazardous Waste Management Regulations. - (2) If the waste contains polychlorinated biphenyls (PCBs) in excess of 50 parts per million (ppm), it shall be managed in accordance with the Toxic Substance Control Act (TSCA). Such waste also shall be managed as a hazardous waste in accordance with the Vermont Hazardous Waste Management Regulations (VT01 hazardous waste code). If PCBs are present at concentrations below 50 ppm, the waste may also be subject to management under TSCA. - (3) If the waste does not meet the criteria of subdivisions (c)(1) or (c)(2) of this subsection, the waste shall be disposed of: - (A) in accordance with the Solid Waste Management Rules, or - (B) under a waste management plan approved as a part of the site investigation work plan, provided no investigation derived waste containing a hazardous material above an environmental standard is transported off the site. - (4) Petroleum contaminated purge water from groundwater monitoring wells and equipment decontamination water may be returned to the ground within the area where it was extracted as approved by the Secretary. - (5) Non-petroleum, non-hazardous waste contaminated purge water may be returned to the ground within the area where it was extracted as approved by the Secretary. ## SUBCHAPTER 7 LONG TERM MONITORING # § 35-701. APPLICABILITY All required long term monitoring shall be performed in accordance with this subchapter. Long term monitoring of environmental media shall be conducted to evaluate the effectiveness of the remedial goals outlined in the corrective action plan and until the
site meets the conditions for Subchapter 10 (site closure), or as required by the Secretary. # § 35-702. Long Term Monitoring Work Plan - (a) A PRP shall submit an initial long term monitoring work plan within 30 days of receiving Secretary approval of a CAP where long term monitoring is a remedy or will be required following the completion of corrective action. Subsequent long term monitoring work plans may be required as requested by the Secretary. - (b) A long term monitoring workplan shall be approved by the Secretary prior to the initiation of monitoring work. # § 35-703. GENERAL REQUIREMENTS FOR LONG TERM MONITORING - (a) Monitoring shall be conducted in accordance with an approved CAP, or as approved by the Secretary prior to July 27, 2017 if the site investigation has demonstrated that all requirements presented in § 35-304(b) are met. Any change to the plan shall be approved by the Secretary in writing. - (b) The Secretary shall be notified immediately if a change in site conditions affect the performance of an approved work plan. The Secretary may require revisions to the monitoring work plan based on site condition changes. ## **§ 35-704.** REPORTING - (a) A long-term monitoring report shall be submitted on an annual basis, or on a schedule approved by the Secretary. - (b) Except as provided by subsection (c) of this section, the long-term monitoring report, including analytical results, shall be submitted to the Secretary no later than 45 days from the receipt of analytical results from the laboratory or within an alternate schedule approved by the Secretary. - (c) In the following circumstances, results shall be reported as indicated: - (1) Drinking water supply laboratory analytical results which report an exceedance of the groundwater enforcement standards shall be submitted verbally within 24 hours and written analytical results shall be provided to the Secretary within five business days thereafter. - Indoor air quality laboratory analytical results that report an exceedance of an indoor (2)air standard shall be submitted verbally within 24 hours and written analytical results shall be provided to the Secretary within five business days thereafter. - (d) A long-term monitoring report shall include the following, as applicable: - (1) Updated executive summary. Brief summary of findings, conclusions, and recommendations based upon the data collected during the monitoring event. - (2)An updated CSM in accordance with § 35-303. - (3)Contaminated media characterization in accordance with § 35-306(b)(12). - **(4)** Updated site maps in accordance with § 35-306(b)(14). - Documentation of the sample location and method in accordance with the **(5)** consultant's standard operating procedures (SOP). Justification for deviations from the SOPs shall be described. - (6)A discussion of first-time detections of contaminant concentrations or NAPL in any monitoring point. Also, include a discussion of significant changes in concentrations in any monitoring point if applicable. - Any deviations from the approved work plan shall be identified and justified. (7) - (8)A descriptive analysis of how the data gathered supports the CSM, and whether the corrective action or site investigation objectives continue to be achieved. The discussion must also establish that the data collected are suitable to determine the risk posed by the hazardous materials, the need for further characterization, and the potential remedial actions. Only data that passes Quality Assurance/Quality Control criteria will be acceptable. - (9)All collected data shall be organized in narrative, tabular, and graphical form, and shall include all appropriate historical site data. Graphs of hazardous material concentration versus time; including results from discontinued monitoring locations if necessary to support the conclusions in the report. All detected hazardous material concentrations shall be reported. Hazardous materials that are not detected shall be reported as less than the numerical detection limit. Detection limits shall be below the environmental media standards and shall be provided in tabular format with the analytical results. All laboratory data qualifications must be included in tabulated data presentations. - Data used in spreadsheets or models shall be submitted if requested by the Secretary. (10) - (11)NAPL recovery results, when applicable. - Field screening results from contaminated stockpiled soils in tabular format, with a (12)map showing the locations of the screened samples and the stockpile location in reference to other pertinent physical features including buildings, roadways, and surface water bodies. - A description of the current site conditions, condition of the monitoring network, (13)remediation system, soil stockpile, any maintenance activities conducted since the last monitoring event, and any required maintenance that must be completed with a schedule to complete the work. - (14)Observable changes in site and neighboring property conditions which may affect site management. These changes may include change in property use, change in property occupancy, water supply changes, and construction. - (15) Compliance with any institutional controls developed as part of the response to contamination. - (16) Documentation of the handling of any investigation derived waste, which shall be dealt with in accordance with § 35-611(c). - (17) Conclusions and Recommendations. A discussion of the findings of the investigation that substantiate the revised CSM, and, specifically, the risk hazardous materials pose to identified receptors, completed exposure pathways, the identification of data gaps, potentially appropriate corrective actions, proposed monitoring frequency, and need for further investigation, additional corrective action, or site closure. - (18) The report shall be signed by an environmental professional and certified in accordance with § 35-104. - (e) If required by the Secretary, interim data transmittals shall be used to submit results of monitoring events between long term monitoring reports. Interim data transmittals shall include: - (1) Contaminated media characterization in accordance with § 35-306(b)(12); - (2) Updated site maps in accordance with § 35-306(b)(14); - (3) Laboratory analytical reports; and - (4) If applicable; - (A) NAPL recovery results; and - (B) Photographic documentation. # § 35-705. SECRETARY REVIEW OF LONG TERM MONITORING REPORT - (a) The Secretary shall review the long term monitoring report for completeness and shall provide written notification to the RPP that: - (1) The long term monitoring report demonstrates that the site has met the corrective action objectives and the site can be closed in accordance with Subchapter 10; - (2) Long term monitoring shall continue at the sampling locations and monitoring frequency established in the site investigation or corrective action plan, or at an alternate frequency based on site conditions as approved by the Secretary; or - (3) Additional site investigation or corrective action is required. ### SUBCHAPTER 8 CONTAMINATED SOIL # § 35-801. APPLICABILITY - (a) The following soils containing hazardous materials at concentrations exceeding the applicable Vermont Soil Standards shall be managed in accordance with this section: - (1) Non-hazardous waste contaminated soil. - (2) Development soils. - (3) Petroleum contaminated soils that are exempted from management under VHWMR § 7-203(p). ## **§ 35-802.** EXEMPTIONS - (a) Petroleum contaminated soil that is excavated and then backfilled into a tank grave during an UST closure or replacement are exempt from management under this Subchapter. These soils may require future site investigation or corrective action. - (b) Petroleum contaminated soils excavated during an emergency response or UST closure or replacement are exempt from § 35-803(a) unless required by the Secretary. # § 35-803. Non-Hazardous Waste Contaminated Soil - (a) Approval of management. All management of contaminated soil under this Subchapter shall be pre-approved by the Secretary. - (b) VHWMR petroleum-contaminated soil. Petroleum contaminated soils are not hazardous in accordance with the Vermont Hazardous Waste Regulations. - (c) On-site soil management and treatment. - (1) Soil Stockpiling. Non-hazardous waste contaminated soil may be stockpiled on the site where the release occurred in accordance with this section. - (A) Non-hazardous waste, non-petroleum soils may be temporarily stockpiled for up to 90 days. Stockpiling may not occur between December 1st and April 1st, unless under an alternate schedule or work plan that is approved by the Secretary. A final offsite disposal and treatment plan and request form shall be submitted and approved by the Secretary. - (B) On-site soil stockpiles shall meet the following criteria: - (i) Soils shall be completely contained or encapsulated within a polyethylene plastic liner, which shall be a minimum thickness of 6 mils or another containment method determined by the Secretary to be at least as effective in isolating the soils from impacting the environment. - The integrity of the polyethylene liner shall be maintained throughout - (iii) No additional soil may be added to the existing soil stockpile, unless first approved by the Secretary. - (iv) Soils shall be monitored at a frequency approved by the Secretary to ensure the integrity of the encapsulated soil pile. - (v) Unless otherwise approved by the Secretary, the location of the stockpiled soil shall be in an area where: - (I) There are no sources for public water systems or potable water supplies within a minimum 300-foot radius. This limit may need to be extended if water supply sources are shown to be hydraulically downgradient; - (II) There are no sensitive environments including a stream, river, lake, pond, state or federally listed threatened or endangered species or habitat, wetland, floodplain, Class I or II groundwater,
residence, property boundary, or other similar areas, within 100 feet of the treatment location; - (III) The location is not within zone one or two of a groundwater source protection area; - (vi) Public access to the location where soils are stockpiled shall be prohibited through posting no trespassing signs and other appropriate means as approved by the Secretary; - (vii) If the landowner of the property where soils are to be stockpiled is different from the soil generator, written approval from the landowner that also grants access to the Secretary, has been obtained before stockpiling begins; - (viii) The location where soils are stockpiled shall be depicted on the site map; - (ix) Failure to adequately maintain soil may require additional investigation and corrective action as a new release as required by the Secretary. # (2) Soil Treatment. (ii) stockpiling. - (A) Polyencapsulation. Non-hazardous waste petroleum contaminated soil may be treated onsite by polyencapsulation following approval from the Secretary. Such treatment shall be subject to the following requirements: - (i) The soils shall remain polyencapsulated on-site until vapor levels are non-detectable (less than 1.0 parts per million by volume (ppmv) headspace) using a field screening instrument, and there is no olfactory or visual evidence of contamination. - (ii) Aerating the soil pile to accelerate remediation is prohibited. - (iii) Soils shall be periodically monitored at a frequency approved by the Secretary to track the rate of biodegradation using a VOC field - screening instrument and to ensure the integrity of the encapsulated soil pile. - (iv) Amendments shall be added to the soil stockpile only upon approval by the Secretary. - (B) Thin-spreading. Thin-spreading of non-hazardous waste petroleum contaminated soils shall be approved by the Secretary. Such treatment shall be subject to the following requirements: - (i) Vapor levels are less than 1.0 ppmv in discrete soil samples when measured with a VOC field screening instrument; - (ii) Soils contain no olfactory or visual evidence of contamination; - (iii) Confirmatory lab samples as required by the approved corrective action or soil management plan; - (iv) Results of laboratory analysis shall be below Vermont Residential Soil Standards; - (v) Thin-spreading shall be in an area that complies with § 35-803(c)(1)(B)(v). - (3) Additional treatment. Additional on-site treatment options for non-hazardous waste contaminated soil are only allowable following approval from the Secretary. - (4) On-site soil capping. Non-hazardous waste contaminated soil may be capped on the property where the release occurred and within the area of contamination, provided all the following have been demonstrated: - (A) The proposed capping area meets the siting criteria of \S 35-803(c)(1)(B)(v). - (B) Capped soils shall be located above the seasonal high-water table. - (C) An engineered soil cap shall be installed to eliminate contact risk. The engineered soil cap shall be: - (i) If not covered by an impervious surface, a minimum of 18" thick; or - (ii) If covered by an impervious surface, 6" thick of fill or sub-base material under the impervious surface. - (iii) Alternate cap thicknesses may be utilized, provided additional institutional controls are placed on the property to ensure protection of human health and the environment, and approval is granted by the Secretary. - (iv) Clearly marked with a material that distinguishes the divide between the non-hazardous contaminated soils and the clean backfill; - (D) Soils managed under this subsection shall be shown not to be a risk to sensitive receptors, by appropriate sampling methodology. - (E) An institutional control plan has been approved by the Secretary. - (d) Off-site soil management and treatment. - (1) Off-site stockpiling or treatment of non-hazardous waste contaminated soil. The off-site stockpiling of soil under this section shall be approved by the Secretary prior to the shipment off-site. In addition to meeting the requirements of §35-803(c)(1)(B)(v), the following are required: - PRP shall provide the Secretary with the following: (A) - (i) the contaminant concentrations and amount of soil that is to be transported to the off-site location; - an ANR Atlas generated map including the latitude and longitude of (ii) the exact location where the soil will be stockpiled, referenced to the WGS1984 coordinate system (Mercator), in decimal degrees. Minimum acceptable accuracy is plus-or-minus 15 feet; and - (iii) A completed ANR Off-site Soil Treatment form. - (B) The municipality in which the soil will be stockpiled or treated shall be notified in writing of the soil stockpile or treatment location. If applicable, local permits have been obtained. All required local permits must be obtained prior to off-site management, or a demonstration made that no local permits are required. - (2)Off-site disposal. Non-hazardous waste contaminated soil may be treated or disposed at an off-site location. This soil may shipped to one of the following locations following approval by the Secretary: - (A) An in-state or out of state solid waste disposal facility; - (B) An in-state or out of state treatment facility; or - For development soils, a location that meets the requirements of \(\) 35-805(c). (C) #### SOIL MANAGEMENT PLANS § 35-804. - (a) Applicability. A soil management plan may be required by the Secretary in the following instances: - (1) When soil management is necessary prior to meeting the objectives of Subchapter 3. - **(2)** The site is exempt from corrective action in accordance with § 35-602, and a project is being conducted where contaminated soil may be encountered or generated. - (3) The site has received a Site Management Activity Completed designation or Certificate of Completion that includes a land use restriction in a designated area. A project is being conducted in the designated area where residual contamination may be encountered. - **(4)** A public works or linear construction project is being proposed where contaminated soil may be encountered or generated. - (5)A construction or redevelopment project is being conducted by an impacted third party who is not a PRP under 10 V.S.A. § 6615 and contaminated soil may be encountered. - March 18, 2019 - A construction or redevelopment project is being conducted in an area with (6)historical fill. - (7) When source removal is determined to be feasible during a UST removal. - (b) Plan content requirements. A soil management plan shall include the following: - (1) Description of project. - (2)Goals and objectives. - (3)Description of contamination (source, type, volume, area) to be encountered during the project. - (4) A discussion of any waste material that will be generated by the project - A plan for managing contaminated soil in accordance with § 35-803. **(5)** - Excavation oversight and soil stockpile inspection frequency. (6) - Project schedule. (7) - (8)Description of how the site will be restored upon project completion. - (9)An updated set of maps per § 35-306(b)(14) or as otherwise directed by the Secretary. - (10)List of contractors and contact information. - (c) Plan approval. A soil management plan shall be approved by the Secretary prior to implementation. The Secretary shall only approve, in writing, a soil management plan upon finding: - The degree and extent of contaminated soil, in the area requiring excavation for (1) proper treatment or disposal, has been delineated in a pre-characterization or site investigation report and has been determined to be non-hazardous. The precharacterization report shall include the elements as outlined in § 35-306(b), or as directed by the Secretary. Additional site investigation and corrective action may be required. - (2)The planned construction or redevelopment project/activity will not worsen any existing contamination on the site, or cause impacts to receptors. - (d) Certification of completion. Following implementation of the soil management plan the PRP shall, within 90 days of completion, provide documentation to the Secretary demonstrating that the work has been completed in accordance with § 35-804(b). If soils were transported offsite, the PRP shall also provide disposal documentation including waste manifest and bill of lading. #### § 35-805. **DEVELOPMENT SOILS** - (a) Applicability. Soils exhibiting concentrations of contaminants limited to lead, arsenic, and/or PAHs in exceedance of Vermont Soil Standards may be managed in accordance with this section upon approval by the Secretary. - (b) Sampling work plan; content requirements. A person who proposes to manage development soils shall develop and submit a sampling work plan that includes the following: - (1) Soil sample collection methods shall consist of one of the following: - (A) Discrete sampling methodology in a grid pattern, which shall be appropriately scaled in order to cover the entire proposed area of excavation, and sample points shall be co-located in areas of concern; - (B) Application of Incremental Sampling Methodology consistent with the Interstate Technology and Regulatory Council's (ITRC) Incremental Sampling Methodology; or - (C) Other soil characterization methods, as approved by the Secretary. - (2) If soil is proposed to be disposed of in accordance with § 35-805(d), the number and location of soil samples that will be analyzed using Synthetic Precipitation Leaching Procedure (EPA Method 1312) (SPLP) to determine if there is a potential for contaminants to impact groundwater. The number of locations shall be based on the volume of soils planned for management and there shall be minimum one sample for every 200 tons of soil, or as approved by the Secretary. Samples shall be taken from the soils most likely to leach contaminants and from the most impacted soil locations based on laboratory analysis, field screening, and visual and olfactory evidence. - (c)
Disposal of development soils. Upon approval by the Secretary, these soils may be disposed at: - (1) A categorical solid waste facility that is permitted to receive development soils; - (2) A solid waste facility for use as alternate daily cover; or - (3) An approved receiving site that meets the requirements of subsection (d) of this section. - (d) Receiving site. - (1) Work plan. Prior to receiving development soils, a work plan for sampling of the receiving site shall be submitted for approval which includes the following: - (A) Soil sample collection methods which shall consist of one of the following methods: - (i) Discrete sampling methodology in a grid pattern. The sampling grid shall be appropriately scaled in order to cover the entire area proposed for deposition of development soils and shall include information regarding seasonal groundwater elevations determined through subsurface characterization; or - (ii) Application of Incremental Sampling Methodology consistent with ITRC Incremental Sampling Methodology and shall include information regarding seasonal groundwater elevations determined through subsurface characterization. - (B) The address of the proposed receiving site location and the GIS coordinates of the area where the development soils are proposed to be disposed. - (2) General requirements. The following shall apply to management of development soils at a receiving site: - (A) A receiving site shall meet the siting requirements established in § 35-803(c)(1)(B)(v). - (B) The receiving site shall have concentrations of arsenic, lead, and PAHs that are equal to or greater than the concentrations of the development soils proposed to be received. - (C) Receiving sites that have concentrations of hazardous materials in exceedance of residential soil standards will be required to conduct a site investigation in accordance with Subchapter 3. - (D) The receiving site has an approved institutional control plan in accordance with § 35-901 that addresses potential direct contact with development soils by the public, including appropriate capping and establishment of land use restrictions. ## SUBCHAPTER 9. INSTITUTIONAL CONTROLS ## § 35-901. INSTITUTIONAL CONTROL PLAN - (a) Purpose. The purpose of an institutional control plan is to identify a series of land use restrictions to ensure the protection of human health and the environment. - (b) Acceptable Alternate Institutional Controls. In addition to the institutional controls identified in § 35-902 and § 35-903, the following institutional controls may be acceptable when included as a part of an institutional control plan approved by the Secretary: - (1) Zoning Ordinances. Zoning ordinances that place restrictions on uses of an area where the property is located may be considered as a part of an institutional control plan, e.g. zoning an area for non-residential use only or limiting subsurface excavation. Institutional control plans shall address how reporting on zoning ordinances will take place to ensure that future modifications to ordinances or bylaws do not allow land use to adversely affect human health or the environment. - (2) Water Ordinances. Water ordinances that require all property owners to be connected to a public community water supply when service is available may be an acceptable institutional control for groundwater use restrictions. Institutional control plans shall address how reporting on water ordinances will take place to ensure that future modifications to ordinances or bylaws to ensure compliance with land use restrictions. - (3) Groundwater reclassification. Groundwater reclassifications may be an acceptable institutional control for groundwater use restrictions. - (4) Judicially approved controls. Judicial controls may be an acceptable institutional control. The institutional control plan shall identify how the judicially approved controls will allow the control to survive changes to property ownership or other transfers of the property. - (5) Approval of institutional control plan. The PRP shall submit an institutional control plan to the Secretary for approval. The plan shall include the following: - (A) The PRP has identified all residual contamination that remains on the property; - (B) The PRP has identified appropriate restrictions to ensure that exposure pathways are not created by uses or activities that take place on the property; - (C) The PRP has identified a control or controls that adequately address the land use restrictions identified in subsection (c)(2) of this section; and Investigation and Remediation of Contaminated Properties Rule PROPOSED RULE AMENDMENT March 18, 2019 (D) The PRP has identified a means to ensure that the controls continue to be effective until the contamination no longer poses an unacceptable impact to human health or the environment. ## § 35-902. NOTICE TO THE LAND RECORDS - (a) Purpose. The purpose of a notice to the land records is to inform present and future property owners of the presence of residual contamination at the property, and applicable land use restrictions. - (b) Applicability. A Notice to the Land Records is an acceptable institutional control when corrective actions have addressed exposure pathways to sensitive receptors, but residual contamination above applicable environmental media standards may be present on site. - (c) Required Elements. All notices to the land record shall contain: - (1) A brief description of the release of hazardous materials; - (2) A brief description of any corrective action that took place on the site; - (3) What residual hazardous materials remain on the site above applicable media standards and the location of those hazardous materials; - (4) A description of the necessary land use restriction(s) to ensure that no further exposure to hazardous materials can occur; and. - (5) The following language shall be included: "If a person fails to follow the land use restrictions contained within this notice the person may be liable for further site investigation, remediation, and penalties pursuant to the Vermont Waste Management Act, 10 V.S.A. chapter 159." - (d) Filing. A PRP shall file a notice to the land records within one week of approval by the Secretary. The PRP shall provide a copy to the Secretary, including the recorder stamp, date of recording, book, and page number, of the recorded notice to the land record within 10 days of its recording. ## § 35-903. ENVIRONMENTAL EASEMENT - (a) Purpose. The purpose of an environmental easement is to place legally enforceable land use restrictions on a property to prevent exposure to any hazardous material left on the property and to ensure the protectiveness of any corrective action at the property. - (b) Applicability. The Secretary may require the use of an environmental easement in the following situations: - (1) When long term maintenance or monitoring of the corrective action, engineered remedy or land use restrictions are required to prevent contamination from posing a risk to human health or the environment; - (2) When land use restrictions will include restrictions for residential property use; - (3) When active remedial infrastructure must remain in place in order to prevent a risk to human health or the environment; - (4) When a Technical Impracticality (TI) Waiver has been granted by the Secretary in accordance with Appendix C; or - March 18, 2019 - When groundwater contamination remains or is projected to remain at the site above (5)the Vermont Groundwater Enforcement Standards at a compliance point in accordance with the timeline established in the Vermont Groundwater Protection Rule and Strategy. - (c) Required Elements. The following shall be included in an environmental easement: - (1) A legal description of the site property; - **(2)** A description of the release, corrective action, and statement of the need for an environmental easement an environmental easement on the property; - (3) A grant of access to the Agency of Natural Resources to the property for any reason related to the purpose of the easement, including monitoring of the site, monitoring of the land use restriction, planning future corrective action; - **(4)** Restrictions on future uses of the property or portions of the property to prevent receptors from being exposed to any residual contamination that remains on the property and to ensure the effectiveness of any corrective action; - A process for enforcing the terms of the easement; and (5) - (6) A map including the most recent parcel boundary survey that depicts the area of the parcel to which the restrictions apply. - (d) Approval. The Secretary shall review and approve the environmental easement upon demonstration that easement complies with the requirements of § 35-903(c). - (e) Filing. A PRP shall file an approved environmental easement and all exhibits within one week of its approval by the Secretary and shall provide a copy to the Secretary, including the recorder stamp, book, and page number, of the recorded environmental easement on within one week of its recording. #### § 35-904. LAND USE RESTRICTIONS WITHIN A CERTIFICATE OF COMPLETION - (a) Purpose. The Secretary may establish land use restrictions within a certificate of completion upon closure of a site enrolled in BRELLA pursuant 10 V.S.A. Chapter 159. The purpose of these restrictions is to ensure the ongoing effectiveness of response actions taken at the site. - (b) Applicability. The Secretary may restrict future uses of a property as a part of a certificate of completion in any of the following situations: - (1) When long term maintenance or monitoring of the corrective action or land use restrictions are required to ensure a risk to human health or the environment will not occur; - (2)When land use restrictions will include constraints regarding residential property use; - (3)When active remedial infrastructure must remain in place in order to prevent contamination from posing a risk to
human health or the environment; - When a Technical Impracticality (TI) Waiver has been granted by the Secretary in **(4)** accordance with Appendix C; or - When groundwater contamination remains or is projected to remain at the site above (5)the Vermont Groundwater Enforcement Standards at a compliance point in accordance with the timeline established in the Vermont Groundwater Protection Rule and Strategy. - (c) Required Elements. A certificate shall include the following items: - (1) A legal description of the site property; - (2) A description of the release, corrective action, and statement of the need for land use restrictions on the property; - (3) Restrictions on future uses of the property or portions of the property to prevent receptors from being exposed to any residual contamination that remains on the property and to ensure the effectiveness of any corrective action; and - (4) A map including the most recent parcel boundary survey that depicts the area of the parcel to which the restrictions apply. - (d) Recording. The PRP shall record a certificate of completion and all supporting documentation and exhibits with the land records of the municipality or municipalities in which the site is located. Such recording shall be made within one week of the date of issuance of the certificate of completion. Within one week of the date of recording, the PRP shall provide a copy of the recorded and stamped certificate of completion and all recorded documents to the Secretary, which includes the book and page number of where those documents were recorded. ## SUBCHAPTER 10. SITE CLOSURE ## § 35-1001. SITE MANAGEMENT ACTIVITIES COMPLETE - (a) Purpose. A Site Management Activities Complete (SMAC) designation may be issued to signify that, based on current information, no additional work related to a release is required. - (b) Eligibility. A PRP shall submit a request for a SMAC designation that summarizes the site investigation and corrective action undertaken at the site and that demonstrates all the following: - (1) Each source area that was removed, remediated, or adequately controlled. - (2) Hazardous material data trends collected from site specific environmental media demonstrate that contaminant concentrations are stable, falling, or are not detectable. - (3) Groundwater enforcement standards as adopted in the Groundwater Protection Rule and Strategy have been met at compliance points established for the site. - (4) No hazardous materials associated with the site are present in drinking water supplies at concentrations in excess of Vermont's groundwater quality standards (Vermont Groundwater Enforcement Standards or Vermont Action Levels, when one is available). - (5) Active remediation at the site has been completed. - (6) Soil standards have been met at compliance points or, if soil standards have not been met, then a corrective action plan has been implemented as well as approved institutional controls and land use restrictions, as necessary. - (7) Vermont Water Quality Standards have been achieved at all surface water compliance points established for the site. - (8) Sediment remediation has been completed or was not required. - (9) Migration of hazardous materials from soil to groundwater is not occurring at a concentration which will result in an exceedance of the Vermont Groundwater Enforcement Standards. - (10) No completed vapor intrusion pathway exists. - (11) The site has been properly closed following the corrective action, including: - (A) All groundwater monitoring wells have been properly closed in accordance with the Vermont Water Supply Rule or an alternate plan has been approved by the Secretary for maintaining the monitoring wells. The Secretary shall be notified of the closure of the monitoring wells. - (B) Abandoned water supply wells have been properly closed in accordance with the Vermont Water Supply Rule. - (C) All site remedial infrastructure or monitoring points have been closed in a manner to prevent impacts to the environment or human health. - (D) Excavated contaminated soils have been properly treated or disposed of in accordance with § 35-803, § 35-611, or § 35-804. - (12) Any outstanding or overdue balances owed to the State (e.g. Petroleum Cleanup fund "PCF" deferred deductible, PCF cost recovery, Environmental Contingency Fund (ECF) cost recovery, UST loan, settlement agreements, penalties, fines, natural resources damage assessments, taxes, unpaid child support, etc.) have been paid to the satisfaction of the State. - with the - (13) Injection wells and floor drains have been closed in accordance with the Underground Injection Control Rule, as appropriate. - (14) All required institutional controls, engineered controls, and inspection plans are in place and copies have been provided to the Secretary. - (15) All documentation required by this rule has been submitted to and approved by the Secretary. - (c) Issuance of SMAC designation. The Secretary shall issue a SMAC designation for the site upon compliance with the requirements of subsection (b) of this section. The Secretary may issue a SMAC designation upon his or her own discretion upon a demonstration that the requirements of subsection (b) are met. - (d) SMAC as notice to the land records. A copy of the SMAC designation shall be recorded in municipal land records in the municipality where the site is located. - (1) The PRP shall within 10 days of recording provide to the Secretary a copy of the recorded SMAC letter with the recorder's stamp, recording date, Book and Page number(s). - (2) SMAC letters shall include a copy of the site map showing properly decommissioned monitoring points original source area(s), remediated area(s) and the approximate extents of residual contamination. - (e) Effect on liability. A SMAC designation shall not release the PRP(s) from any past or future liability associated with an identified release or a release discovered after such designation. A SMAC designation does not prevent the Secretary from requiring further assessment of the site pursuant to subsection (f) of this section. - (f) Reopening of SMAC designation. The Secretary may require additional investigation or remediation of a designated site upon finding any of the following: - (1) Previous remediation activities were inadequate; - (2) New information is discovered regarding the time, extent, amount, type, or nature of materials released; - (3) New information is discovered regarding the migration of the hazardous materials, health effects of the hazardous materials, or site conditions; - (4) The Secretary identifies errors or omissions in any of the investigation, or corrective action plan, or their associated implementation; - (5) A new hazardous material is listed or identified that requires a response by the PRP; - (6) Additional release(s) occur; - (7) A condition of the SMAC designation was not completed; - (8) A requirement of the institutional control plan or necessary reporting was not followed; or - (9) Any other condition that presents a threat of unreasonable exposure to humans or the environment from a hazardous material that was released from the site. ## § 35-1002. CERTIFICATE OF COMPLETION - (a) Eligibility for Certificate of Completion. A PRP may receive a certificate of completion pursuant to this section if the following have been established: - (1) The PRP meets the eligibility requirements identified in 10 V.S.A. § 6645, and has been accepted into the BRELLA program; - (2) The Secretary determines that all work required pursuant to 10 V.S.A. Chapter 159, Subchapter 3 has been completed; and - (3) The Secretary determines that the requirements of this section have been met. - (b) Request; review. A PRP may request the Secretary issue a certificate of completion by filing an application in the same manner as required by § 35-1001(b). The Secretary shall review a request for a certificate of completion in the same manner as § 35-1001(b). - (c) Substantial completion. A PRP may request that the Secretary issue a certificate of completion based upon substantial completion of the corrective action. A certificate of completion shall only be issued to persons who entered the BRELLA program as a prospective purchaser, and only upon determination by the Secretary that one of the following bases exists at the time the application: - (1) that long term monitoring is a component of the corrective action, but the long-term monitoring has not been completed; or - (2) institutional controls are required but have not yet been recorded at the time of the request. - (d) Failure to comply with conditions for a certificate of completion. Any protections provided by a certificate of completion shall be contingent upon the PRP's compliance with conditions identified by the Secretary. Failure to comply with such conditions shall nullify any such protections or other terms of a certificate. # SUBCHAPTER 11. REQUESTS FOR REIMBURSEMENT FOR MUNICIPAL WATER LINE EXTENSIONS FROM THE PETROLEUM CLEANUP OR ENVIRONMENTAL CONTENGENCY FUNDS ## § 35-1101. REIMBURSEMENT OF MUNICIPALITIES TO PROVIDE ALTERNATE WATER SUPPLIES - (a) Applicability. This section shall apply when: - (1) There has been a release of a hazardous material; - (2) The construction or expansion of or connection to a municipal water line eliminates a sensitive receptor's exposure to a hazardous material; and - (3) The work is performed by a municipality and meets the requirements of this section. - (b) Source of funds. When the release is predominately gasoline, fuel oil, or the release of another petroleum product that would potentially be eligible for reimbursement from the fund established under 10 V.S.A. § 1941 then the reimbursement shall be made from the Petroleum Cleanup Fund; all other reimbursements shall be made from the Contingency Fund established pursuant to 10 V.S.A. § 1283. - (c) Prohibition on Reimbursement. - (1) Reimbursements from the Petroleum Cleanup
Fund shall be limited to the reimbursement caps established in 10 V.S.A. § 1941(a)(1) and shall only be for uninsured costs. - (2) Reimbursements from the Contingency Fund shall be limited to the caps established in 10 V.S.A. § 1283(b) or an amount established by the Secretary taking into consideration the current fund balance and known and estimated future obligations on the fund, whichever is lesser. - (3) Where there is a potentially responsible party who has refused to reimburse a municipality for the extension of a municipal water line, the Secretary may condition reimbursement on the successful recovery of funds from that responsible party. - (d) Requirements for reimbursement. - (1) The municipality has applied for all necessary permits required for the project, including public drinking water supply permits; - (2) Municipality must submit cost estimate for review and approval by the Secretary for all work proposed for reimbursement. If an evaluation of corrective action alternatives, including cost effectiveness compared to water treatment or well replacement, has not been completed prior to the final design of a municipal water line extension, the Secretary may require such an analysis prior to approval of the preliminary approval or prior to the construction of the water line extension. - (3) Prior to bidding on a construction project that may encounter contaminated media an environmental professional shall, at a minimum, provide the Secretary with the following: - (A) Identify any land uses that may have resulted in the release of hazardous materials on the route of the municipal water line extension. Identification shall be confined to a review of records at the Agency and municipal records. - (B) If sampling is necessary, submit a plan to conduct limited sampling to estimate the costs associated with management of contaminated soil and groundwater when installing the municipal water line. - (C) Soil management plan. This plan shall include work procedures, treatment, and disposal locations for contaminated soil encountered during the construction process. Contaminated soils shall be backfilled during construction unless it is clearly documented that the soils are geotechnically unsuitable or cannot be replaced within the excavation. Contaminated soils to be backfilled, shall be placed at the bottom of the trench with at least 18" of uncontaminated soil used for closing the trench. - (D) Groundwater management plan. If contaminated groundwater is expected to be encountered, the municipality shall have an environmental professional develop a plan for the treatment of contaminated groundwater. Treatment methods may include re-injection through an infiltration basin, filtration through activated carbon, air stripping, pumping to fractionation tanks, or disposal to a wastewater treatment plant (with appropriate permission from the plant owner and Wastewater Management Division). - (e) Approval of pre-bid preliminary investigation. Prior to implementing any work proposed for reimbursement, the Secretary shall approve the pre-bid preliminary investigation. The Secretary may require additional investigation and work as a part of the approval. The Secretary may disprove any cost associated with a request provided there is a reasonable basis for the disapproval. If an evaluation of corrective action alternatives has not been completed prior to the construction of a municipal water line extension, the Secretary may require such an analysis prior to approval of the pre-bid preliminary investigation. - (f) Final reimbursement request. As a part of any request for reimbursement, a municipality shall provide the Secretary, at a minimum, the following information: - (1) The results of any investigation, sampling, and field work that took place as a part of the investigation. - (2) Receipts for any waste discovered and disposed during the municipal water line extension. - (3) Documentation, such as as-builts and certificate of completions, that the constructed municipal water line extension was constructed per the applicable permit requirements. - (4) The amount requested for reimbursement, including detailed supporting information such as contracts to perform work, detailed invoices from contractors, and other similar information. - **(5)** The Secretary may require additional documentation to support the request for reimbursement. - (g) Approval of final reimbursement request. Prior to reimbursing a municipality for the extension of a municipal water line the Secretary shall approve the final reimbursement request. The Secretary may require additional documentation to support the request for reimbursement. The Secretary may disprove any cost associated with a request provided there is a reasonable basis for the disapproval. ## APPENDIX A. ENVIRONMENTAL MEDIA STANDARDS §-APX-A1. SOIL STANDARDS **§-APX-A2.** VAPOR INTRUSION STANDARDS §-APX-A3. SEDIMENT STANDARDS ## Appendix A - § 35-APX-A1 - Soil Standards (see notes at end of table) | | | Vermont Soil Standards
(TR=1E-06, HQ=1.0) | | | |--|------------|--|----------------------|---------------------| | | | Resident Soil | Non-Resident
Soil | Urban
Background | | Analyte | CAS Number | (mg/kg) | (mg/kg) | (mg/kg) | | Acetochlor | 34256-82-1 | 1,216 | 14,362 | (IIIg/kg) | | Acetone | 67-64-1 | 40,609 | 100,028 | | | Alachlor | 15972-60-8 | 61 | 718 | | | Aldrin | 309-00-2 | 0.02 | 0.10 | | | Aluminum | 7429-90-5 | 72,507 | 941,748 | | | Antimony | 7440-36-0 | 26 | 319 | | | Arsenic, Inorganic | 7440-38-2 | 16 | 16 | | | Barium | 7440-39-3 | 11,247 | 127,382 | | | Benomyl | 17804-35-2 | 116 | 701 | | | Benzene | 71-43-2 | 0.70 | 4.2 | | | Benzo[a]pyrene ^(a) | 50-32-8 | 0.07 | 1.54 | 0.580 | | Beryllium | 7440-41-7 | 35 | 289 | 0.000 | | Bis(2-chloro-1-methylethyl) ether | 108-60-1 | 2.804 | 36,274 | | | Boron | 7440-42-8 | 14,658 | 196,100 | | | Bromate | 15541-45-4 | 0.54 | 3.3 | | | Bromochloromethane | 74-97-5 | 193 | 597 | | | Bromoxynil | 1689-84-5 | 2.7 | 16 | | | Butylbenzene, n- | 104-51-8 | 3,504 | 51,100 | | | Butylbenzene, sec- | 135-98-8 | 7,009 | 102,200 | | | Butylbenzene, tert- | 98-06-6 | 7,009 | 102,200 | | | Cadmium (food) | 7440-43-9 | 6.9 | 87 | | | Carbaryl | 63-25-2 | 317 | 1,915 | | | Carbon Disulfide | 75-15-0 | 608 | 662 | | | Carbon Tetrachloride | 56-23-5 | 0.37 | 2.2 | | | Chlorobenzene | 108-90-7 | 414 | 726 | | | Chromium(III), Insoluble Salts | 16065-83-1 | 40,223 | 360,223 | | | Chromium(VI) | 18540-29-9 | 0.09 | 1.7 | | | Cobalt | 7440-48-4 | 22 | 291 | | | Copper | 7440-50-8 | 10,407 | 139,231 | | | Bis(2-ethylhexyl)phthalate | 117-81-7 | 20 | 120 | | | Dibromochloropropane | 96-12-8 | 0.01 | 0.06 | | | Dibromoethane, 1,2- | 106-93-4 | 0.02 | 0.14 | | | Dichloroethane, 1,1- | 75-34-3 | 2.1 | 13 | | | Dichloroethane, 1,2- | 107-06-2 | 0.29 | 1.7 | | | Dichloroethylene, 1,2-cis- | 156-59-2 | 140 | 1,814 | | | Dichloroethylene, 1,2-trans- | 156-60-5 | 1,402 | 18,137 | | | Dichloropropane, 1,2- | 78-87-5 | 1.5 | 9.1 | | | Dioxane, 1,4- | 123-91-1 | 2.8 | 17 | | | Ethylbenzene | 100-41-4 | 3.7 | 22 | | | Fluoranthene | 206-44-0 | 2,301 | 26,371 | | | Fluorene | 86-73-7 | 2,301 | 26,371 | | | Hexachlorobenzene | 118-74-1 | 0.13 | 0.69 | | | Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) | 121-82-4 | 4.6 | 28 | | | Iron | 7439-89-6 | 51,302 | 686,351 | | | Isopropylbenzene (cumene) | 98-82-8 | 256 | 264 | | | Lead and Compounds | 7439-92-1 | 400 | 800 | | | Manganese (Non-diet) | 7439-96-5 | 1,118 | 11,350 | | | Mercury (elemental) | 7439-97-6 | 3.1 | 3.1 | | | Methyl Ethyl Ketone (2-Butanone) | 78-93-3 | 16,952 | 26,991 | | | Methyl tert-Butyl Ether (MTBE) | 1634-04-4 | 649 | 4,464 | | | Molybdenum | 7439-98-7 | 366 | 4,903 | | | Naphthalene | 91-20-3 | 2.7 | 16 | | | Nickel | 7440-02-0 | 940 | 9,707 | | | Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine | | | | | | (HMX) | 2691-41-0 | 3,698 | 49,834 | | | Pentachlorophenol | 87-86-5 | 0.48 | 2.9 | | | Pentaerythritol tetranitrate (PETN) | 78-11-5 | 122 | 1,436 | | | Perchlorate | 14797-73-0 | 51 | 686 | | ## Appendix A - § 35-APX-A1 - Soil Standards (see notes at end of table) | | | Vermont Soil Standards
(TR=1E-06, HQ=1.0) | | | |--|------------|--|---------------------------------|--------------------------------| | Analyte | CAS Number | Resident Soil
(mg/kg) | Non-Resident
Soil
(mg/kg) | Urban
Background
(mg/kg) | | Perfluoroheptanoic acid (PFHpA) | 375-85-9 | | | | | Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | | | | | Perfluorononanoic acid (PFNA) | 375-95-1 | 1.22 ^(b) | 14.36 ^(b) | | | Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | | | | | Perfluorooctanic Acid (PFOA) | 335-67-1 | | | | | Polychlorinated Biphenyls (high risk) | 1336-36-3 | 0.114 ^(c) | 0.68 ^(c) | | | Propoxur (Baygon) | 114-26-1 | 79 | 476 | | | Propyl benzene, n- | 103-65-1 | 253 | 261 | | | Selenium | 7782-49-2 | 366 | 4,900 | | | Silver | 7440-22-4 | 237 | 2,483 | | | Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TCDD) | 1746-01-6 | 2.25E-06 | 1.37E-05 | | | Tetrachloroethane, 1,1,1,2- | 630-20-6 | 1.3 | 8.0 | | | Tetrachloroethylene | 127-18-4 | 2.4 | 14 | | | Thallium (soluble Thallium) | 7440-28-0* | 0.73 | 196,100 | | | Toluene | 108-88-3 | 706 | 798 | | | Trichloroethylene | 79-01-6 | 0.68 | 6.5 | | | Trichloropropane, 1,2,3- | 96-18-4 | 3.11E-03 | 0.07 | | | Trimethylbenzene, 1,2,3- | 526-73-8 | | | | | Trimethylbenzene, 1,2,4- | 95-63-6 | 144 ^(d) | 177 ^(d) | | | Trimethylbenzene, 1,3,5- | 108-67-8 | | | | | Trinitrotoluene, 2,4,6- (TNT) | 118-96-7 | 12 | 70 | | | Uranium (Soluble Salts) | NA | 44 | 588 | | | Vanadium | 7440-62-2 | 2.8 | 27 | | | Vinyl Chloride | 75-01-4 | 0.10 | 0.59 | | | Xylenes | 1330-20-7 | 252 | 257 | | | Zinc | 7440-66-6 | 21,986 | 294,150 | | ### Notes: - 1.
Groundwater temperature of 15°C used in derivation of volatiziation factors with May 2018 Regional Screening Level Calculator. - 2. Csat substitution used if soil inhalation screening value greater than Csat. Csats derived using May 2018 Regional Screening Level Calculator. - 2a. All cancer-based soil inhalation screening values were less than respective Csat thus no substitutions. - 2b. Residential noncancer-based soil inhalation screening value above respective Csat thus Csat substitiouion employed for the following: Acetone, Carbon Disulfide, Ethylbenzene, Isopropylbenzene (cumene), Mercury (elemental), Methyl ethyl ketone, Methyl tert-butyl ether, n-Propyl benzene, Tetrachloroethylene, Toluene, Trimethyl benzenes, Xylenes. - 2c. Non-residential noncancer-based soil inhalation screening value above respective Csat thus Csat substitution employed for the following: Acetone, Carbon Disulfide, Carbon tetrachloride, Chlorobezene, Ethylbenzene, Isopropylbenzene (cumene) Mercury (elemental), Methyl ethyl ketone, Methyl tert-butyl ether, n-Propyl benzene, Tetrachloroethylene, Toluene, Trimethyl benzenes, Xylenes. - 3. Lead soil standards are based on the U.S. EPA Regional Screening Levels, effective November 2018. - * CAS Number is for Metallic Thallium - (a) Benzo(a)pyrene cancer-based resident value applicable to benzo(a)pyrene itself and to total benzo(a)pyrene toxic equivalents [B(a)P-TE]. Benzo(a)pyrene noncancer-based value applicable only to benzo(a)pyrene itself. - (b) PFAS Sum of PFHpA, PFHxS, PFNA, PFOS and PFOA not to exceed applicable resident or non-resident values. - (c) PCBs- sum of all PCBs not to exceed 1.14E-01 mg/kg for the resident scenario and not to exceed 6.8E-01 for the non-resident scenario (IRIS high risk and persistence cancer toxicity values used in cancerassessment; oral reference dose for Aroclor 1254 used in noncancer assessment). - (d) Trimethyl benzenes -Sum of the three isomers not to exceed applicable resident or non-resident values, based on the most conservative value derived for an individual isomer. # VERMONT DEPARTMENT OF HEALTH EXPOSURE ASSUMPTIONS, PARAMETER VALUES AND FACTORS 2019 RESIDENTIAL SOIL VALUES | SYMBOL | DEFINITION (units) | VALUE | |--|--|--------------------------------| | RSV | Residential Soil Value (mg/kg) | Chemical-Specific | | RSV _{nc-ing} | Resident, Soil, Noncancer, Ingestion (mg/kg) | Chemical-Specific | | RSV _{nc-der} | Resident, Soil, Noncancer, Dermal (mg/kg) | Chemical-Specific | | RSV _{nc-inh} | Resident, Soil, Noncancer, Inhalation (mg/kg) | Chemical-Specific | | RSV _{nc-comb} | Resident, Soil, Noncancer, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | RSV _{ca-ing} | Resident, Soil, Cancer, Ingestion (mg/kg) | Chemical-Specific | | RSV _{ca-der} | Resident, Soil, Cancer, Dermal (mg/kg) | Chemical-Specific | | RSV _{ca-inh} | Resident, Soil, Cancer, Inhalation (mg/kg) | Chemical-Specific | | RSV _{ca-comb} | Resident, Soil, Cancer, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | RSV _{m-ing} | Resident, Soil, Mutagenic, Ingestion (mg/kg) | Chemical-Specific | | RSV _{m-der} | Resident, Soil, Mutagenic, Dermal (mg/kg) | Chemical-Specific | | RSV _{m-inh} | Resident, Soil, Mutagenic, Inhalation (mg/kg) | Chemical-Specific | | RSV _{m-comb} | Resident, Soil, Mutagenic, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | RfD _O | Chronic Oral Reference Dose (mg/kg-d) | Chemical-Specific | | RfC | Chronic Inhalation Reference Concentration (mg/m³) | Chemical-Specific | | CSF _O | Oral Cancer Slope Factor (mg/kg-d) ⁻¹ | Chemical-Specific | | IUR | Inhalation Unit Risk (µg/m³)-1 | Chemical-Specific | | THQ | Target Hazard Quotient (unitless) | 1.0 | | TR | Target Incremental Lifetime Cancer Risk (unitless) | 1x10 ⁻⁶ | | LT | Lifetime (years) | 70 | | AT _{R-nc} | Averaging Time, Resident, Noncancer (days) | $365 \times ED_{YC} = 2190$ | | AT _{R-ca} | Averaging Time, Resident, Cancer (days) | 365 x ED _{LT} = 25550 | | IR _{YC} | Soil Ingestion Rate, Young Child _{Birth-<6years} (mg/day) | 200 | | IR _{OC} | Soil Ingestion Rate, Older Child _{6-<18years} (mg/day) | 100 | | IR _{Birth-<2} yr | Soil Ingestion Rate, Fine Age Range Child _{Birth-<2years} (mg/day) | 200 | | IR _{2-<6yr} | Soil Ingestion Rate, Fine Age Range Child _{2-<6years} (mg/day) | 200 | | IR _{6-<16yr} | Soil Ingestion Rate, Fine Age Range Child _{6-<16years} (mg/day) | 100 | | IR _{16-<18yr} | Soil Ingestion Rate, Fine Age Range Child _{16-<18years} (mg/day) | 100 | | IR_A | Soil Ingestion Rate, Adult (mg/day) | 100 | | IFS_{R-adj} | Resident Soil Ingestion Rate Factor, Age-adjusted (mg/kg) | 65,439 | | $IFSM_{R-adj}$ | Resident Mutagenic Soil Ingestion Rate Factor, Age-adjusted (mg/kg) | 250,620 | | SA_{YC} | Skin Surface Area, Young Child _{Birth-<6years} (cm ²) | 2336 | | SA _{OC} | Skin Surface Area, Older Child _{6-<18years} (cm ²) | 4591 | | SA _{Birth-<2 yr} | Skin Surface Area, Fine Age Range Child _{Birth-<2years} (cm ²) | 2028 | | SA _{2-<6yr} | Skin Surface Area, Fine Age Range Child _{2-<6years} (cm ²) | 2490 | | SA _{6-<16yr} | Skin Surface Area, Fine Age Range Child _{6-<16years} (cm ²) | 4407 | | SA _{16-<18yr} | Skin Surface Area, Fine Age Range Child _{16<18years} (cm ²) | 5512 | | SA_A | Skin Surface Area, Adult (cm²) | 6034 | | DFS _{R-adj} | Soil Dermal Contact Factor, Age-adjusted (mg/kg) | 266,522 | | $\mathrm{DFSM}_{R ext{-}\mathrm{adj}}$ | Mutagenic Soil Dermal Contact Factor, Age-adjusted (mg/kg) | 770,281 | | ADc | Soil on Skin Adherence Factor, Child (mg/cm²) | 0.2 | | AD_A | Soil on Skin Adherence Factor, Adult (mg/cm²) | 0.07 | | BW_{YC} | Body Weight, Young Child _{Birth-<6years} (kg) | 15 | March 18, 2019 | BW _{OC} | Body Weight, Older Child _{6-<18years} (kg) | 48 | |-----------------------------|--|------------------------| | BW _{Birth-<2yr} | Body Weight, Fine Age Range, Child _{Birth-<2years} (kg) | 10 | | BW _{2-<6yr} | Body Weight, Fine Age Range, Child _{2-<6years} (kg) | 17 | | BW _{6-<16yr} | Body Weight, Fine Age Range, Child _{6-<16years} (kg) | 44 | | BW _{16-<18yr} | Body Weight, Fine Age Range, Child _{16<18years} (kg) | 67 | | BW_A | Body Weight, Adult (kg) | 70 | | ABS_d | Fraction of chemical absorbed from soil due to dermal contact (unitless) | Chemical-specific | | ABS_{GI} | Fraction of chemical absorbed in gastrointestinal tract (unitless). If ABS _{GI} >50%, a value of 1 (100%) used. | Chemical-specific | | EF _{YC} | Exposure Frequency, Young Child _{Birth-<6years} (days/year) | 365 | | EFoc | Exposure Frequency, Older Child _{6-<18years} (days/year) | 365 | | EF _{Birth-<2yr} | Exposure Frequency, Fine Age Range Child _{Birth-<2years} (days/year) | 365 | | EF _{2-<6yr} | Exposure Frequency, Fine Age Range Child _{2-<6years} (days/year) | 365 | | EF _{6-<16yr} | Exposure Frequency, Fine Age Range Child _{6<16years} (days/year) | 365 | | EF _{16-<18yr} | Exposure Frequency, Fine Age Range Child _{16-<18years} (days/year) | 365 | | EFA | Exposure Frequency, Adult (days/year) | 365 | | ED _{YC} | Exposure Duration, Young Child _{Birth-<6years} (years) | 6 | | EDoc | Exposure Duration, Older Child _{6-<18years} (years) | 12 | | ED _{Birth-<2yr} | Exposure Duration, Fine Age Range Child _{Birth-<2years} (years) | 2 | | ED _{2-<6yr} | Exposure Duration, Fine Age Range Child _{2-<6years} (years) | 4 | | ED _{6-<16yr} | Exposure Duration, Fine Age Range Child _{6-<16years} (years) | 10 | | ED _{16-<18yr} | Exposure Duration, Fine Age Range, Child _{16-<18years} (years) | 2 | | ED_A | Exposure Duration, Adult (years) | 52 | | ET _{YC} | Exposure Time, Young Child _{Birth-<6years} (hours/day) | 24 | | ET _{OC} | Exposure Time, Older Child _{6-<18years} (hours/day | 24 | | ET _{Birth-<2yr} | Exposure Time, Fine Age Range Child _{Birth-Qyears} (hours/day) | 24 | | ET _{2-<6yr} | Exposure Time, Fine Age Range Child _{2-<6years} (hours/day) | 24 | | ET _{6-<16yr} | Exposure Time, Fine Age Range Child _{6-<16years} (hours/day) | 24 | | ET _{16-<18yr} | Exposure Time, Fine Age Range Child _{16-<18years} (hours/day) | 24 | | ET_A | Exposure Time, Adult (hours/day) | 24 | | $InFSM_{R-adj}$ | Mutagenic Soil Inhalation Factor, Age-adjusted (days) | 42,340 | | PEF | Particulate Emission Factor (wind-driven) (m³/kg) | 1.36 x 10 ⁹ | | VF | Volatilization Factor (m³/kg) | Chemical-Specific | | RBA | Relative Bioavailability (unitless) | 1 | | SCMF | Snow Cover Modification Factor (unitless) | (e) | ## Notes: - (a) Surface areas derived using information presented in EPA, 2011 and Boniol et al., 2007 for sexes combined. Mean of 50th percentile (consistent with EPA, 1989 p. 3-39) Total Body Surface Area for each age range of interest developed. Head, hands, forearms, lower legs and feet considered in contact/exposed for all Child age ranges. Consistent with EPA, 2004 (p. 3-10), head, hands, forearms and lower legs considered for Adult. Percent of Total Surface Area represented by body parts considered in contact/exposed was calculated (mean across age range of interest). - (b) Average mean annual Body Weight for age range of interest (based on both sexes) derived using information presented in Portier, et al., 2007. - (c) Default value employed in U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites. (accessed January 2019). - (d) Chemical-specific Volatilization Factors from U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites. (accessed September 10, 2018 through February 4, 2019). - (e) Snow Cover Modification Factor
(SCMF) of 0.7342 applied only to soil inhalation route and only for chemicals that meet "v" criteria (effectively yields exposure frequency of 268 days per year for this route of exposure for this receptor). SCMF of 1 employed for all other routes and for chemicals that do not meet "v" criteria. ### **References:** Boniol, et al, 2007. Proportion of skin surface area of children and young adults from 2 to 18 years old. J Investig Dermatol 128(2):461-464. EPA, 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. United States Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. EPA/540/1-89/002. December 1989. EPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors". United States Environmental Protection Agency. . Office of Solid Waste and Emergency Response. OSWER Publication 9285.6-03. March 1991. EPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9355.4-24-02. December 2002. EPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9285.7-02EP. July 2004. EPA, 2011. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency. Office of Research and Development. Washington, D.C. EPA/600/R-090/052F. September 2011. EPA, 2018. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. May and November 2018 editions. (accessed various times September 10, 2018 – February 4, 2019). Portier et al., 2007. Body weight distributions for risk assessment. Risk Anal 27(1):11-26. ## VERMONT DEPARTMENT OF HEALTH ENDPOINT AND PATHWAY SPECIFIC EQUATIONS 2019 RESIDENTIAL SOIL VALUES ## • Noncarcinogenic (threshold type, systemic effects) Residential Soil Values o Ingestion $$RSV_{nc-ing}(mg/kg) = \frac{THQ * AT_{R-nc}\left(\frac{365 \ days}{year} * ED_{YC}(6 \ years)\right) * BW_{YC}(15 \ kg)}{EF_{YC}\left(\frac{365 \ days}{year}\right) * ED_{YC}(6 \ years) * \frac{RBA}{RfD_0\left(\frac{mg}{kg - day}\right)} * IR_{YC}\left(\frac{200 \ mg}{day}\right) * \frac{10^{-6} \ kg}{1 \ mg}}$$ o Dermal $RSV_{nc-der}(mg/kg)$ $$= \frac{THQ * AT_{R-nc} \left(\frac{365 \ days}{year} * ED_{YC}(6 \ years)\right) * BW_{YC}(15 \ kg)}{EF_{YC} \left(\frac{365 \ days}{year}\right) * ED_{YC}(6 \ years) * \frac{1}{\left(RfD_{0} \left(\frac{mg}{kg - day}\right) * ABS_{GI}\right)} * SA_{YC} \left(\frac{2336 \ cm^{2}}{day}\right) * AD_{C} \left(\frac{0.2 \ mg}{cm^{2}}\right) * ABS_{d} * \frac{10^{-6} \ kg}{1 \ mg}}$$ o Inhalation $RSV_{nc-inh}(mg/kg)$ $$\frac{THQ*AT_{R-nc}\left(\frac{365\ days}{year}*ED_{YC}(6\ years)\right)}{EF_{YC}\left(\frac{365\ days}{year}\right)*SCMF*ED_{YC}(6\ years)*ET_{YC}\left(\frac{24\ hours}{day}*\frac{1\ day}{24\ hours}\right)*\frac{1}{RfC\left(\frac{mg}{m^3}\right)}*\left(\frac{1}{VF\left(\frac{m^3}{m^3}\right)}+\frac{1}{PEF\left(\frac{m^3}{m^3}\right)}\right)}$$ ## o Combined Routes of Exposure RSVs for individual routes of exposure and various routes combined are presented in Attachment 2a $$RSV_{nc-comb}(mg/kg) = \frac{1}{\frac{1}{RSV_{nc-ing}} + \frac{1}{RSV_{nc-der}} + \frac{1}{RSV_{nc-inb}}}$$ ## Carcinogenic Residential Soil Values o Ingestion $$RSV_{ca-ing}(mg/kg) = \frac{TR*AT_{R-ca}\left(\frac{365\;days}{year}*LT(70\;years)\right)}{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}*RBA*IFS_{R-adj}\left(\frac{65,439\;mg}{kg}\right)*\frac{10^{-6}\;kg}{mg}}$$ Where: ere: $$IFS_{R-adj}\left(\frac{65,439\ mg}{kg}\right) = \frac{EF_{YC}\left(\frac{365\ days}{year}\right)*ED_{YC}(6\ years)*IRS_{YC}\left(\frac{200\ mg}{day}\right)}{BW_{YC}(15\ kg)} + \frac{EF_{oC}\left(\frac{365\ days}{year}\right)*ED_{oC}(12\ years)*IRS_{oC}\left(\frac{100\ mg}{day}\right)}{BW_{oC}(48\ mg}{year}\right)}{BW_{oC}(48\ kg)} + \frac{EF_{oC}\left(\frac{365\ days}{year}\right)*ED_{oC}(12\ years)*ED_{oC}(12\ years)*IRS_{oC}\left(\frac{100\ mg}{year}\right)}{BW_{oC}(12\ years)*ED_{oC}(12\ years)*ED_{oC}\left(\frac{100\ mg}{year}\right)} + \frac{EF_{oC}\left(\frac{365\ days}{year}\right)*ED_{oC}(12\ years)*ED_{oC}\left(\frac{100\ mg}{year}\right)}{BW_{oC}\left(\frac{100\ mg}{year}\right)} + \frac{EF_{oC}\left(\frac{365\ days}{year}\right)*ED_{oC}\left(\frac{100\ mg}{year}\right)}$$ $$\frac{EF_A\left(\frac{365 \ days}{year}\right) * ED_A(52 \ years) * IRS_A\left(\frac{100 \ mg}{day}\right)}{BW_A(70 \ kg)}$$ o Dermal $$RSV_{ca-der}(mg/kg) = \frac{TR * AT_{R-ca}\left(\frac{365 \ days}{year} * LT(70 \ years)\right)}{\left(\frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{ABS_{GI}}\right) * DFS_{R-adj}\left(\frac{266,522 \ mg}{kg}\right) * ABS_d * \left(\frac{10^{-6} \ kg}{mg}\right)}$$ Where $$\begin{split} DFS_{R-adj} \left(\frac{266,522 \ mg}{kg} \right) \\ &= \frac{EF_{YC} \left(\frac{365 \ days}{year} \right) * ED_{YC} (6 \ years) * SA_{YC} \left(\frac{2336 \ cm^2}{day} \right) * AD_C \left(\frac{0.2 \ mg}{cm^2} \right)}{BW_{yc} (15 \ kg)} \\ &+ \frac{EF_{oc} \left(\frac{365 \ days}{year} \right) * ED_{oc} (12 \ years) * SA_{oc} \left(\frac{4591 \ cm^2}{day} \right) * AD_C \left(\frac{0.2 \ mg}{cm^2} \right)}{BW_{oc} (48 \ kg)} \\ &+ \frac{EF_A \left(\frac{365 \ days}{year} \right) * ED_A (52 \ years) * SA_A \left(\frac{6034 \ cm^2}{day} \right) * AD_A \left(\frac{0.07 \ mg}{cm^2} \right)}{BW_A (70 \ kg)} \end{split}$$ ## o Inhalation $$RSV_{ca-inh}(mg/kg)$$ $$=\frac{TR*AT_{R-ca}\left(\frac{365\ days}{year}*LT\ (70\ years)\right)}{IUR(^{\mu g}/_{m^3})^{-1}*\left(\frac{1000\ \mu g}{mg}\right)*EF_R\left(\frac{365\ days}{year}\right)*SCMF*\left(\frac{1}{VF\left(\frac{m^3}{ka}\right)}+\frac{1}{PEF\left(\frac{m^3}{ka}\right)}\right)*ED_R(70\ years)*ET_R\left(\frac{24\ hours}{day} * \frac{1\ day}{24\ hours}\right)}$$ ## o Combined Routes of Exposure RSVs for individual routes of exposure and various routes combined are presented in Attachment 2a $$RSV_{ca-comb}(mg/kg) = \frac{1}{\frac{1}{RSV_{ca-ing}} + \frac{1}{RSV_{ca-der}} + \frac{1}{RSV_{ca-inh}}}$$ ## • Carcinogenic via Mutagenic Mode of Action and Default ADAFs used Residential Soil Values o Ingestion $$RSV_{m-ing}(mg/kg) = \frac{TR * AT_{R-ca}\left(\frac{365 \ days}{year} * LT(70 \ years)\right)}{CSF_0\left(\frac{mg}{kg - day}\right)^{-1} * RBA * IFSM_{R-adj}\left(\frac{250,620 \ mg}{kg}\right) * \frac{10^{-6} \ kg}{mg}}$$ Where: Where: $$IFSM_{R-adj}\left(\frac{250,620\ mg}{kg}\right) =$$ $$\frac{EF_{Birth-<2yr}\left(\frac{365\;days}{year}\right)*ED_{Birth-<2yr}(2\;years)*IR_{Birth-<2yr}\left(\frac{200\;mg}{day}\right)*10}{BW_{Birth-<2yrs}(10\;kg)}\\ +\frac{EF_{2-<6yr}\left(\frac{365\;days}{year}\right)*ED_{2-<6yr}(4\;years)*IR_{2-<6yr}\left(\frac{200\;mg}{day}\right)*3}{BW_{2-<6yrs}(17\;kg)}\\ +\frac{EF_{6-<16yr}\left(\frac{365\;days}{year}\right)*ED_{6-<16yr}(10\;years)*IR_{6-<16yr}\left(\frac{100\;mg}{day}\right)*3}{BW_{6-<16yr}(44\;kg)}\\ +\frac{EF_{16-<18yr}\left(\frac{365\;days}{year}\right)*ED_{16-<18yr}(2\;years)*IR_{16-<18yr}\left(\frac{100\;mg}{day}\right)*1}{BW_{16-<18yr}(67\;kg)}\\ +\frac{EF_{16-<18yr}\left(\frac{365\;days}{year}\right)*ED_{4}(52\;years)*IR_{4}\left(\frac{100\;mg}{day}\right)*1}{BW_{16-<18yr}(67\;kg)}$$ o Dermal $$RSV_{m-der}(mg/kg) = \frac{TR*AT_{R-ca}\left(\frac{365\;days}{year}*LT(70\;years)\right)}{\left(\frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{ABS_{GI}}\right)*DFSM_{R-adj}\left(\frac{770,281\;mg}{kg}\right)*ABS_d*\left(\frac{10^{-6}\;kg}{mg}\right)}$$ $BW_{\Lambda}(70 kg)$ Where: $$DFSM_{R-adj}\left(\frac{770,281\ mg}{kg}\right) =$$ $$\frac{EF_{Birth-<2yr}\left(\frac{365\;days}{year}\right)*ED_{Birth-<2yr}(2\;years)*SA_{Birth-<2yr}\left(\frac{2028\;cm^2}{day}\right)*AD_c\left(\frac{0.2\;mg}{cm^2}\right)*10}{BW_{Birth-<2yrs}(10\;kg)}\\ +\frac{EF_{2-<6yr}\left(\frac{365\;days}{year}\right)*ED_{2-<6yr}(4\;years)*SA_{2-<6yr}\left(\frac{2490\;cm^2}{day}\right)*AD_c\left(\frac{0.2\;mg}{cm^2}\right)*3}{BW_{2-<6yr}(17\;kg)}\\ +\frac{EF_{6-<16yr}\left(\frac{365\;days}{year}\right)*ED_{6-<16yr}(10\;years)*SA_{6-<16yr}\left(\frac{4407\;cm^2}{day}\right)*AD_c\left(\frac{0.2\;mg}{cm^2}\right)*3}{BW_{6-<16yr}(44\;kg)}\\ \frac{EF_{16-<18yr}\left(\frac{365\;days}{year}\right)*ED_{16-<18yr}(2\;years)*SA_{16-<18yr}\left(\frac{5512\;cm^2}{day}\right)*AD_c\left(\frac{0.2\;mg}{cm^2}\right)*1}{BW_{16-<18yr}(67\;kg)}\\ +\frac{EF_A\left(\frac{365\;days}{year}\right)*ED_A(52\;years)*SA_A\left(\frac{6034\;cm^2}{day}\right)*AD_A\left(\frac{0.07\;mg}{cm^2}\right)*1}{BW_A(70\;kg)}$$ ## o Inhalation $$RSV_{m-inh}(mg/kg) = \frac{TR * AT_{R-ca} \left(\frac{365 \ days}{year} * LT \ (70 \ years) \right)}{IUR(^{\mu g}/_{m^3})^{-1} * \left(\frac{1000 \ \mu g}{mg} \right) * SCMF * \left(\frac{1}{VF \left(\frac{m^3}{kg} \right)} + \frac{1}{PEF \left(\frac{m^3}{kg} \right)} \right) * InFSM_{R-adj}(42,340 \ days)}$$ Where: $$\begin{split} & \text{InFSM}_{\text{R-adj}} \left(42,340 \text{ days}\right) = \\ & \left[ET_{Birth-<2yr} \left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{Birth-<2yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{Birth-<2yr} (2 \text{ years}) * 10\right] + \\ & \left[ET_{2-<6yr} \left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{2-<6yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{2-<6yr} (4 \text{ years}) * 3\right] + \\ & \left[ET_{6-<16yr} \left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{6-<16yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{6-<16yr} (10 \text{ years}) * 3\right] + \\ & \left[ET_{16-<18yr} \left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{
days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr} (2 \text{ years}) * 1\right] + \\ & \left[ET_{16-<18yr} \left(\frac{365 \text{ days}}{y$$ $$[ET_A\left(\frac{24\ hours}{day} \ * \ \frac{1\ day}{24\ hours}\right) * EF_A\left(\frac{365\ days}{year}\right) * ED_A(52\ years) * 1]$$ ## o Combined Pathways RSVs for individual routes of exposure and various routes combined are presented in Attachment 2a $$RSV_{m-comb}(mg/kg) = \frac{1}{\frac{1}{RSV_{m-ing}} + \frac{1}{RSV_{m-der}} + \frac{1}{RSV_{m-inh}}}$$ # VERMONT DEPARTMENT OF HEALTH EXPOSURE ASSUMPTIONS, PARAMETER VALUES AND FACTORS 2019 COMMERCIAL WORKER SOIL VALUES | SYMBOL | DEFINITION (units) | VALUE | |------------------------|--|--------------------------------| | CSV | Commercial Worker Soil Value (mg/kg) | Chemical-Specific | | CSV _{nc-ing} | Commercial Worker, Soil, Noncancer, Ingestion (mg/kg) | Chemical-Specific | | CSV _{nc-der} | Commercial Worker, Soil, Noncancer, Dermal (mg/kg) | Chemical-Specific | | CSV _{nc-inh} | Commercial Worker, Soil, Noncancer, Inhalation (mg/kg) | Chemical-Specific | | CSV _{nc-comb} | Commercial Worker, Soil, Noncancer, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | CSV _{ca-ing} | Commercial Worker, Soil, Cancer, Ingestion (mg/kg) | Chemical-Specific | | CSV _{ca-der} | Commercial Worker, Soil, Cancer, Dermal (mg/kg) | Chemical-Specific | | CSV _{ca-inh} | Commercial Worker, Soil, Cancer, Inhalation (mg/kg) | Chemical-Specific | | CSV _{ca-comb} | Commercial Worker, Soil, Cancer, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | RfDo | Chronic Oral Reference Dose (mg/kg-d) | Chemical-Specific | | RfC | Chronic Inhalation Reference Concentration (mg/m³) | Chemical-Specific | | CSF _O | Oral Cancer Slope Factor (mg/kg-d) ⁻¹ | Chemical-Specific | | IUR | Inhalation Unit Risk (µg/m³)-1 | Chemical-Specific | | THQ | Target Hazard Quotient (unitless) | 1.0 | | TR | Target Incremental Lifetime Cancer Risk (unitless) | 1x10 ⁻⁶ | | LT | Lifetime (years) | 70 | | AT _{R-nc} | Averaging Time, Commercial Worker, Noncancer (days) | 365 x EDw = 9125 | | AT _{R-ca} | Averaging Time, Commercial Worker, Cancer (days) | 365 x ED _{LT} = 25550 | | IRw | Soil Ingestion Rate, Commercial Worker (mg/day) | 100 | | SA_W | Skin Surface Area, Adult (cm ²) | 3527 | | AD_W | Soil on Skin Adherence Factor, Adult (mg/cm²) | 0.12 | | BW_W | Body Weight, Adult (kg) | 70 | | ABS_d | Fraction of chemical absorbed from soil due to dermal contact (unitless) | Chemical-specific | | ABS _{GI} | Fraction of chemical absorbed in gastrointestinal tract (unitless). If ABS _{GI} >50%, a value of 1 (100%) used. | Chemical-specific | | EFw | Exposure Frequency, Ingestion & Dermal Commercial Worker (days/year) | 250 | | ET_W | Exposure Time, Adult (hours/day) | 10 | | PEF | Particulate Emission Factor (wind-driven) (m³/kg) | 1.36 x 10 ⁹ | | VF | Volatilization Factor (m³/kg) | Chemical-Specific | | RBA | Relative Bioavailability (unitless) | 1 | ## Notes: - (a) Surface areas derived using information presented in EPA, 2011, Table 7-2; weighted average of mean values for head, hands, and forearms (male and female, 21+years) - (b) Average mean annual Body Weight for age range of interest (based on both sexes) derived using information presented in Portier, et al., 2007. - (c) Default value employed in U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites (accessed January 2019). - (d) Chemical-specific Volatilization Factors from U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites (accessed September 10, 2018 through February 2019). ## References: ## Investigation and Remediation of Contaminated Properties Rule PROPOSED RULE AMENDMENT March 18, 2019 BLS, 2016. United States Bureau of Labor Statistics, Division of Labor Force Statistics, Labor Force Statistics from Current Population Survey. Household Data. Annual Average. Last modified February 8, 2017 (accessed 3/28/2017) https://www.bls.gov/cps/cpsaat19.htm. EPA, 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. United States Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. EPA/540/1-89/002. December 1989. EPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors". United States Environmental Protection Agency. . Office of Solid Waste and Emergency Response. OSWER Publication 9285.6-03. March 1991. EPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9355.4-24-02. December 2002. EPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9285.7-02EP. July 2004. EPA, 2011. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency. Office of Research and Development. Washington, D.C. EPA/600/R-090/052F. September 2011. EPA, 2015. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. November 2015 edition. (accessed December 11, 2015). EPA, 2018. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. May and November 2018 editions. (accessed September 10, 2018 through February 2019). Portier et al., 2007. Body weight distributions for risk assessment. Risk Anal 27(1):11-26. ## VERMONT DEPARTMENT OF HEALTH ENDPOINT AND PATHWAY SPECIFIC EQUATIONS 2019 COMMERCIAL WORKER SOIL VALUES ## • Noncarcinogenic (threshold type, systemic effects) Commercial Worker Soil Values Ingestion $$CSV_{nc-ing}(mg/kg) = \frac{THQ * AT_{W-nc}\left(\frac{365 \ days}{year} * ED_{W}(30 \ years)\right) * BW_{W}(70 \ kg)}{EF_{W}\left(\frac{250 \ days}{year}\right) * ED_{W}(30 \ years) * \frac{RBA}{RfD_{0}\left(\frac{mg}{kg-day}\right)} * IR_{W}\left(\frac{100 \ mg}{day}\right) * \frac{10^{-6} \ kg}{1 \ mg}}$$ ## o Dermal $CSV_{nc-der}(mg/kg)$ $$= \frac{THQ * AT_{W-nc} \left(\frac{365 \ days}{year} * ED_{W}(30 \ years)\right) * BW_{W}(70 \ kg)}{EF_{W} \left(\frac{250 \ days}{year}\right) * ED_{W}(30 \ years) * \frac{1}{\left(RfD_{0} \left(\frac{mg}{kg - day}\right) * ABS_{GI}\right)} * SA_{W} \left(\frac{3527}{day}\right) * AD_{W} \left(\frac{0.12 \ mg}{cm^{2}}\right) * ABS_{d} * \frac{10^{-6} \ kg}{1 \ mg}}$$ ## o Inhalation $CSV_{nc-inh}(mg/kg)$ $$=\frac{THQ*AT_{W-nc}\left(\frac{365\ days}{year}*ED_{W}(30\ years)\right)}{EF_{W}\left(\frac{250\ days}{year}\right)*ED_{W}(30\ years)*ET_{W}\left(\frac{10\ hours}{day}*\frac{1\ day}{24\ hours}\right)*\frac{1}{RfC\left(\frac{mg}{m^{3}}\right)}*\left(\frac{1}{VF\left(\frac{m^{3}}{kg}\right)}+\frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}$$ ## o Combined Routes of Exposure CSVs for individual routes of exposure and various routes combined are presented in Attachment 2b $$CSV_{nc-comb}(mg/kg) = \frac{1}{\frac{1}{CSV_{nc-ing}} + \frac{1}{CSV_{nc-der}} + \frac{1}{CSV_{nc-inh}}}$$ - Carcinogenic - Commercial Worker Soil Values - o Ingestion $$CSV_{ca-ing}(mg/kg) = \frac{TR*AT_{W-ca}\left(\frac{365\;days}{year}*LT(70\;years)\right)}{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}*RBA*\left(\frac{EF_W\left(\frac{250\;days}{year}\right)*ED_W\left(30years\right)*IRS_W\left(\frac{100\;mg}{day}\right)}{BW\left(70kg\right)}\right)*\frac{10^{-6}\;kg}{mg}}$$ ## o Dermal $$= \frac{TR*AT_{W-ca}\left(\frac{365\;days}{year}*LT(70\;years)\right)}{\left(\frac{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}}{ABS_{GI}}\right)*\left(\frac{EF_W\left(\frac{250\;days}{year}\right)*ED_W\left(30\;years\right)*SA_W\left(\frac{3527\;cm^2}{day}\right)*AD_W\left(\frac{0.12\;mg}{cm^2}\right)}{BW\left(70kg\right)}\right)*ABS_d*\left(\frac{10^{-6}\;kg}{mg}\right)}$$ ## o Inhalation $$CSV_{ca-inh}(mg/kg) = \frac{TR * AT_{W-ca} \left(\frac{365 \; days}{year} * LT \; (70 \; years) \right)}{IUR(^{\mu g}/_{m^3})^{-1} * \left(\frac{1000 \; \mu g}{mg} \right) * EF_W \left(\frac{250 \;
days}{year} \right) * \left(\frac{1}{VF \left(\frac{m^3}{ka} \right)} + \frac{1}{PEF \left(\frac{m^3}{ka} \right)} \right) * ED_W (30 \; years) * ET_W \left(\frac{10 \; hours}{day} \; * \; \frac{1 \; day}{24 \; hours} \right)}$$ ## o Combined Routes of Exposure CSVs for individual routes of exposure and various routes combined are presented in Attachment 2b $$CSV_{ca-comb}(mg/kg) = \frac{1}{\frac{1}{CSV_{ca-ing}} + \frac{1}{CSV_{ca-der}} + \frac{1}{CSV_{ca-inh}}}$$ ## Appendix A - § 35-APX-A2. Vapor Intrusion Standards | | | Stan | or Air
dards
6, HQ=1.0) | Vapor Intrusion
Standards -
Sub-slab Soil Gas | | Vapor Intrusion
Standards -
Groundwater | | |--|---------------------|----------------------|-----------------------------------|---|-------------------------|---|------------------------| | Analyte | CAS
Number | Resident
(μg/m3) | Non-resident
(µg/m3) | Resident
(µg/m3) | Non-resident
(µg/m3) | Resident
(µg/L) | Non-resident
(μg/L) | | Benzene | 71-43-2 | 0.13 | 1.05 | 4.3 | 35 | 0.92 | 7.4 | | Carbon Tetrachloride | 56-23-5 | 0.17 | 1.36 | 5.7 | 45 | 0.24 | 1.9 | | Chloroethane | 75-00-3 | 10,000.00 | 35,040.00 | 330,000 | 1,200,000 | 31,000 | 110,000 | | Chloroform | 67-66-3 | 0.04 | 0.36 | 1.3 | 12 | 0.41 | 3.7 | | Dichloroethane, 1,1- | 75-34-3 | 0.63 | 5.11 | 21 | 170 | 4.2 | 34 | | Dichloroethylene, 1,1-
Ethylbenzene | 75-35-4
100-41-4 | 200.00 | 700.8
3.27 | 6,700
13 | 23,000 | 270 | 950
18 | | | | | · - · · · · · · · · · · · · · · · | | | | | | Mercury (elemental) | 7439-97-6 | 0.30 | 0.3 (b) | 10 | 10 | 2.0 | 2.0 | | Methylene Chloride | 75-09-2 | 60.34 | 817.60 | 2,000 | 27,000 | 680 | 9,300 | | Naphthalene | 91-20-3 | 0.262 ^(c) | 0.262 ^(c) | 1.0 | 8.0 | 4 | 28 | | Tetrachloroethylene | 127-18-4 | 0.63 | 5.11 | 21 | 170 | 1.5 | 12 | | Trichloroethylene | 79-01-6 | 0.20 | 0.7 (a) | 6.7 | 23 | 0.82 | 2.9 | | Trimethylbenzene, 1,2,3- | 526-73-8 | | | | | 790 | 2,800 | | Trimethylbenzene, 1,2,4- | 95-63-6 | 60 ^(d) | 210.24 ^(d) | 2000 ^(d) | 7000 ^(d) | 470 | 1,700 | | Trimethylbenzene, 1,3,5- | 108-67-8 | | | | | 330 | 1,200 | | Vinyl Chloride | 75-01-4 | 0.11 | 1.86 | 3.7 | 62 | 0.13 | 2.2 | #### Notes: ^{1.} The VI Screening Values for soil gas and groundwater were calculated from the indoor air standards using the USEPA Vapor Intrusion Screening Level Calculator. The sub-slab soil gas concentration is the target indoor air concentration divided by the generic attenuation factor for soil gas (0.03). Target groundwater concentrations were calculated based on an ambient groundwater temperature of 15° C and a generic attenuation factor for groundwater (0.001). ⁽a) Due to the nature and severity of a particular non-cancer endpoint (fetal cardiac malformations) that may be associated with a brief window of susceptability, there is significant uncertainty regarding the exposure period of concern. Thus, a target hazard quotient of 0.1 was used in the calculation of the non-cancer values. ⁽b) Due to the developmental toxicity associated with mercury exposure, the reference concentration is used as the nonresidental air value without adjusting for the exposure period. ⁽c) The indoor air values for naphthalene have been adjusted upwards from the risk-based values (0.03/0.24) to reflect the laboratory method detection limit value. ⁽d) Trimethylbenzenes - Sum of the three isomers not to exceed applicable resident or non-resident values, based on the most conservative value derived for an individual isomer. # VERMONT DEPARTMENT OF HEALTH EXPOSURE ASSUMPTIONS, PARAMETER VALUES AND FACTORS 2019 RESIDENTIAL AIR VALUES (RAVs) 2019 NONRESIDENTIAL AIR VALUES (NAVs) | SYMBOL | DEFINITION (units) | VALUE | |-----------------------------|--|------------------------------| | BINIDOL | DEFINITION (umb) | VALUE | | RAV | Residential Air Value (μg/m³) | Chemical-Specific | | RAV _{nc-inh} | Resident, Air, Noncancer, Inhalation (µg/m³) | Chemical-Specific | | RAV _{ca-inh} | Resident, Air, Cancer, Inhalation (µg/m³) | Chemical-Specific | | RAV _{m-inh} | Resident, Air, Mutagenic, Inhalation (µg/m³) | Chemical-Specific | | NAV | Nonresidential Air Value (µg/m³) | Chemical-Specific | | NAV _{nc-inh} | Nonresidential, Air, Noncancer, Inhalation (μg/m ³) | Chemical-Specific | | NAV _{ca-inh} | Nonresidential, Air, Cancer, Inhalation (µg/m³) | Chemical-Specific | | RfC | Chronic Inhalation Reference Concentration (mg/m³) | Chemical-Specific | | IUR | Inhalation Unit Risk (µg/m³) ⁻¹ | Chemical-Specific | | THQ | Target Hazard Quotient (unitless) | 1.0 | | TR | Target Incremental Lifetime Cancer Risk (unitless) | 1x10 ⁻⁶ | | LT | Lifetime (years) | 70 | | AT _{R-ca} | Averaging Time, Resident, Cancer (days) | 365 x ED _R =25550 | | AT _{N-nc} | Averaging Time, Nonresidential, Noncancer (days) | 365 x ED _N =10950 | | AT _{N-ca} | Averaging Time, Nonresidential, Cancer (days) | 365 x ED _N =25550 | | EF _R | Resident Exposure Frequency (days/year) | 365 | | EF _{Birth-<2yr} | Resident Exposure Frequency, Fine Age Range ChildBirth-<2years (days/year) | 365 | | EF _{2-<6yr} | Resident Exposure Frequency, Fine Age Range Child _{2-<6years} (days/year) | 365 | | EF _{6-<16yr} | Resident Exposure Frequency, Fine Age Range Child _{6-<16years} (days/year) | 365 | | EF _{16-<18yr} | Resident, Exposure Frequency, Fine Age Range Child _{16<18years} (days/years) | 365 | | EF _A | Resident Exposure Frequency, Adult (days/year) | 365 | | EF _N | Nonresidential Exposure Frequency (days/year) | 250 | | ED _R | Resident Exposure Duration (years) | 70 | | ED _{Birth-<2yr} | Resident Exposure Duration, Fine Age Range Child _{Birth-<2years} (years) | 2 | | ED _{2-<6yr} | Resident Exposure Duration, Fine Age Range Child _{2-<6years} (years) | 4 | | ED _{6-<16yr} | Resident Exposure Duration, Fine Age Range Child _{6-<16years} (years) | 10 | | ED _{16-<18yr} | Resident Exposure Duration, Fine Age Range Child _{16-<18years} (years) | 2 | | ED _A | Resident Exposure Duration, Adult (years) | 52 | | ED _N | Nonresidential Exposure Duration (years) | 30 | | ET _R | Resident Exposure Time (hours/day) | 24 | | ET _{Birth-<2yr} | Resident Exposure Time, Fine Age Range Child _{Birth-Qyears} (hours/day) | 24 | | ET _{2-<6yr} | Resident Exposure Time, Fine Age Range Child _{2-<6/eyears} (hours/day) | 24 | | ET _{6-<16yr} | Resident Exposure Time, Fine Age Range Child _{6-<16years} (hours/day) | 24 | | ET _{16-<18yr} | Resident Exposure Time, Fine Age Range Child _{16-<18years} (hours/day) | 24 | | ET _A | Resident Exposure Time, Adult (hours/day) | 24 | | ET _N | Nonresidential Exposure Time (hours/day) | 10 | | IFAM _{R-adj} | Resident Mutagenic Air Inhalation Factor, age-adjusted (hours) | 1,016,160 | ### Notes: (a) General estimate of years of service for full benefits ## Investigation and Remediation of Contaminated Properties Rule PROPOSED RULE AMENDMENT March 18, 2019 ## References: BLS, 2016. United States Bureau of Labor Statistics. Division of Labor Force Statistics. Labor Force Statistics from Current Population Survey. Household Data. Annual Average. Last modified February 8, 2017 (accessed 3/28/2017) https://www.bls.gov/cps/cpsaat19.htm. EPA, 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. United States Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. EPA/540/1-89/002. December 1989. EPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors". United States Environmental Protection Agency. Office of Solid Waste and Emergency Response. OSWER Publication 9285.6-03. March 1991. EPA, 2016. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. May 2016 edition. (accessed June 6, 2016). https://www.epa.gov/risk/regional-screening-levels-rsls. ## VERMONT DEPARTMENT OF HEALTH SCENARIO, ENDPOINT AND PATHWAY SPECIFIC EQUATIONS 2019 RESIDENTIAL AIR VALUES (RAVs) 2019 NONRESIDENTIAL AIR VALUES (NAVs) ## I. RESIDENTIAL AIR VALUES - Noncarcinogenic (threshold type, systemic effects) - o Inhalation (simplified equation) $RAV_{nc-inh}(\mu g/m^3) = INHALATION REFERENCE CONCENTRATION (\mu g/m^3) * THQ$ - Carcinogenic - Inhalation $$RAV_{ca-inh}\left(\mu g/m^{3}\right) = \frac{TR*AT_{R-ca}\left(\frac{365\;days}{year}*LT\;(70\;years)\right)}{IUR(^{\mu g}/_{m^{3}})^{-1}*EF_{R}\left(\frac{365\;days}{year}\right)*ED_{R}(70\;years)*ET_{R}\left(\frac{24\;hours}{day} * \frac{1\;day}{24\;hours}\right)}$$ - Carcinogenic via Mutagenic Mode of Action and Default ADAFs used - o Inhalation $$RAV_{m-inh} \left(\mu g/m^{3}\right) = \frac{TR*AT_{R-ca}\left(\frac{365\;days}{year}*LT\;(70\;years)\right)}{IUR(^{\mu g}/_{m^{3}})^{-1}*\left(\frac{1\;day}{24\;hours}\right)*IFAM_{R-adj}(\;1,016,160\;hours)}$$ Where: IFAM_{R-adj}(\;1,016,160\;hours) = $$[ET_{Birth-<2yr}\left(\frac{24\;hours}{day}\right)*EF_{Birth-<2yr}\left(\frac{365\;days}{year}\right)*ED_{Birth-<2yr}(2\;years)*10] + \\ [ET_{2-<6yr}\left(\frac{24\;hours}{day}\right)*EF_{2-<6yr}\left(\frac{365\;days}{year}\right)*ED_{2-<6yr}(4\;years)*3] + \\ [ET_{6-<16yr}\left(\frac{24\;hours}{day}\right)*EF_{6-<16yr}\left(\frac{365\;days}{year}\right)*ED_{6-<16yr}(10\;years)*3] + \\ [ET_{16-<18yr}\left(\frac{24\;hours}{day}\right)*EF_{16-<18yr}\left(\frac{365\;days}{year}\right)*ED_{16-<18yr}(2\;years)*1] + \\ [ET_{A}\left(\frac{24\;hours}{day}\right)*EF_{A}\left(\frac{365\;days}{year}\right)*ED_{A}(52\;years)*1]$$ ## II. NONRESIDENTIAL AIR VALUES - Noncarcinogenic (threshold type, systemic effects) - o Inhalation $$NAV_{nc-inh}(\mu g/m^3) = \frac{THQ *
AT_{N-nc}\left(\frac{365 \ days}{year} * ED_N\left(30 \ years\right)\right) * \left(\frac{1000 \ \mu g}{mg}\right)}{\frac{1}{RfC\left(\frac{mg}{m^3}\right)} * EF_N\left(\frac{250 \ days}{year}\right) * ED_N\left(30 \ years\right) * ET_N\left(\frac{10 \ hours}{day}\right) * \frac{1 \ day}{24 \ hours}}$$ - Carcinogenic - o Inhalation $$NAV_{ca-inh}\left(\mu g/m^{3}\right) = \frac{TR*AT_{N-ca}\left(\frac{365\;days}{year}*LT\;(70\;years)\right)}{IUR(^{\mu g}/_{m^{3}})^{-1}*EF_{N}\left(\frac{250days}{year}\right)*ED_{N}(30\;years)*ET_{N}\left(\frac{10\;hours}{day} * \frac{1\;day}{24\;hours}\right)}$$ | Table 3-Recommended Sediment Quality Guidelines for the Protection of
Aquatic Biota in Freshwater Ecosystems | | | | | | |---|---|-----------------|-------|--|--| | Analyte | TEC | PEC | Notes | | | | Metals (in mg/kg - ppm DW) | | | | | | | Arsenic | 9.79 | 33 | 1,2 | | | | Cadmium | 0.99 | 4.98 | 1,2 | | | | Chromium | 43.4 | 111 | 1,2 | | | | Copper | 31.6 | 149 | 1,2 | | | | Lead | 35.8 | 128 | 1,2 | | | | Mercury | 0.18 | 1.06 | 1,2,4 | | | | Nickel | 22.7 | 48.6 | 1,2 | | | | Zinc | 121 | 459 | 1,2 | | | | Polycyclic Aromat | ic Hydrocarbons | (in μg/kg - ppb | DW) | | | | Anthracene | 57.2 | 845 | 1,3 | | | | Fluorene | 77.4 | 536 | 1,3 | | | | Naphthalene | 176 | 561 | 1,3 | | | | Phenanthrene | 204 | 1,170 | 1,3 | | | | Benz(a)anthracene | 108 | 1,050 | 1,3 | | | | Benzo(a)pyrene | 150 | 1,450 | 1,3,4 | | | | Chrysene | 166 | 1,290 | 1,3 | | | | Dibenz(a,h)anthracene | 33 | 1,3 | | | | | Fluoranthene | 423 | 2,230 | 1,3 | | | | Pyrene | 195 | 1,520 | 1,3 | | | | Total PAHs | 1,610 | 22,800 | 1,3 | | | | Polychlorinate | ed Biphenyls (in μ | ıg/kg – ppb DW |) | | | | Total PCBs | 59.8 | 676 | 1,3,4 | | | | Organochlorin | Organochlorine Pesticides (in µg/kg – ppb DW) | | | | | | Chlordane | 3.24 | 17.6 | 1,3,4 | | | | Dieldrin | 1.9 | 61.8 | 1,3,4 | | | | Sum DDD | 4.88 | 28 | 1,3,4 | | | | Sum DDE | 3.16 | 31.3 | 1,3,4 | | | | Sum DDT | 4.16 | 62.9 | 1,3,4 | | | | Total DDTs | 5.28 | 572 | 1,3,4 | | | | Endrin | 2.22 | 207 | 1,3 | | | | Heptachlor Epoxide | 2.47 | 16 | 1,3 | | | | Lindane (gamma-BHC) | 2.37 | 4.99 | 1,3 | | | Notes:TEC = Threshold Effect Concentration, PEC = Probable Effects Concentration, DW = dry weight - 1. Consensus-Based Sediment Quality Guidelines (SQGs) from: MacDonald D.D., Ingersoll C.G. and Berger T.A. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology 39(1). 20-31. - 2. SQGs for metals are based on bulk (unsorted) sediment concentrations. Concentrations of metals in sediments can be normalized on percent fines for the purpose of inter-site comparisons but not for comparisons to these SQGs. - 3. The SQGs for organics are derived from samples normalized to 1 percent total organic carbon (TOC) in the sediment. The SQGs presented here are based on an assumed TOC of 1 percent. If site specific data show organic carbon content to be significantly different from 1 percent, concentrations should be normalized to 1 percent TOC (divide the site concentration by the percent TOC) prior to comparison with the SQGs in this table. If non site-specific TOC data are available, assume 1 percent TOC. - 4. Included on USEPA's list of important persistent, bioaccumulative, toxic compounds (PBTs). ## APPENDIX B. ESTABLISHMENT OF BACKGROUND CONCENTRATIONS ## § 35-APX-B1. ESTABLISHMENT OF SITE SPECIFIC BACKGROUND LEVELS - (a) Purpose. A PRP may conduct a site-specific background study when there is reason to believe that the contamination present is naturally occurring. An approved site specific background concentration will take the place of an adopted environmental media standard. - (b) Sampling plan. A sampling and monitoring plan must be prepared by an environmental professional that will produce data representative of the site at and around the area of interest. The plan shall identify, at a minimum, the following: - (1) The number of monitoring points that will be sampled to establish a statistically defensible data set that will substantiate the validity of the background concentrations; - (2) The location and depth of monitoring points, which shall be selected so as to be geologically and geochemically similar to the area of interest and to be unaffected by current and historic activities at the site, including by being hydrogeologically upgradient of such activities if possible; - (3) The number and frequency of the samples to be taken from the monitoring points and any existing sources of data for the media for which a background standard is proposed, including water for potable water supplies, public water sources, or non-potable wells or springs; - (4) The sampling methodology; - (5) The contaminants of concern to be analyzed in the samples that are collected; - (6) The analytical methods to be used in conducting the sample analysis; - (7) Identification of whether samples obtained prior to the approval of the monitoring plan will be used as data points and, if so, the sampling date, location, method of analysis for each of the samples to be used; and - (8) A quality assurance/quality control plan for sample collection, testing, and analysis. - (c) Review of sampling plan. The information required by subsection (b) of this section may be included in a site investigation work plan submitted under Subchapter 3. The Secretary may request additional information from an applicant when the Secretary determines that the sampling and monitoring plan may not provide data representative of the background conditions at and around the area of interest. - (d) Report on background investigation. Following the Secretary's approval of the sampling and monitoring plan and the completion of sampling, the person seeking to establish a site specific background standard shall report on the following as a part of their site investigation report required by § 35-306: - (1) All sampling results and data collected pursuant to the approved monitoring and sampling plan. - (2) An analysis of all data collected pursuant to the approved monitoring and sampling plan. - (3) Any discrepancies between the approved sampling and monitoring plan and the sampling completed for the area of interest. - (4) A proposed background concentration of all substances for which the person seeks to establish background standard and a justification for each concentration. The justification may include statistical analysis. - (5) Additional information the Secretary determines is necessary to approve or deny the proposed background groundwater concentrations. - (e) Site specific standard. Following submission of the background groundwater quality report to the Secretary, the Secretary shall approve or deny the proposed background groundwater concentrations or may establish alternative background groundwater concentrations based on the background groundwater quality report. ## APPENDIX C. SITE MANAGEMENT WAIVERS ## § 35-APX-C1. TECHNICAL IMPRACTICALITY. - (a) Purpose. A technical impracticality (TI) waiver is a mechanism to manage risks to human health and the environment in situations where there is no readily available technology to complete remediation and achieve compliance with the applicable environmental media standards within a reasonable timeframe. A TI waiver does not waive the requirements to delineate the nature and extent of the release of pollutants, to remediate continuing sources of pollution, or to address potential risks to receptors. - (b) Applicability. A TI waiver may be considered as a part of § 35-903. TI waivers may be considered for any of the following: - (1) The Secretary determines that there are non-aqueous phase liquids that cannot be contained or removed. - (2) The Secretary determines that there is only one response action for the activity and it cannot obtain other necessary permits. - (3) The Secretary determines that remediation has taken place to reduce in concentration hazardous materials in groundwater and the plume has been controlled to the extent practical based on an evaluation of reliable and innovative technologies. - (4) The Secretary determines that achieving compliance with the applicable criteria is technically impracticable as determined using Directive No. 9234.2-25 issued September 1993 by the U.S. Environmental Protection Agency's Office of Solid Waste and Emergency Response. - (c) Prohibition. A TI waiver is prohibited in the following circumstances: - (1) Situations where the Secretary determines that active remediation is necessary to control the migration of a plume or materially reduce the concentration of a hazardous material; or - (2) After approval of a TI waiver there would continue to be unmanaged exposure to human health receptors. - (d) Technical impracticality waiver documentation. For any PRP proposing a TI waiver, the site investigation report prepared under § 35-306 shall, in addition to all other requirements, contain the following materials: - (1) A proposal for the environmental standard or standards for which the PRP is seeking a TI waiver. - (2) A proposed TI zone for purposes of implementing the waiver that documents the following: - (A) The plume is not increasing in size or concentration in a manner which would alter the risk assumptions associated with the TI waiver request or the extent of the TI Zone. - (B) The plume is not increasing at compliance points at the TI Zone boundary. - (3) Documentation that all necessary permits have been applied for, made best efforts to obtain, and were denied. - (4) Documentation that the site has been adequately characterized including the nature and three-dimensional extent of the contamination. - (5) Any potential changes in contaminant concentrations will not pose
a risk to human health or the environment. - (6) Documentation that potential exposure pathways threatening human health and the environment from polluted groundwater have been identified and appropriately managed. - (7) Documentation that all data gaps have been identified and evaluated for significance (a significant data gap would be one that limits the ability to formulate a single scientifically defensible interpretation of environmental conditions or potential risks, or that may affect the choice of remedial approach). - (8) An evaluation showing the remedial restoration times using active remedial treatments. All assumptions and the degree of uncertainty associated with any model shall be thoroughly discussed. - (9) An evaluation showing natural attenuation, based on monitoring subsequent to source remediation, has shown that groundwater will not achieve remedial criteria within a reasonable timeframe. All assumptions and the degree of uncertainty associated with any model shall be thoroughly discussed. - (10) An estimate the cost of remedial alternatives. Cost estimates shall include the present worth of construction, operation, and maintenance costs. - (11) An evaluation of implementing remediation alternatives for plume containment or for reduction of the concentration of hazardous materials in the plume. Note: When conducting a TI waiver analysis as a part of an evaluation of cleanup options, the Agency recommends review of the following guidance documents in preparing a request for a TI waiver: Technical Impracticability: Guidance for Evaluating Technical Impracticability of Ground-Water Restoration, September 1993. U.S. E.P.A. OSWER Directive 9234.2-25 Technical Impracticability Guidance for Groundwater, December 2013. New Jersey Department of Environmental Protection. Draft Guidance for Applying Technical Impracticability of Groundwater, February 2014. Connecticut Department of Energy and Environmental Protection. Chapter 12 Vermont Groundwater Protection Rule and Strategy ## APPENDIX D. HAZARDOUS MATERIALS LISTING ## §35-APX-D1 HAZARDOUS MATERIALS LISTING Pursuant to 10 V.S.A. § 6602(16)(A)(iv) any chemical or substance listed in the following table is a hazardous material. | CAS Number | Chemical Name | |------------|---------------------------------------| | 335-67-1 | perfluorooctanic acid (PFOA) | | 1763-23-1 | perfluoro-octane sulfonic acid (PFOS) | | 355-46-4 | perfluorohexane sulfonic acid (PFHxS) | | 375-85-9 | perfluoroheptanoic acid (PFHpA) | | 375-95-1 | perfluorononanoic acid (PFNA) | ### APPENDIX E. CUMULATIVE RISK ASSESSMENTS # §35-APX-E1 Instructions for Calculating Cumulative Cancer Risk and Hazard Index Hypothetical Human Receptor: Soil and/or Indoor Air *Nota bene*: risk-based concentration (rbc) means the calculated concentration of a chemical (or group of chemicals) in an environmental medium estimated to correspond to a fixed level of risk e.g., a target Hazard Quotient (THQ) of 1.0 for noncarcinogenic (systemic, threshold) effects or target incremental lifetime cancer risk (ILCR) of one-in-one-million $(1x10^{-6})$, for a predefined hypothetical human exposure scenario. Examples of rbcs for different environmental media based on different hypothetical exposure scenarios are included in this appendix as Tables 1-3. ## I. SAMPLE-WISE APPROACH For each Hypothetical Human Receptor Scenario and exposure medium (i.e., Soil, Indoor Air): - 1. In accordance with the IRULE, <u>for each sample</u>, identify chemicals that are present above detection and retained for further consideration. - 2. For each chemical, identify and record its receptor and medium-specific cancer and noncancer risk-based concentration (rbc) if both are available. Segregate cancer (c) from noncancer (nc) rbcs. - 3. For each carcinogen in a sample, calculate the associated Incremental Lifetime Cancer Risk (ILCR): - a. Calculate the ILCR associated with **each individual** chemical that has a cancer rbc: For a given chemical i in sample j: $$\textit{Receptor \& Medium ILCR}_{i,j} = \frac{\textit{Site Sample Concentration}_i}{\textit{rbc}_{i c}} * \textit{Target Risk}_{\textit{rbc-c}}$$ b. Calculate the cumulative ILCR across **all chemicals in a sample** that have a cancer rbc: For a given number of chemicals (n) in sample j, where i is the first chemical: $$\textit{Receptor \& Medium Cumulative ILCR}_{j} = \sum\nolimits_{i=1}^{n} \textit{Receptor \& Medium ILCR}_{i,j}$$ - 4. For each noncarcinogen in a sample, calculate the associated Hazard Quotient (HQ): - a. Calculate the HQ associated with **each individual** chemical that has a noncancer rbc: For given a chemical *i* in sample *j*: $$Receptor \ \& \ Medium \ HQ_{i,j} = \frac{Site \ Sample \ Concentration \ _{i,j}}{rbc_{i-nc}} * Target \ Hazard \ Quotient_{rbc-nc}$$ **b.** Calculate the Hazard Index (sum of HQs) across all chemicals in a sample that have a noncancer rbc. **Do not segregate chemicals by critical effect.** For a given number of chemicals (n) in sample j, where i is the first chemical: Receptor & Medium Hazard Index_j = $$\sum_{i=1}^{n}$$ Receptor & Medium Hazard Quotient_{i,j} # **Example Sample-wise Calculation for Direct Contact to Soil: Residential Scenario** 1. Benzene and ethylbenzene are detected in Soil Sample SO1 at the following concentrations: | Analyta | Soil Sample S01
(mg/kg) | |--------------|----------------------------| | Analyte | (mg/kg) | | Benzene | 4.00E ⁻⁰¹ | | Ethylbenzene | 6.00E ⁺⁰⁰ | 2. Use Table 1 to find Residential Soil cancer and noncancer rbcs for benzene and ethylbenzene: | | Sample
Concentration | Resident - Soil rbcs from Table 1 rbc _{cancer} * rbc _{noncancer} * (mg/kg) (mg/kg) | | |--------------|----------------------------|--|----------------------| | Analyte | Soil Sample S01
(mg/kg) | | | | Benzene | 4.00E ⁻⁰¹ | 6.98E ⁻⁰¹ | 1.11E ⁺⁰² | | Ethylbenzene | 6.00E ⁺⁰⁰ | 3.68E ⁺⁰⁰ | 4.45E ⁺⁰² | ^{*}Cancer rbcs are based on target ILCR=1E⁻⁰⁶; noncancer rbcs are based on target HQ=1.0 3. Calculate the Incremental Lifetime Cancer Risk (ILCR) associated with each individual chemical that has a cancer rbc: For given chemical *i* in sample *j*: $$Resident \ Soil \ ILCR_{i,j} = \frac{\textit{Site Soil Concentration}_{i,j}(\frac{mg}{kg})}{\text{rbc}_{i,c}(\frac{mg}{kg})} * Target \ Risk_{rbc-c}$$ a. Benzene $$Resident \ Soil \ ILCR_{Benzene,S01} = \frac{Sample \ S01 \ Concentration_{Benzene}(\frac{mg}{kg})}{Resdient \ Soil_{rbcBenzene-c}(\frac{mg}{kg})} * Target \ Risk_{rbc-c}$$ $$Resident \, Soil \, ILCR_{Benzene,S01} = \frac{4.00E^{-01} \, \frac{mg}{kg}}{6.98E^{-01} \, \frac{mg}{kg}} * (1E^{-06})$$ Resident Soil ILCR_{Benzene,S01} = $$5.73E^{-07}$$ b. Ethylbenzene $$Resident\ Soil\ ILCR_{Ethylbenzene,S01} = \frac{Sample\ S01\ Concentration_{Ethylbenzene}(\frac{mg}{kg})}{Resident\ Soil\ rbc_{Ethylbenzene-c}(\frac{mg}{kg})} * Target\ Risk_{rbc-c}$$ $$Resident \, Soil \, ILCR_{Ethylbenzene,S01} = \frac{6.00 E^{+00} \left(\frac{mg}{kg}\right)}{3.68 E^{+00} \left(\frac{mg}{kg}\right)} * (1E^{-06})$$ # Resident Soil ILCR_{Ethylbenzene,S01} = $1.63E^{-06}$ 4. Calculate the Receptor and Medium cumulative ILCR by summing the individual chemical cancer risks generated for a sample: For a given number of chemicals (n) in sample j, where i is the first chemical: Resident Soil Cumulative ILCR $$_j = \sum_{i=1}^{n} Resident Soil ILCR_{i,j}$$ Resident Soil Cumulative ILC R_i = Resident Soil ILC $R_{Benzene,j}$ + Resident Soil ILC $R_{Ethylbenzene,j}$ Resident Soil Cumulative ILCR_{S01} = $$(5.73E^{-07}) + (1.63E^{-06})$$ # Resident Soil Cumulative ILCR_{S01} = $2.20E^{-06}$ Calculate the Hazard Quotient (HQ) associated with each individual chemical that has a noncancer rbc: For given chemical *I* in sample *j*: $$Resident \, Soil \, HQ_{i,j} = \frac{Site \, Soil \, Concentration \, _{i,j}(\frac{mg}{kg})}{rbc_{i-nc}(\frac{mg}{kg})} * \, Target \, HQ_{rbc-nc}$$ a. Benzene a. Benzene $$Resident\ Soil\ HQ_{Benzene,S01} = \frac{Sample\ S01\ Concentration\ _{Benzene}(\frac{mg}{kg})}{Resident\ Soil\ rbc_{Benzene-nc}(\frac{mg}{kg})} * Target\ HQ_{rbc-nc}$$ $$Resident\ Soil\ HQ_{Benzene,S01} = \frac{4.00 \mathrm{E}^{-01} \frac{mg}{kg}}{1.11 \mathrm{E}^{+02} \frac{mg}{kg}} * 1.0$$ Resident Soil $HQ_{Benzene,S01} = 3.60E^{-01}$ b. Ethylbenzene $$Resident \, Soil \, HQ_{Ethylbenzene,S01} = \frac{Sample \, S01 \, Concentration \, _{Ethylbenzene}(\frac{mg}{kg})}{Resident \, Soil \, rbc_{Ethylbenzene-nc} \, (\frac{mg}{kg})} * Target \, HQ_{rbc-nc}$$ $$Resident \, Soil \, HQ_{Ethylbenzene,S01} = \frac{6.00 E^{+00} \, \frac{mg}{kg}}{4.45 E^{+02} \, \frac{mg}{kg}} * 1.0$$ Resident Soil $HQ_{Ethylbenzene,S01} = 1.35E^{-02}$ Calculate the noncancer Hazard Index (HI) across all the chemicals with a noncancer rbc. Do not segregate chemicals by critical effect.: For a given number of chemicals (n) in sample j, where i is the first chemical: Resident Soil Sample Hazard Inde $$x_j = \sum_{i=1}^n \text{Hazard Quotient}_{i,j}$$ Resident Soil Sample $$HI_j = HQ_{Benzene,j} + HQ_{Ethylbenzene,j}$$ Resident Soil Sample $HI_{S01} = (3.60E^{-01}) + (1.35E^{-02})$ Resident Soil Sample $HI_{S01} = 3.74E^{-01}$ 7. It may be helpful to consolidate all this information into a table such as the following: | | | Resident - Soil | | | | | |--------------|--|--|----------|--|--------------------------------|--| | | | CANCER | | NONCANCER | | | | Analyte | Site
Concentration
Sample S01
(mg/kg) | Sample S01 arbc _{cancer} ILCR (mg/kg) (unitless) | | ^b rbc _{noncancer}
(mg/kg) | Sample S01
HQ
(unitless) | | | Benzene | 4.00E-01 | 6.98E-01 | 5.73E-07 | 1.11E+02 | 3.60E-02 | | | Ethylbenzene | 2.00E+00 | 3.68E+00 | 1.63E-06 | 4.45E+02 | 1.35E-02 | | | | | Sample S01 Cumulative ILCR = |
2.20E-06 | Sample S01
Hazard Index = | 4.95E-01 | | a. Cancer rbcs are based on a target Risk of 1E-06 - 8. The Cumulative ILCR and HI can now be compared to the target ILCR and target HI to determine whether further action is warranted: - a. Is the cumulative ILCR > the target cancer risk? Is $2.20E^{-06} > 1E^{-06}$? Yes b. Is the HI > the target HI? Is 4.59E⁻⁰¹>1 No **c.** Because the Cumulative ILCR is greater than the target ILCR for the site, further attention is warranted. b. Noncancer rbcs are based on a target Hazard Quotient of 1.0 # II. SITE-WIDE/EXPOSURE UNIT APPROACH: Summary Statistic used as Exposure Point Concentration For each Hypothetical Human Receptor Scenario and exposure medium (i.e., Soil, Indoor Air): - 1. In accordance with the IRULE, <u>for each site</u>, or each exposure unit if appropriate, identify chemicals that are present above detection and retained for further consideration - 2. Use appropriate Summary Statistic to develop chemical-specific Exposure Point Concentrations (EPCs). - 3. For each chemical, identify and record its receptor and medium-specific cancer and noncancer risk-based concentration (rbc), if both are available. Segregate cancer (c) from noncancer (nc) rbcs. - 4. For each carcinogen, calculate the associated Site Incremental Lifetime Cancer Risk (ILCR): - a. Calculate the ILCR associated with **each individual** chemical that has a cancer rbc: For given chemical *i*: $$\textit{Receptor \& Medium Site ILCR}_i = \frac{\textit{Site Concentration}_i}{\textit{rbc}_{i_c}} * \textit{Target Risk}_{\textit{rbc-c}}$$ b. Calculate the cumulative Site ILCR across **all the chemicals** that have a cancer rbc: For a given number of chemicals (*n*), where *i* is the first chemical: $$\textit{Receptor \& Medium Site Cumulative ILCR} = \sum\nolimits_{i=1}^{n} \textit{Receptor \& Medium Site ILCR}_i$$ - 5. For each **noncarcinogen**, calculate the associated Site Hazard Quotient (HQ): - a. Calculate the HQ associated with **each individual** chemical that has a noncancer rbc: For given chemical *i*: $$Receptor \ \& \ Medium \ Site \ HQ_i = \frac{Site \ Concentration_{\ i}}{rbc_{i_nc}} * Target \ Hazard \ Quotient_{rbc-nc}$$ b. Calculate the Hazard Index (sum of HQs) across all chemicals that have a noncancer rbc. Do not segregate chemicals by critical effect.: For a given number of chemicals (*n*), where *i* is the first chemical: $$\textit{Receptor \& Medium Site HI} = \sum\nolimits_{i=1}^{n} \textit{Receptor \& Medium Site Hazard Quotient}_{i}$$ ## **Example Site-wide Calculation for Direct Contact to Soil: Residential Scenario** 1. Benzene and ethylbenzene are detected in soil. The following Site-wide Exposure Point Concentrations (EPCs) are determined: | | Soil | | |--------------|----------------------|--| | | Exposure Point | | | | Concentration | | | Analyte | (mg/kg) | | | Benzene | 4.00E ⁻⁰¹ | | | Ethylbenzene | 6.00E ⁺⁰⁰ | | 2. Use Table 1 to find Residential Soil cancer and noncancer rbcs for Benzene and Ethylbenzene: | | Soil | Resident - Soil
rbcs from Table 1 | | |--------------|-----------------------|--------------------------------------|---------------------------------------| | Analyte | Concentration (mg/kg) | rbc _{cancer} *
(mg/kg) | rbc _{noncancer} *
(mg/kg) | | Benzene | 4.00E ⁻⁰¹ | 6.98E ⁻⁰¹ | 1.11E ⁺⁰² | | Ethylbenzene | 6.00E ⁺⁰⁰ | 3.68E ⁺⁰⁰ | 4.45E ⁺⁰² | ^{*}Cancer rbcs are based on a target ICLR=1E⁻⁰⁶; noncancer rbcs are based on target HQ=1.0 3. Calculate the Incremental Lifetime cancer Risk (ILCR) associated with each individual chemical that has a cancer rbc: For given chemical i: $$Resident \, Soil \, Site \, ILCR_i = \frac{\textit{Site Concentration}_i(\frac{mg}{kg})}{rbc_{i_c}(\frac{mg}{kg})} * \, Target \, Risk_{rbc-c}$$ c. Benzene $$Resient \, Soil \, Site \, ILCR_{Benzene} = \frac{Site \, Concentration_{Benzene}(\frac{mg}{kg})}{Resident \, Soil_{rbc_{Benzene-c}}(\frac{mg}{kg})} * \, Target \, Risk_{rbc-c}$$ $$Resident \, Soil \, Site \, ILCR_{Benzene} = \frac{4.00E^{-01} \, \frac{mg}{kg}}{6.98E^{-01} \, \frac{mg}{kg}} * \, (1E^{-06})$$ Resident Soil Site ILCR_{Benzene} = $$5.73E^{-07}$$ d. Ethylbenzene $$Resident \ Soil \ Site \ ILCR_{Ethylbenzene} = \frac{Site \ Concentration_{Ethylbenzene}(\frac{mg}{kg})}{rbc_{Ethylbenzene_c}(\frac{mg}{kg})} * Target \ Risk_{rbc-c}$$ $$Resident \, Soil \, Site \, ILCR_{Ethylbenzene} = \frac{6.00 E^{+00} \, (\frac{mg}{kg})}{3.68 E^{+00} \, (\frac{mg}{kg})} * \, (1E^{-06})$$ # Resident Soil Site ILCR_{Ethylbenzene} = $1.63E^{-06}$ 4. Calculate the Receptor and Medium cumulative Site ILCR by summing the individual chemical cancer risks: For a given number of chemicals (*n*), where *i* is the first chemical: Resident Soil Site Cumulative ILCR = $$\sum_{i=1}^{n}$$ Resident Soil Site ILCR_i $Resident\ Soil\ Site\ Cumulative\ ILCR = Resident\ Soil\ Site\ ICLR_{Benzene} + Resident\ Soil\ Site\ ILCR_{Ethylbenzene}$ Resident Soil Site Cumulative ILCR = $(5.73E^{-07}) + (1.63E^{-06})$ # Resident Soil Site Cumulative ILCR = $2.20E^{-06}$ 5. Calculate the site Hazard Quotient (HQ) associated with each individual chemical that has a noncancer rbc: For given chemical *i*: $$Resident \, Soil \, Site \, HQ_i = \frac{Site \, Concentration \, _i(\frac{mg}{kg})}{rbc_{i-nc}(\frac{mg}{kg})} * \, Target \, HQ_{rbc-nc}$$ a. Benzene Resident Soil Site $$HQ_{Benzene} = \frac{Site\ Concentration\ _{Benzene}(\frac{mg}{kg})}{Resident\ Soil\ rbc_{benzene-nc}(\frac{mg}{kg})} * Target\ HQ_{rbc-nc}$$ $$Resident\ Soil\ Site\ HQ_{Benzene} = \frac{4.00 {\rm E}^{-01} \frac{mg}{kg}}{1.11 {\rm E}^{+02} \frac{mg}{kg}} * 1.0$$ Site $HQ_{Benzene} = 3.60E^{-02}$ b. Ethylbenzene $$Resident \ Soil \ Site \ HQ_{Ethylbenzene} = \frac{Site \ Concentration \ _{Ethylbenzene}(\frac{mg}{kg})}{Resident \ Soil \ rbc_{ethylbenzene-nc}(\frac{mg}{kg})} * Target \ HQ_{rbc-nc}$$ $$Resident \ Soil \ Site \ HQ_{Ethylbenzene} = \frac{6.00 E^{+00} \frac{mg}{kg}}{4.45 E^{+02} \frac{mg}{kg}} * 1.0$$ $$Resident \ Soil \ Site \ HQ_{Ethylbenzene} = \frac{1.25 E^{-02}}{4.45 E^{+02} \frac{mg}{kg}} * 1.0$$ Resident Soil Site $HQ_{Ethylbenzene} = 1.35E^{-02}$ Calculate the noncancer Hazard Index (HI) across all the chemicals with a noncancer rbc. Do not segregate chemicals by critical effect.: For a given number of chemicals (*n*), where *i* is the first chemical: Resident Soil Site Hazard Index = $$\sum_{i=1}^{n} Resident Soil Hazard Quotient_i$$ Resident Soil Site HI = $HQ_{Benzene} + HQ_{Ethylbenzene}$ Resident Soil Site HI = $(3.60E^{-02}) + (1.35E^{-02})$ Resident Soil Site HI = $4.95E^{-01}$ 7. It may be helpful to consolidate all this information into a table such as the following: | | | Resident - Soil | | | | | |--------------|---|---|----------------------------|--|--------------------------|--| | | | CANCER | | NONCAN | CER | | | Analyte | Site Exposure Point Concentration (mg/kg) | ^a rbc _{cancer}
(mg/kg) | Site
ILCR
(unitless) | ^b rbc _{noncancer}
(mg/kg) | Site
HQ
(unitless) | | | Benzene | 4.00E-01 | 6.98E-01 | 5.73E-07 | 1.11E+02 | 3.60E-02 | | | Ethylbenzene | 2.00E+00 | 3.68E+00 | 1.63E-06 | 4.45E+02 | 1.35E-02 | | | | | Site | | Site | | | | | | Cumulative ILCR = | 2.20E-06 | Hazard Index = | 4.95E-01 | | a. Cancer rbcs are based on a target Risk of 1E-06 - 8. The Cumulative ILCR and HI can now be compared to the target ILCR and target HI to determine whether further action is warranted: - a. Is the Cumulative Site ILCR > the target cancer risk? Is 2.20E⁻⁰⁶>1E⁻⁰⁶? Yes b. Is the HI > the target Site HI? Is 4.95E⁻⁰¹>1 No Because the Cumulative Site ILCR is greater than the target cancer risk for the site, further attention is warranted. b. Noncancer rbcs are based on a target Hazard Quotient of 1.0 | | | | pased concentations (rbcs) | |--|-----------------|--------------------------|-----------------------------| | | | Cancer Target Risk=1E-6 | Noncancer Hazard Quotient=1 | | Chemical Name | CAS No. | Combined Routes
mg/kg | Combined Routes
mg/kg | | Chemeur Aune | CIADITO | g/ng | g/ng | | Acetochlor | 34256-82-1 | NA | 1.22E+03 | | Acetone | 67-64-1 | NA | 4.06E+04 | | Alachlor | 15972-60-8 | NA | 6.08E+01 | | Aldrin | 309-00-2 | 2.02E-02 | 2.10E+00 | | Aluminum | 7429-90-5 | NA | 7.25E+04 | | Antimony | 7440-36-0 | NA | 2.60E+01 | | Arsenic, Inorganic | 7440-38-2 | 2.32E-01 | 2.10E+01 | | Barium | 7440-39-3 | NA | 1.12E+04 | | Benomyl | 17804-35-2 | 1.16E+02 | 7.90E+02 | | Benzene | 71-43-2 | 6.98E-01 | 1.11E+02 | | Benzo(a)pyrene ^(a) | 50-32-8 | 7.28E-02 | 1.72E+01 | | Beryllium | 7440-41-7 | 5.67E+02 | 3.45E+01 | | Bis(2-chloro-1-methyl ethyl)ether | 108-60-1 | NA | 2.80E+03 | | Boron | 7440-42-8 | NA | 1.47E+04 | | Bromate | 15541-45-4 | 5.36E-01 | 2.93E+02 | | Bromochloromethane | 74-97-5 | NA | 1.93E+02 | | Bromoxynil | 1689-84-5 | 2.69E+00 | 9.12E+02 | | Butylbenzene, n- | 104-51-8 | NA | 3.50E+03 | | Butylbenzene, sec- | 135-98-8 | NA | 7.01E+03 | | Butylbenzene, tert- | 98-06-6 | NA | 7.01E+03 | | Cadmium (food) | 7440-43-9 | 7.56E+02 | 6.86E+00 | | Carbaryl | 63-25-2 | 3.17E+02 | 6.08E+03 | | Carbon Disulfide | 75-15-0 | NA | 6.08E+02 | | Carbon tetrachloride | 56-23-5 | 3.72E-01 | 1.30E+02 | | Chlorobenzene | 108-90-7 | NA | 4.14E+02 | | Chromium (III) (insoluble salts) | 16065-83-1 | NA | 4.02E+04 | | Chromium (VI) | 18540-29-9 | 9.06E-02 | 1.16E+02 | | Cobalt | 7440-48-4 | 1.51E+02 | 2.19E+01 | | Copper | 7440-50-8 | NA | 1.04E+04 | | Di (2-ethylhexyl) phthalate | 117-81-7 | 1.98E+01 | 1.22E+03 | | Dibromochloropropane | 96-12-8 | 6.00E-03 | 6.63E+00 | | Dibromoethane, 1,2- | 106-93-4 | 2.27E-02 | 1.15E+02 | | Dichloroethane, 1,1- | 75-34-3 | 2.10E+00 | 1.40E+04 | | Dichloroethane, 1,2- | 107-06-2 | 2.85E-01 | 4.95E+01 | | Dichloroethylene, cis 1,2- | 156-59-2 | NA | 1.40E+02 | | Dichloroethylene, trans 1,2- | 156-60-5 |
NA | 1.40E+03 | | Dichloropropane, 1,2- | 78-87-5 | 1.51E+00 | 2.63E+01 | | Dioxane, 1,4- | 123-91-1 | 2.78E+00 | 1.05E+03 | | Ethylbenzene | 100-41-4 | 3.68E+00 | 4.45E+02 | | Fluoranthene | 206-44-0 | NA | 2.30E+03 | | Fluorene | 86-73-7 | NA | 2.30E+03 | | Hexachlorobenzene | 118-74-1 | 1.31E-01 | 5.61E+01 | | Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) | 121-82-4 | 4.60E+00 | 2.90E+02 | | Iron | 7439-89-6 | NA | 5.13E+04 | | Isopropylbenzene (cumene) | 98-82-8 | NA | 2.56E+02 | | Manganese (non-diet) | 7439-96-5 | NA | 1.12E+03 | | Mercury (elemental) | 7439-97-6 | NA | 3.13E+00 | | Methyl ethyl ketone | 78-93-3 | NA | 1.70E+04 | | Methyl tert-butyl ether (MTBE) | 1634-04-4 | NA | 6.49E+02 | | Molybdenum | 7439-98-7 | NA | 3.66E+02 | | Naphthalene | 91-20-3 | 2.72E+00 | 2.24E+02 | | Nickel | 7440-02-0 | 5.23E+03 | 9.40E+02 | | Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) | 2691-41-0 | NA
104F-04 | 3.70E+03 | | Pentachlorophenol | 87-86-5 | 4.84E-01 | 2.37E+02 | | Pentaerythritol tetranitrate (PETN) | 78-11-5 | NA | 1.22E+02 | | Perchlorate | 14797-73-0 | NA | 5.13E+01 | | Perfluoroheptanoic acid (PFHpA) ^(b) | 375-85-9 | NA | 1.22E+00 | | Perfluorohexane sulfonic acid (PFHxS) ^(b) | 355-46-4 | NA | 1.22E+00 | | Perfluorononanoic acid (PFNA) ^(b) | 375-95-1 | NA | 1.22E+00 | | Perfluorooctane sulfonic acid (PFOS) ^(b) | 1763-23-1 | NA
NA | 1.22E+00 | | | | | | | Perfluorooctanoic acid (PFOA) ^(b) | 335-67-1 | 3.96E+00 | 1.22E+00 | | Polychlorinated biphenyls ^(c) (PCBs) | 1336-36-3 | 1.14E-01 | 1.13E+00 | | Propoxur (Baygon) | 114-26-1 | 7.88E+01 | 2.43E+02 | | Propyl benzene, n- | 103-65-1 | NA | 2.53E+02 | | Selenium | 7782-49-2 | NA | 3.66E+02 | | Silver | 7440-22-4 | NA | 2.37E+02 | | Tetrachlorodibenzo-p-dioxin, 2,3,7,8- (TCDD) | 1746-01-6 | 2.25E-06 | 4.91E-05 | | Tetrachloroethane, 1,1,1,2- | 630-20-6 | 1.32E+00 | 2.10E+03 | | Tetrachloroethylene | 127-18-4 | 2.38E+00 | 1.13E+02 | | Thallium (soluble Thallium) | 7440-28-0* | NA | 7.33E-01 | | Toluene | 108-88-3 | NA | 7.06E+02 | | Trichloroethylene (non-moa / mmoa) | 79-01-6 | 6.81E-01 | 6.21E+00 | | Trichloropropane, 1,2,3- | 96-18-4 | 3.11E-03 | 8.67E+00 | | Trimethylbenzene, 1,2,3- (d) | 526-73-8 | NA | 2.06E+02 | | Trimethylbenzene, 1,2,4- (d) | 95-63-6 | NA | 1.66E+02 | | Trimethylbenzene, 1,3,5- (d) | 108-67-8 | NA
NA | 1.44E+02 | | Trinitrotoluene, 2,4,6- (TNT) | | | 1.44E+02
3.49E+01 | | Trinitrotoluene, 2,4,6- (TNT) Uranium (soluble salts) | 118-96-7
NA | 1.15E+01
NA | | | Vanadium Vanadium | NA
7440-62-2 | NA
NA | 4.40E+01 | | Vanadium
Vinyl chloride | 75-01-4 | 9.83E-02 | 2.77E+00
8.51E+01 | | Vinyi chioride
Xylenes | 1330-20-7 | 9.83E-02
NA | 8.51E+01
2.52E+02 | | Ayrenco | | | 2.52E+02 | | Zinc | 7440-66-6 | NA | 2.20E+04 | Notes: * - CAS Number is for Metallic Thallium Groundwater temperature of 15°C used in derivation of volatization factors with May 2018 Regional Screening Level Calculator. Csat substitution used if soil inhalation screening value greater than Csat. Csats derived using May 2018 Regional Screening Level Calculator. All cancer-based soil inhalation screening values were less than respective Csat thus no substitutions. Noncancer-based soil inhalation screening value above respective Csat thus Csat substitution employed for the following: Acetone, Carbon Disulfide, Ethylbenzene, Isopropylbenzene (cumene), Mercury (elemental), Methyl ethyl ketone, Methyl tert-butyl ether, n-Propyl benzene, Tetrachloroethylene, Toluene, Trimethyl benzenes, Xylenes. (a) Benzo(a)pyrene cancer-based screening value applicable to benzo(a)pyrene itself and to total benzo(a)pyrene toxic equivalents [B(a)P-TE]. Benzo(a)pyrene noncancer-based value applicable only to benzo(a)pyrene itself. (b) PFAS - Sum of PFHpA, PFHAS, PFNA, PFOS and PFOA not to exceed 1.22 mg/kg. (c) Polychlorinated Biphenyls - IRIS high risk and persistence cancer toxicity values employed; noncancer assessment of Total PCBs based on oral reference dose and VF for Aroclor 1254. (d) Trimethyl benzenes - Sum of the three isomers not to exceed 1.44E+02 mg/kg, based on the most conservative value derived for an individual isomer. TABLE 2 SUMMARY TABLE 2019 - COMMERCIAL WORKER SOIL risk-based concentrations (rbcs) (mg/kg) INCIDENTAL INGESTION, DERMAL CONTACT AND INHALATION | | | Cancer Target Risk=1E-6 | il risk-based concentations (rbcs) Noncancer Hazard Quotient=1 | | |--|------------|-------------------------|---|--| | | | Combined Routes | Combined Routes | | | Chemical Name | CAS No. | mg/kg | mg/kg | | | Acetochlor | 34256-82-1 | | 1.44E+04 | | | Acetone | 67-64-1 | | 1.00E+05 | | | Alachlor | 15972-60-8 | | 7.18E+02 | | | Aldrin | 309-00-2 | 9.76E-02 | 2.15E+01 | | | Aluminum | 7429-90-5 | 7.70E-02 | 9.42E+05 | | | Antimony | 7440-36-0 | - | 3.19E+02 | | | | | 1.41E+00 | | | | Arsenic, Inorganic | 7440-38-2 | 1.41E+00 | 2.71E+02 | | | Barium | 7440-39-3 | 7.01E+02 | 1.27E+05 | | | Benomyl | 17804-35-2 | | 9.34E+03 | | | Benzene (a) | 71-43-2 | 4.19E+00 | 4.18E+02 | | | Benzo(a)pyrene ^(a) | 50-32-8 | 1.54E+00 | 1.94E+02 | | | Beryllium | 7440-41-7 | 4.63E+03 | 2.89E+02 | | | Bis(2-chloro-1-methyl ethyl)ether | 108-60-1 | - | 3.63E+04 | | | Boron | 7440-42-8 | - | 1.96E+05 | | | Bromate | 15541-45-4 | 3.27E+00 | 3.92E+03 | | | Bromochloromethane | 74-97-5 | - | 5.97E+02 | | | Bromoxynil | 1689-84-5 | 1.63E+01 | 1.08E+04 | | | Butylbenzene, n- | 104-51-8 | - | 5.11E+04 | | | Butylbenzene, sec- | 135-98-8 | - | 1.02E+05 | | | Butylbenzene, tert- | 98-06-6 | - | 1.02E+05 | | | Cadmium (food) | 7440-43-9 | 6.18E+03 | 8.72E+01 | | | Carbaryl | 63-25-2 | 1.91E+03 | 7.18E+04 | | | Carbon Disulfide | 75-15-0 | - | 6.62E+02 | | | Carbon tetrachloride | 56-23-5 | 2.23E+00 | 3.59E+02 | | | Chlorobenzene | 108-90-7 | - | 7.26E+02 | | | Chromium (III) (insoluble salts) | 16065-83-1 | - | 3.60E+05 | | | Chromium (VI) | 18540-29-9 | 1.75E+00 | 1.14E+03 | | | Cobalt | 7440-48-4 | 1.24E+03 | 2.91E+02 | | | Copper | 7440-50-8 | 1.242103 | 1.39E+05 | | | | 117-81-7 | 1.205.02 | 1.44E+04 | | | Di (2-ethylhexyl) phthalate | | 1.20E+02 | | | | Dibromochloropropane | 96-12-8 | 6.15E-02 | 2.75E+01 | | | Dibromoethane, 1,2- | 106-93-4 | 1.39E-01 | 3.49E+02 | | | Dichloroethane, 1,1- | 75-34-3 | 1.26E+01 | 2.04E+05 | | | Dichloroethane, 1,2- | 107-06-2 | 1.71E+00 | 1.40E+02 | | | Dichloroethylene, cis 1,2- | 156-59-2 | - | 1.81E+03 | | | Dichloroethylene, trans 1,2- | 156-60-5 | - | 1.81E+04 | | | Dichloropropane, 1,2- | 78-87-5 | 9.06E+00 | 6.81E+01 | | | Dioxane, 1,4- | 123-91-1 | 1.69E+01 | 4.49E+03 | | | Ethylbenzene | 100-41-4 | 2.21E+01 | 4.73E+02 | | | Fluoranthene | 206-44-0 | - | 2.64E+04 | | | Fluorene | 86-73-7 | - | 2.64E+04 | | | Hexachlorobenzene | 118-74-1 | 6.86E-01 | 5.74E+02 | | | Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) | 121-82-4 | 2.80E+01 | 3.84E+03 | | | iron | 7439-89-6 | - | 6.86E+05 | | | sopropylbenzene (cumene) | 98-82-8 | _ | 2.64E+02 | | | Manganese (non-diet) | 7439-96-5 | - | 1.14E+04 | | | Mercury (elemental) | 7439-97-6 | | 3.13E+00 | | | Methyl ethyl ketone | 78-93-3 | | 2.70E+04 | | | Methyl tert-butyl ether (MTBE) | 1634-04-4 | - | 4.46E+03 | | | Molybdenum | 7439-98-7 | - | 4.90E+03 | | | | | 1 CAE: 01 | | | | Naphthalene | 91-20-3 | 1.64E+01 | 6.78E+02 | | | Nickel | 7440-02-0 | 4.28E+04 | 9.71E+03 | | | Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) | 2691-41-0 | | 4.98E+04 | | | Pentachlorophenol | 87-86-5 | 2.90E+00 | 2.48E+03 | | | Pentaerythritol tetranitrate (PETN) | 78-11-5 | - | 1.44E+03 | | | Perchlorate | 14797-73-0 | - | 6.86E+02 | | | Perfluoroheptanoic acid (PFHpA) ^(b) | 375-85-9 | - | 1.44E+01 | | | Perfluorohexane sulfonic acid (PFHxS) ^(b) | 355-46-4 | - | 1.44E+01 | | | Perfluorononanoic acid (PFNA) ^(b) | 375-95-1 | - | 1.44E+01 | | | Perfluorooctane sulfonic acid (PFOS) ^(b) | 1763-23-1 | - | 1.44E+01 | | | Perfluorooctanoic acid (PFOA) ^(b) | 335-67-1 | 2.39E+01 | 1.44E+01 | | | Polychlorinated biphenyls (PCBs) (C) | 1336-36-3 | 6.83E-01 | 1.28E+01 | | | Propoxur (Baygon) | 114-26-1 | 4.76E+02 | 2.87E+03 | | | Propyl benzene, n- | 103-65-1 | - | 2.61E+02 | | | Selenium | 7782-49-2 | _ | 4.90E+03 | | | Silver | 7440-22-4 | - | 2.48E+03 | | | Fetrachlorodibenzo-p-dioxin, 2,3,7,8- (TCDD) | 1746-01-6 | | | | | Tetrachloroethane, 1,1,1,2- | | 1.37E-05 | 6.35E-04 | | | | 630-20-6 | 8.00E+00 | 3.07E+04 | | | Cetrachloroethylene | 127-18-4 | 1.43E+01 | 1.51E+02 | | | Thallium (soluble Thallium) | 7440-28-0* | - | 1.96E+05 | | | Toluene | 108-88-3 | - | 7.98E+02 | | | Trichloroethylene (non-moa) | 79-01-6 | 6.47E+00 | 1.86E+01 | | | Frichloropropane, 1,2,3- | 96-18-4 | 7.05E-02 | 2.29E+01 | | | Frimethylbenzene, 1,2,3- (d) | 526-73-8 | - | 2.82E+02 | | | Frimethylbenzene, 1,2,4- (d) | 95-63-6 | - | 2.12E+02 | | | Trimethylbenzene, 1,3,5- (d) | 108-67-8 | - | 1.77E+02 | | | Frinitrotoluene, 2,4,6- (TNT) | 118-96-7 | 7.00E+01 | 4.50E+02 | | | Jranium (soluble salts) | Uranium | 7.002101 | 5.88E+02 | | | Vanadium | 7440-62-2 | - | | | | | | | 2.72E+01 | | | Vinyl chloride | 75-01-4 | 5.93E-01 | 3.24E+02 | | | Xylenes | 1330-20-7 | - | 2.57E+02 | | | Zinc | 7440-66-6 | | 2.94E+05 | | Notes: * - CAS Number is for Metallic Thallium Groundwater temperature of 15°C used in derivation of volatiziation factors with May 2018 Regional Screening Level Calculator. Csat substitution used if soil inhalation screening value greater than Csat. Csats derived using May 2018 Regional Screening Level Calculator. (a) Benzo(a)pyrene cancer-based screening value applicable to benzo(a)pyrene itself and to total benzo(a)pyrene toxic equivalents [B(a)P-TE]. Benzo(a)pyrene noncancer-based value applicable only to benzo(a)pyrene itself. (b) PFAS - Sum of PFHpA, PFHAS, PFNA, PFOS and PFOA not to exceed 14.4 mg/kg. (c) Polychlorinated Biphenyls -IRIS high risk and persistence cancer toxicity values
employed; noncancer assessment of Total PCBs based on oral reference dose and VF for Aroclor 1254. (d) Trimethyl benzenes -Sum of the three isomers not to exceed 1.77+02 mg/kg, based on the most conservative value derived for an individual isomer. TABLE 3 SUMMARY TABLE 2019 - RESIDENT AND NONRESIDENTIAL INDOOR AIR risk-based concentrations (rbcs) (µg/m³) INHALATION | | | Indoor Air risk-based concentrations (rbcs) | | | | |--------------------------|-----------|---|---------------------------------|---|---------------------------------| | | | Resident - Indoor Air | | Nonresidential - Indoor Air | | | | | Cancer Target Risk = 1x10 ⁻⁶ | Noncancer Hazard Quotient = 1.0 | Cancer Target Risk = 1x10 ⁻⁶ | Noncancer Hazard Quotient = 1.0 | | | | Inhalation | Inhalation | Inhalation | Inhalation | | Chemical Name | CAS No. | μg/m3 | μg/m3 | μg/m ³ | μg/m ³ | | | | | | | | | Benzene | 71-43-2 | 0.13 | 30.00 | 1.05 | 105.12 | | Carbon tetrachloride | 56-23-5 | 0.17 | 100.00 | 1.36 | 350.40 | | Chloroethane | 75-00-3 | | 10000.00 | | 35040.00 | | Chloroform | 67-66-3 | 0.04 | 97.70 | 0.36 | 342.34 | | Dichloroethane, 1,1- | 75-34-3 | 0.63 | | 5.11 | | | Dichloroethene, 1,1- | 75-35-4 | | 200.00 | | 700.80 | | Ethylbenzene | 100-41-4 | 4.00E-01 | 260.00 | 3.27E+00 | 911.04 | | Mercury (elemental) | 7439-97-6 | | 0.30 | | 0.3 ^(a) | | Methylene chloride | 75-09-2 | 60.34 | 600.00 | 817.60 | 2102.40 | | Naphthalene | 91-20-3 | 0.03 | 3.00 | 0.24 | 10.51 | | Tetrachloroethylene | 127-18-4 | 0.63 | 40.00 | 5.11 | 140.16 | | Trichloroethylene | 79-01-6 | 0.20 | 0.2 ^(c) | 1.99 | 0.7 ^(b) | | Trimethylbenzene, 1,2,3- | 526-73-8 | | 60 ^(c) | | 210.24 ^(c) | | Trimethylbenzene, 1,2,4- | 95-63-6 | | 60 ^(c) | | 210.24 ^(c) | | Trimethylbenzene, 1,3,5- | 108-67-8 | | 60 ^(c) | | 210.24 ^(c) | | Vinyl chloride | 75-01-4 | 0.11 | 100.00 | 1.86 ^(d) | 350.40 | # Notes: - (a) Mercury (elemental) Due to the developmental toxicity associated with mercury exposure, the inhalation Reference Concentratio is used as the nonresidential air value without adjusting for exposure period. - (b) Trichloroethylene Due to the nature and severity of a particular non-cancer endpoint (fetal cardiac malformations) that may be associated with a brief window of susceptibility, there is significant uncertainty regarding the exposure period of concern. Thus, a target hazard quotient of 0.1 was used in the calculatin of noncancer values. - (c) Trimethyl benzenes The sum of the 3 isomers should not exceed $60 \mu \text{g/m}^3$ for Resident Indoor Air and not exceed $210.24 \mu \text{g/m}^3$ for Nonresidential Indoor Air - (d) Vinyl chloride Inhalation Unit Risk of 4.4E-06 (µg/m³)⁻¹ based on continuous lifetime exposure during adulthood using to develop cancer based value for Nonresidential Indoor Air # APPENDIX F. TOXICITY EQUIVALENCE FACTORS # §35-APX-F1 Toxicity Equivalence Factors and Relative Potency Factors Some chemicals are members of the same family or group and have been shown to exhibit similar toxicological properties; however, each chemical may differ in the degree of toxicity (EPA, 2019). In some such instances, a toxicity (sometimes referred to as toxic) equivalency factor (TEF) or relative potency factor (RPF) must be applied to convert the reported concentration of each member of the group to a toxicity (sometimes referred to as toxic) equivalent concentration (TEQ) or to toxic equivalents (TE) relative to the toxicity of the index chemical for the group. The index chemical is assigned a TEF or RPF of 1. Total TEQ or TE can be compared to risk-based values derived for the index chemical or assessed using as any other single chemical in a quantitative risk assessment. # Dioxins, Furans and dioxin-like Polychlorinated Biphenyls (PCBs) The index chemical for this group is 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). As of this writing, Health recommends that the 2005 World Health Organization Toxic Equivalency Factors (Van den Berg et al., 2006) be employed in the evaluation of dioxins, furans and dioxin-like PCBs. These values are also presented in the May 2013 U.S. EPA fact sheet, "Use of Dioxin TEFs in Calculating Dioxin TEQs at CERCLA and RCRA Sites" which references the 2010 U.S. EPA report, "Recommended Toxicity Equivalency Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds" (EPA, 2019). TEFs for Di-ortho PCBs may be obtained from Ahlborg, U.G. et al., 1994 (EPA, 2019). TEFs may be applied to the ingestion, dermal (see EPA, 2004) or inhalation routes of exposure and adjusted values may be used in the assessment of both cancer and noncarcinogenic effects (EPA, 2013). The sum of adjusted concentrations is often referred to as 2,3,7,8-TCDD TEQ. # Dioxin Toxicity Equivalence Factors (EPA, 2019) | CAS Registry Number | Compound | 2,3,7,8-TCDD Toxicity Equivalence Factor | |-------------------------|---------------------|---| | Chlorinated dibenzo-p-c | lioxins | | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 0.1 | | 72918-21-9 | 1,2,3,6,7,8-HxCDD | 0.1 | | 57653-85-7 | 1,2,3,7,8,9-HxCDD | 0.1 | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 0.01 | | 3268-87-9 | OCDD | 0.0003 | | | | |------------------------|---------------------------|--------|--|--|--| | Chlorinated dibenzofur | Chlorinated dibenzofurans | | | | | | 51207-31-9 | 2,3,7,8-TCDF | 0.1 | | | | | 57117-41-6 | 1,2,3,7,8-PeCDF | 0.03 | | | | | 57117-31-4 | 2,3,4,7,8-PeCDF | 0.3 | | | | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 0.1 | | | | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 0.1 | | | | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 0.1 | | | | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 0.1 | | | | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDF | 0.01 | | | | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 0.01 | | | | | 39001-02-0 | OCDF | 0.0003 | | | | | PCBs | | | | | |------------|-----------|---------------------|---------|--| | | IUPAC No. | Structure | | | | Non-ortho | | | | | | 32598-13-3 | 77 | 3,3',4,4'-TetraCB | 0.0001 | | | 70362-50-4 | 81 | 3,4,4',5-TetraCB | 0.0003 | | | 57465-28-8 | 126 | 3,3',4,4',5-PeCB | 0.1 | | | 32774-16-6 | 169 | 3,3',4,4',5,5'-HxCB | 0.03 | | | Mono-ortho | | | | | | 32598-14-4 | 105 | 2,3,3',4,4'-PeCB | 0.00003 | | | 74472-37-0 | 114 | 2,3,4,4',5-PeCB | 0.00003 | | | 31508-00-6 | 118 | 2,3',4,4',5-PeCB | 0.00003 | | | 65510-44-3 | 123 | 2',3,4,4',5-PeCB | 0.00003 | | | 38380-08-4 | 156 | 2,3,3',4,4',5-HxCB | 0.00003 | | | 69782-90-7 | 157 | 2,3,3',4,4',5'-HxCB | 0.00003 | | | 52663-72-6 | 167 | 2,3',4,4',5,5'-HxCB | 0.00003 | | | 39635-31-9 | 189 | 2,3,3',4,4',5,5'-HpCB | 0.00003 | |------------|-----|-----------------------|---------| | Di-ortho* | | | | | 35065-30-6 | 170 | 2,2',3,3',4,4',5-HpCB | 0.0001 | | 35065-29-3 | 180 | 2,2',3,4,4',5,5'-HpCB | 0.00001 | ^{*}Di-ortho values come from Ahlborg, U.g., et al (1994), which are the WHO 1994 values from Toxic equivalency factors for dioxin-like PCBs: Report on WHO-ECEH and IPCS consultation. December 1993. Chemosphere Volume 28, Issue 6. March 1994. Pages 1049-1067. # Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAH) Benzo(a)pyrene (B(a)P) is the index chemical for this group of compounds. As of this writing, Health recommends that the following RPFs (EPA, 1993) be employed in the evaluation of cPAH only with respect to carcinogenicity. The sum of adjusted concentrations is referred to as Benzo(a)pyrene toxic equivalents i.e., B(a)P-TE and may be used in the assessment of ingestion, dermal (see EPA, 2004) or inhalation exposure. # Relative Potency Factors for Carcinogenic Polycyclic Aromatic Hydrocarbons | | | Benzo(a)pyrene | |---------------------|------------------------|-------------------------| | | | Relative Potency Factor | | CAS Registry Number | Compound | | | | | | | 50-32-8 | Benzo(a)pyrene | 1 | | 56-55-3 | Benzo(a)anthracene | 0.1 | | 205-99-2 | Benzo(b)fluoranthene | 0.1 | | 207-08-9 | Benzo(k)fluoranthene | 0.01 | | 218-01-9 | Chrysene | 0.001 | | 53-70-3 | Dibenzo(a,h)anthracene | 1 | | 193-39-5 | Indeno(1,2,3cd)pyrene | 0.1 | # References EPA, 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. U.S. Environmental Protection Agency. Research Triangle Park, N.C. EPA/600/R-93/089, July 1993. EPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP.July 2004. EPA, 2013. Use of Dioxin TEFs in Calculating Dioxin TEQs at CERCLA and RCRA Sites. United States Environmental Protection Agency. May 2013. EPA, 2019. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. November 2018 edition. (accessed February 27, 2019). Van den Berg et al., 2006. The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223-241. # Environmental Protection Rules Chapter 35 # INVESTIGATION AND REMEDIATION OF CONTAMINATED PROPERTIES RULE # STATE OF VERMONT AGENCY OF NATURAL RESOURCES DEPARTMENT OF ENVIRONMENTAL CONSERVATION WASTE MANAGEMENT AND PREVENTION DIVISION Final Adopted Rule Effective Date: July 27, 2017 # <u>AMENDMENT</u> July 27, 2017 March 18, 2019 # Contents | SUBCHAPTER 1. GEI | VERAL PROVISIONS—7 | |--------------------------------|--| | § 35-101. ∧ut | hority and Purpose 7 | | § 35-102. Rel | ease Prohibition; Reporting; Emergency Response—7 | | § 35-103. Sev | rerability 9 | | § 35-104. Sign | natories 9 | | SUBCHAPTER 2. DEF | FINITIONS 10 | | § 35-201. Def | Finitions 10 | | SUBCHAPTER 3. SIT | E INVESTIGATION—18 | | § 35-301.
Rec | quirement to Perform Site Investigation. ——18 | | § 35-302. Cor | nceptual Site Model 18 | | § 35-303. Site | e Investigation Work Plan 20 | | § 35-304. Site | 21 <u>Provestigation Work Plan; Secretary Review and Determination</u> | | § 35-305. Site | e Investigation Report 22 | | § 35-306. Re √ | view of Site Investigation Report26 | | SUBCHAPTER 4. RE | SPONSE ACTIONS; RELEASES OF HEATING FUELS 32 | | § 35-401. App | plicability 32 | | § 35-402. Inv | estigation; Soil Removal and Drinking Water—32 | | § 35-403. Inv | estigation and Soil Removal Report—33 | | § 35-404. Res | sponse to Report 34 | | § 35-405. Add | ditional Site Investigation 34 | | § 35-406. Add | ditional Site Investigation Work Plan; Approval and Implementation—35 | | § 35-407. ∧de | ditional Site Investigation Report Submission and Review 35 | | SUBCHAPTER 5 CO | RRECTIVE ACTION 37 | | § 35-501. Exe | mptions from Corrective Action 37 | | § 35-502. Obj | iectives of Corrective Action 38 | | § 35-503. Eva | luation of Corrective Action Alternatives 38 | | § 35-504. Sec | retary Evaluation of Corrective Action Alternatives 41 | | § 35-505. Cor | rective Action Plan 42 | | § 35-506. Cor | rective Action Plan Review; Public Notice; Final Decision 45 | | § 35-507. Cor | rective Action Construction Completion Report 47 | | § 35-508. Rev | view and Final Decision of Corrective Action Construction Completion Report 48 | | AM | EN | DN | IEN | T | |-----------|----|-----|------------|---| | 7 7 1 1 1 | | 11. | | | July 27, 2017 March 18, 2019 | IE | |---------------| <u></u> 7 | | <u></u> 7 | | <u></u> 7 | | <u></u> 9 | | 10 | | | | | # Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED PROPOSED RULE | AN | IEN | DN | IEN | Τ | |----|------------|----|------------|---| | | | | | | | July 27, 2017 <u>March</u> | | |---|-----------------| | SUBCHAPTER 3. SITE INVESTIGATION | | | § 35-301. APPLICABILITY AND REQUIREMENT TO PERFORM SITE INVESTIGATION | 18 | | § 35-302. OBJECTIVES OF SITE INVESTIGATION | 18 | | § 35-303. CONCEPTUAL SITE MODEL. | 18 | | § 35-304. SITE INVESTIGATION WORK PLAN | 20 | | § 35-305. SITE INVESTIGATION WORK PLAN; SECRETARY REVIEW AND DETERMINAT | <u>ION</u> 21 | | § 35-306. SITE INVESTIGATION REPORT | 22 | | § 35-307. REVIEW OF SITE INVESTIGATION REPORT. | 26 | | SUBCHAPTER 4. DATA EVALUATION | 28 | | § 35-401. EVALUATION OF ENVIRONMENTAL MEDIA LABORATORY ANALYTICAL RES | <u>ULTS.</u> 28 | | SUBCHAPTER 5. RESPONSE ACTIONS; RELEASES OF HEATING FUELS | <u></u> 32 | | § 35-501. Applicability | 32 | | § 35-502. Initial Release Investigation | 32 | | § 35-503. INITIAL RELEASE INVESTIGATION REPORT. | 33 | | § 35-504. RESPONSE TO REPORT. | 34 | | § 35-505. Additional Site Investigation | 34 | | § 35-506. ADDITIONAL SITE INVESTIGATION WORK PLAN; APPROVAL AND | | | IMPLEMENTATION | | | § 35-507. Additional Site Investigation Report Submission and Review | | | SUBCHAPTER 6 CORRECTIVE ACTION | | | § 35-601. Applicability | <u></u> 37 | | § 35-602. Exemptions | <u></u> 37 | | § 35-603. OBJECTIVES OF CORRECTIVE ACTION | <u></u> 38 | | § 35-604. EVALUATION OF CORRECTIVE ACTION ALTERNATIVES | <u></u> 38 | | § 35-605. SECRETARY EVALUATION OF CORRECTIVE ACTION ALTERNATIVES | 41 | | § 35-606. CORRECTIVE ACTION PLAN. | 42 | | § 35-607. CORRECTIVE ACTION PLAN REVIEW; PUBLIC NOTICE; FINAL DECISION | 45 | | § 35-608. CORRECTIVE ACTION CONSTRUCTION COMPLETION REPORT | <u></u> 47 | | § 35-609. REVIEW AND FINAL DECISION OF CORRECTIVE ACTION CONSTRUCTION | | | COMPLETION REPORT | | | § 35-610. CORRECTIVE ACTION PERFORMANCE MONITORING AND O&M | | | § 35-611. SITE GENERATED WASTES | 49 | # <u>AMENDMENT</u> | CHRCHADTE | July 27, 2017 March 18 R 7 LONG TERM MONITORING | | |------------|---|-------------| | § 35-701. | APPLICABILITY | | | | LONG TERM MONITORING WORK PLAN | | | | GENERAL REQUIREMENTS FOR LONG TERM MONITORING | | | | REPORTING | | | | SECRETARY REVIEW OF LONG TERM MONITORING REPORT | | | | R 8 CONTAMINATED SOIL | | | | APPLICABILITY | | | | EXEMPTIONS | | | | Non-Hazardous Waste Contaminated Soil | | | _ | SOIL MANAGEMENT PLANS | | | | DEVELOPMENT SOILS | | | | R 9. INSTITUTIONAL CONTROLS | | | | INSTITUTIONAL CONTROL PLAN | | | | NOTICE TO THE LAND RECORDS | | | | Environmental Easement | | | | LAND USE RESTRICTIONS WITHIN A CERTIFICATE OF COMPLETION | | | | R 10. SITE CLOSURE | | | | SITE MANAGEMENT ACTIVITIES COMPLETE | | | | CERTIFICATE OF COMPLETION | | | SUBCHAPTE! | R 11. REQUESTS FOR REIMBURSEMENT FOR MUNICIPAL WATER LI | | | | NCY FUNDS | <u></u> 72 | | § 35-1101. | REIMBURSEMENT OF MUNICIPALITIES TO PROVIDE ALTERNATE WATER SUPP. _72 | <u>LIES</u> | | APPENDIX A | ENVIRONMENTAL MEDIA STANDARDS | <u></u> 75 | | | SOIL STANDARDS | | | | VAPOR INTRUSION STANDARDS | | | §-APX-A3. | SEDIMENT STANDARDS | <u>75</u> | | APPENDIX B | ESTABLISHMENT OF BACKGROUND CONCENTRATIONS | <u></u> 96 | | § 35-APX-E | 31. ESTABLISHMENT OF SITE SPECIFIC BACKGROUND LEVELS | <u></u> 96 | | | SITE MANAGEMENT WAIVERS | | | | 21. TECHNICAL IMPRACTICALITY. | | # Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED PROPOSED RULE | AMENDMENT | | | |------------------|------------------------------|---| | | | July 27, 2017 March 18, 2019 | | APPENDIX D. | HAZARDOUS MATERIALS LISTING | 100 | | APPENDIX E. | CUMULATIVE RISK ASSESSMENTS | 101 | | APPENDIX F. | TOXICITY EQUIVALENCE FACTORS | 112 | ## SUBCHAPTER 1. GENERAL PROVISIONS # § 35-101. AUTHORITY AND PURPOSE - (a) Authority. This rule is adopted by the Secretary of the Agency of Natural Resources pursuant to the authority granted by 10 V.S.A. § 6603(1)chapters 47, 59, and 6604d.159. - (b) Purpose. This rule is intended to protect public health and the environment by establishing procedures and requirements for conducting investigations and corrective actions at properties where a release of hazardous materials has occurred. This includes procedures for identifying hazardous material contamination to environmental media including soil, groundwater, surface water, and air, as well as requirements for source treatment, removal, or containment, long term monitoring and institutional controls, and site closure. # § 35-102. RELEASE PROHIBITION; REPORTING; EMERGENCY RESPONSE - (a) Release prohibition. The release of hazardous materials into the surface or groundwater, or onto the land of the stateState is prohibited. - (b) Releases and suspected releases. Any person required by 10 V.S.A. § 6617 shall immediately report a release any of the following releases or suspected release as indicated by the following releases: - (1) A release of hazardous material, excluding petroleum; - (2)(1) A release of any petroleum product that exceeds 2two gallons: - (3)(2) A release of any petroleum product hazardous material that is less than or equal to 2 gallons and poses a potential or actual threat to human health or the environment; or. - (3) A discharge of hazardous waste, or release of hazardous material that equals or exceeds its corresponding reportable quantity under CERCLA as specified under 40 CFR 302.4. - (4) The detection of non-aqueous phase petroleum liquid (NAPL) at a thickness greater than 0.01'. - (5) Note: Reporting An exceedance of an environmental media standard other than an exceedance for which notification is required under subdivision (c) of this subsection. - Notification of exceedances. Verbal notification within 24 hours of an exceedance of environmental media standard and written analytical results within five business days of the exceedance shall be provided to the Secretary under the following circumstances: # **AMENDMENT** July 27, 2017March 18, 2019 - (1) When drinking water supply laboratory analytical results report an exceedance of the groundwater enforcement standards; and - (2) When indoor air quality laboratory analytical results report an exceedance of an indoor air standard. - (d) Reporting and notification under subsections (b) and (c) of this section must be directed to: Monday through Friday, 7:45 AM to 4:30 PM; Waste Management & Prevention Division at (802) 828-1138. At all other times including State holidays: Department of Public Safety Division of Emergency Management and Homeland Security at (800) 641-5005. # (e)(e) Emergency response. - (1) Notwithstanding the site investigation and corrective action requirements of this rule, the Secretary may require <u>or undertake</u> an emergency response pursuant to 10 V.S.A. § <u>1283</u>6615 when the Secretary determines that a release may cause an immediate and serious threat of harm to human health or the environment. - (2) When undertaking emergency responses pursuant to this subsection 10 V.S.A. § 1283, notification to the potentially responsible party (PRP) pursuant to 10 V.S.A. § 1283 in advance of undertaking emergency response is not required, unless: - (A) The Secretary determines that there is need for additional investigation of the release to determine the impact to sensitive receptors and to human health and that it is appropriate for the PRP to conduct the investigation; or - (B) The Secretary determines that an additional response is necessary to address short-term impacts to sensitive receptors, impact to human health, and that it is appropriate for the PRP to conduct the additional response. - (3) The Secretary shall conduct or may direct the PRP to conduct a limited site investigation to determine if the release requires further site investigation or corrective action. As used in this subsection,
"limited site investigation" means the steps the Secretary deems necessary to determine whether additional site investigation or corrective action is necessary to respond to the release of hazardous materials. In the event the PRP is unwilling, unable, or unknown, the Secretary may perform these actions and seek redress from the PRP at a later date as allowed by 10 V.S.A. § 1283. ## **AMENDMENT** July 27, 2017 March 18, 2019 # § 35-103. SEVERABILITY The provisions of any section of this rule are severable. If any provision of this rule is invalid or if any application of this rule to any person or circumstance is invalid, the invalidity shall not affect other provisions or applications that can be given effect without the invalid provision or application. # § 35-104. SIGNATORIES All deliverables required by § 35-102(c)(3) (emergency response; limited site investigation); § 35-303304 (site investigation work plan), § 35-305306 (site investigation report); § 35-403503 (response actions; releases of heating fuels; initial release investigation and soil removal report); § 35-405505 (additional site investigation); § 35-407507(a) (response actions; releases of heating fuels; additional site characterization report); § 35-503604 (evaluation of corrective action alternatives); § 35-505606 (corrective action plan); § 35-507608 (corrective action construction completion report); and § 35-509(b)§ 35-610 (corrective action performance monitoring and O&M); § 35-702 (long term monitoring reportwork plan); and § 35-704 (long term monitoring; reporting) shall be prepared, signed, and certified by an environmental professional. Reports <u>Deliverables</u> shall be signed with the following certification: "I certify under penalty of perjury that I am an environmental professional and that all content contained within this deliverable is to the best of my knowledge true and correct." # § 35-105. DELIVERABLES All deliverables shall be submitted electronically via text searchable PDF. Paper copies are to be submitted only upon request of the Secretary. Raw data-and, field notes, billing records, time sheets, or any other supporting documentation used to create the deliverable shall be made available upon request by the Secretary. # § 35-106. HAZARDOUS MATERIAL LISTING Pursuant to 10 V.S.A. § 6602(16)(A)(iv) any chemical or substance listed in Appendix D is a hazardous material. # § 35-107. HISTORICAL FILL EXEMPTION The Secretary may shall make a determination in writing that historical fill is present at a site and may exempt the historical fill from the site investigation and corrective action requirements of this rule. No exemption shall apply without the prior, written approval by the Secretary. # SUBCHAPTER 2. DEFINITIONS # § 35-201. DEFINITIONS As used in this rule, terms shall have the following meanings: - (1) "Aboveground storage tank" or "AST" means any tank, other than an underground storage tank, used to store any of the following petroleum products: gasoline, diesel, kerosene, used oil, or heating oil. - (2) "Agency" means the Vermont Agency of Natural Resources. - (3) "Analytical detection limit" means the minimum concentration of a hazardous material that can be quantified consistently and reliably using methods approved by EPA or another method approved by the Secretary. - (4)(3) "Analysis" or "analyze" means to test for the presence of hazardous materials using a standard US EPAEnvironmental Protection Agency (US EPA) method or an alternative approved by the Secretary. - (5)(4) "Area of contamination" means a defined area on thea site where hazardous waste is present and contaminated environmental media standards are exceeded due to the release. that is a hazardous waste has been generated by site remediation activities (e.g., excavated). - (6)(5) "Background" means naturally occurring constituents where the concentration detected in the environmental medium media sampled is attributable to natural occurrence and not influenced by site related or other anthropogenic activities. - (6) "Background Air Quality" means pollutant concentrations due to: (1) natural sources; (2) nearby sources other than the one(s) currently under consideration; or (3) unidentified sources other than the one(s) currently under consideration. - (7) "Brownfield" means real property, the expansion, redevelopment, or reuse of which may be complicated by the presence, or perceived presence of, a hazardous material. "Brownfield" does not include any of the following: - (A) A facility that is the subject of a planned or ongoing removal action under CERCLA. - (B) A facility that is listed as a CERCLA site or is proposed for listing. - (C) A facility that is the subject of any State or federal administrative or court order under any of the following authorities: - (i) 33 U.S.C. § 1251 et seq. (federal Water Pollution Control Act) or 10 V.S.A. chapter 47 (water pollution control); - (ii) 15 U.S.C. § 2601 et seq. (Toxic Substances Control Act); - (iii) 42 U.S.C. § 300f et seq. (Safe Drinking Water Act) or 10 V.S.A. chapter 56 (public water supply). - (D) A facility that is subject to either of the following: - (i) corrective action under 42 U.S.C. § 6924(u) or 6928(h); - (ii) corrective action permit or order issued or modified to require the implementation of corrective measures. - (E) A land disposal unit in regard to which both of the following apply: - (i) a closure notification under subtitle C of 42 U.S.C. § 6921 et seq. has been submitted; - (ii) closure requirements have been specified in a closure plan or permit. - (F) A facility that is subject to the jurisdiction, custody, or control of any instrumentality of the United States, except for land held in trust by the United States for an Indian tribe. - (G) A portion of a facility to which both the following apply: - (i) a release of polychlorinated biphenyls has occurred; - (ii) is subject to remediation under 15 U.S.C. § 2601 et seq. (Toxic Substances Control Act). - (H) A portion of a facility for which assistance for response activity has been obtained under subtitle I of 42 U.S.C. § 6991 et seq. (Solid Waste Disposal Act) from the Leaking Underground Storage Tank Trust Fund established under 26 U.S.C. § 9508. - (8) "BRELLA" means <u>the Vermont</u> Brownfields Reuse and Environmental Liability Limitation Act. - (9) -"Category four one underground storage tank" means any underground storage tank with equal to or less than 1100 gallons that is either a farm or residential motor fuel tank or a fuel, regardless of its capacity, except: - (A) Fuel oil storage tanktanks used only for on-premises heating-purposes; or - (B) Farm or residential tanks used for storing motor fuel. - (10) "Compliance point" means: - (B) anythe point of present use of groundwater, including use compliance as a public water supply or potable water supply; - (C) the boundary of a Class I, Class II, or Class IV groundwater area; - (D) zone two of a public water source protection area; - (A) any point atdefined in the boundary of the property where the activity is located Vermont Groundwater Protection Rule and Strategy; and - (B) any point established in an approved corrective action plan established to evaluate a release's impact on a sensitive receptor. - (11) "Conceptual Site Model" or "CSM" is a written and illustrative representation description of the physical, chemical, and biological processes that control the transport, migration, and actual and potential impacts of contamination (in soil, air, groundwater, soil gas, indoor air, sediment, or surface water or sediments) to sensitive receptors. -CSM may include illustrations as appropriate. - (12) <u>"Contamination" or "Contaminated" means the presence of any hazardous material in soil, groundwater, soil gas, indoor air, sediment, surface water, construction or excavation debris, or any other material at a concentration that has the potential to adversely affect human health or the environment. "Contaminated" This term does not include naturally occurring substances at or below background levels.</u> - (9) "Deed restriction" or "environmental easement" means a legal restriction on a property that grants a real property interest to the state to enforce maintenance requirements, monitoring requirements, or land use restrictions. - (13) "Development soil" means unconsolidated mineral and organic matter overlying bedrock that contains only PAHs, arsenic, or lead in concentrations that: - (A) exceed the relevant soil screening level for residential soil <u>Vermont Soil</u> <u>Standard</u>; - (B) when managed in accordance with § 35-512<u>804</u> or the Vermont Solid Waste Management Rule: - (i) pose no greater risk than the Agency-established soil screening valuestandard for the intended reuse of the property; and - (ii) pose no unreasonable risk to human health through a dermal, inhalation, or ingestion exposure pathway; - (C) do not leach compounds at concentrations that exceed groundwater enforcement standards; and - (D) do not result in an exceedance of Vermont groundwater enforcement standards. - (14) "Direct contact" means the ability of a human to have direct contact with physical exposure to contaminants or naturally occurring compounds in environmental media including soils soil, groundwater, soil gas, indoor air, sediment, or surface water, sediment and air via incidental ingestion, dermal contact, inhalation of vapors, or fugitive dust—via a completed contact pathway. - (15) "Environmental easement" means a legal restriction on a property that grants a real property interest to the State to enforce maintenance requirements, monitoring requirements, or land use restrictions. - (15)(16) "Engineered control" means any physical barrier, system, technology, or method that removes or reduces exposure to a hazardous material in environmentally isolated or inaccessible to by sensitive receptors. - (16)(17) "Environmental media" means components of the
natural environment including soil, groundwater, soil gas, indoor air, sediment, or surface water, soil, and bedrock. - (17)(18) "Environmental media standards" means numeric or narrative criteria adopted by the Secretary to protect human health and the environment. - (18)(19) "Environmental professional" means a person who possesses the following education, training, and experience: - (A) A current professional engineer's <u>(with certification within relevant area of expertise)</u> or professional geologist's license or registration from a state, tribe, or U.S. territory (or the Commonwealth of Puerto Rico) and the equivalent of three years of relevant fulltime experience; - (B) A license or certification by the federal government, a state, tribe, or U.S. territory (or the Commonwealth of Puerto Rico) to perform environmental site work equivalent to that required by this rule and have the equivalent of three years of relevant fulltime experience; - (C) A baccalaureate or higher degree from an accredited institution of higher education in a discipline of engineering, geology, hydrogeology, or an applicable science and the equivalent of five years of relevant fulltime experience; or - (D) The equivalent of ten years of relevant fulltime experience in a discipline of engineering, geology, hydrogeology, or an applicable science. - (19)(20) "Emergency response" means a response action to a situation that may cause immediate and serious threat of harm to human health or the environment. - (20)(21) "Groundwater" means water below the land surface in a zone of saturation. - (21)(22) "Hazardous material": - (A) means all petroleum and toxic, corrosive, or other chemicals and related sludge included in any of the following: - (i) any substance defined in section 101(14) of the federal Comprehensive Environmental Response, Compensation and Liability (CERCLA) Act of 1980; - (ii) petroleum, including crude oil or any fraction thereof; - (iii) hazardous wastes as defined by the Vermont Hazardous Waste Management Regulations; or - (iv) a chemical or substance that, when released, poses a risk to human health or other living organisms and that is listed by this rule. - (B) Doesdoes not include herbicides and pesticides when applied consistent with good practice conducted in conformity with federal, state, and local laws and regulations and according to manufacturer's instructions. - (22)(23) "Hazardous waste" means any waste subject to regulation as hazardous waste under the Vermont Hazardous Waste Management Regulations. - "Heating fuel" means heating oil, kerosene, or other dyed diesel fuel that is not used to propel a motor vehicle and which is typically used to heat a structure. Includes any blend of petroleum and biodiesel used to heat a structure. - (25) "'Historical fill" means non-indigenous material deposited to raise the topographic elevation of the site, which, if contamination exists in such material, is not resultant from the land use or activities at the location of emplacement. Material is "historical fill" if, based on the weight of evidence the material is determined by the Secretary to meet the following criteria: - (A) was emplaced before May 20, 1985 (the effective date of § 6615.V.S.A.); - (B) is not primarily composed of, construction and demolition debris, reworked soils, dredge spoils, coal, coal ash, wood ash or other solid waste material; - (C) was contaminated with metals, hydrocarbons, or polycyclic aromatic hydrocarbons where such contamination occurred prior to emplacement and exists at concentrations consistent with the pervasive use and release of such materials prior to 1985; - (D) does not contain oil or hazardous materials originating from operations or activities at the location of emplacement; - (E) is not and does not contain a generated hazardous waste; - (F) does not contain chemical production waste, manufacturing waste, or waste from processing of metal or mineral ores, residues, slag or tailings; and - (G) does not contain waste material disposed in a municipal solid waste dump, burning dump, landfill, waste lagoon or other waste disposal location. - (24)(26) "Impervious surface" means those manmadefabricated surfaces, including paved and unpaved roads, parking areas, roofs, driveways, and walkways, from which precipitation runs off rather than infiltrates - (25)(27) "Institutional controls" means non-engineered instruments, such as - administrative and legal controls, that help minimize the potential for exposure to a hazardous material or protect the integrity of a remedy. - (28) "Investigation derived waste" means all waste generated during the site investigation or corrective action including, but not limited to, soil cuttings, groundwater, cleaning fluids and wash water, or disposable equipment. - "Land record notice" means a notice on a property land record that informs individuals of the presence release of a hazardous material on a property and any steps necessary to address this release or residual subsurface contamination at a site under the direction of the Secretary. - (30) "Legal description of property" is a description that identifies the location, boundaries, and any existing easements on the property, also referred to as metes and bounds. - (31) "Linear construction project" means construction and development activities, such as waterline and sewer line improvements, that take place within a public or private roadway, railroad, utility line, or their respective rights-of-way where contamination is encountered. - (32) "Long term monitoring" means sampling and analysis of environmental media for contaminants of concern in accordance with an approved monitoring plan. The purpose of long-term monitoring is to demonstrate that the selected remedial method is protective of human health and the environment. - (26)(33) "Method detection limit" means the minimum concentration of a hazardous material that can be quantified consistently and reliably using methods approved by US EPA or another method approved by the Secretary. - "Non-aqueous phase liquid" or "NAPL" means a liquid solution contaminant that does not dissolve in or easily mix with water, such as oil, gasoline, coal tar, or chlorinated solvents. A NAPL may be denser than water, sinking below the water table, or lighter than water, floating on the water table. - (28)(35) "Non-hazardous waste contaminated soil" means soils that are contaminated with hazardous materials at concentrations above the Residential Vermont Soil Screening Values but Standard that are not themselves hazardous wastes under the Vermont Hazardous Waste Management Rule. - (36) "Polyencapsulation" means the treatment of "Non-hazardous petroleum contaminated soil" means soils that are contaminated with petroleum but meet the exemption requirements of the Vermont Hazardous Waste Management Regulations in § 7-203(p) and may be managed in accordance with this Rule. - (37) "Non-residential" means any property or portion thereof that is designated as non-residential by municipal zoning ordinance or has a restriction prohibiting residential use. - (29)(38) "Polyencapsulation" means action of storage of contaminated soil by stockpiling on plastic sheeting and covering enclosing the stockpile with plastic sheeting. - (30)(39) "Potable water supply" means the source, treatment, and conveyance equipment used to provide water used or intended to be used for human consumption, including drinking, washing, bathing, the preparation of food, or laundering. This definition does not include any internal piping or plumbing, except for mechanical systems, such as pump stations and storage tanks or lavatories, that are - located inside a building or structure and that are integral to the operation of a potable water system. This definition also does not include a potable water supply that is subject to regulation as a public water supply. - "Potentially Responsible Party" or "PRP" means any individual or organization, that is potentially liable under for a release of hazardous materials pursuant to 10 V.S.A. 6615. - (32)(41) "Public water source protection area" means a surface and subsurface area from or through which contaminants are reasonably likely to reach a public water system source. - (A) "Public water system" means: shall have the same meaning as set forth in the 10 V.S.A. §1671. - (A) any system, or combination of systems owned or controlled by a person, which provides drinking water through pipes or other constructed conveyances to the public and which: - (i) has at least 15 service connections; or - (ii) serves an average of at least 25 individuals for at least 60 days a year. - (B) any part of a piped system which does not provide drinking water, if use of such a part could affect the quality or quantity of the drinking water supplied by the system. Public water system shall also mean a system which bottles drinking water for public distribution and sale. - "Receiving site" means a location approved by the Secretary where excavated development soils are disposed in accordance with this rule. - (34)(43) "Recognized environmental condition" means the presence or likely presence of a hazardous material at a property: - (A) due to a release; - (B) under conditions indicative of a release to the environment; or - (C) under conditions that pose a material threat of a future release to the environment. - "Release" means any intentional or unintentional action or omission resulting in the spilling, leaking, pumping, pouring, emitting, emptying, dumping, or disposing of hazardous materials into the surface or groundwaters, or onto the lands in the State, or into waters outside the jurisdiction of the State when damage may result to the public health, lands, waters, or natural resources within the jurisdiction of the State. - (45) "Remedy" means an action that results in either a reduction of exposure to human health to contaminants, or a lessening of risk to a
sensitive receptor. - (46) "Residential" includes all locations used as or for residences as well as parks, playgrounds, schoolyards and child care facilities. - "Residual contamination" means hazardous materials that remains remain in any environmental media above screening values or standards after a release has occurred and correctiveall required site investigation and correction action has been completed, and that the Secretary has determined does not pose a threat to human health or the environment given the current condition or location of the hazardous materials. - "Secretary" means the Secretary of the Vermont Agency of Natural Resources or the Secretary's duly authorized representative. - "Sensitive receptor" means any natural or human-constructed feature that may be adversely affected by a hazardous material and includes public health, public water sources, other sources of water for potable water supplies, groundwater, surface waters, wetlands, soils, sensitive ecological areas, outdoor and indoor air, and enclosed spaces such as basements, sewers, and subsurface utilities. - (39)(50) "Site" means the area where a release is known or suspected to have occurred, including the extent of contamination resulting from the release. A site may not be limited by legal property boundaries. - (10) "Spill" means a release which can be investigated and remediated within a short time frame and where long term management is not expected or required. - (40)(51) "Substantial completion" means: - (A) the site is enrolled in the BRELLA program; and - (B) the property has a remediation system constructed in accordance with an approved corrective action plan; and - (i) the remediation system is operating as designed following implementation of corrective action; - (ii) the institutional controls for the property have not been finalized; or - (iii) long term monitoring is necessary to determine whether remedial objectives are being achieved. - (41)(52) "Surface water" includes all rivers, streams, creeks, brooks, reservoirs, ponds, lakes, springs and all bodies of surface waters, artificial or natural, which are contained within, flow through or border upon the State or any portion of it. - $\frac{(42)(53)}{(53)}$ "Surface soil" means soil present at 0-618 inches below ground surface. - "Survey benchmark" means a feature on a site <u>or nearby</u> to which the surveyed elevation of all monitoring wells and site features are referenced. - evidence that a release has likely occurred. In addition, an An exceedance of an environmental media standard shall be presumed to be a suspected release and shall be reported pursuant to § 35-102(b). Knowledge and information of a suspected release may include review of maintenance and operation records, land use history, or industry standard process details. - (11) "Underground Storage Tank" or "UST" means any one or combination of tanks, including underground pipes connected to it or them, which is or has been used to contain an accumulation of regulated substances, and the volume of which, including the volume of the underground pipes connected to it or them, is 10 percent or more beneath the surface of the ground. Provided, however, that the following are excluded from the definition of "underground storage tanks" established under this section: - (A) septic tanks and manure storage tanks; - (B) flow through process tanks permitted under chapter 47 of this title and tanks regulated by chapter 159 of this title; - (C) stormwater or wastewater collection systems; - (D) storage tanks situated in an underground area if the tank is upon or above the area floor; - (E) pipeline facilities regulated by the federal Natural Gas Pipeline Safety Act (49 U.S.C. App. 1671 et seq.), the Hazardous Liquid Pipeline Safety Act (49 U.S.C. App. 2001 et seq.) or an intrastate pipeline regulated under State laws similar to the foregoing; and - (F) liquid petroleum gas storage tanks, used predominantly for the storage of propane, propylene, butane, and butylenes, regulated by the Vermont Fire Prevention and Building Code. - (56) "Treatment" means any method, technique, or process designed to change the physical, chemical, or biological character or composition, or remove, any contaminant in environmental media. - (57) "Underground Storage Tank" or "UST" shall be defined as set forth in the Vermont Underground Storage Tank Rule. - (58) "Urban Background Area" means any area designated by the Secretary, for reuse of development soils that are below the applicable urban background values. - (45)(59) "US EPA" means United States Environmental Protection Agency. - (46)(60) "Vapor intrusion" means the migration of volatile <u>or semi-volatile</u> chemicals from contaminated environmental media <u>or product</u> into a building, subsurface conduit or structure. - (61) "Volatile Organic Compound (VOC)" are volatile carbon containing compounds which have a high vapor pressure at room temperature or dissolve into water. - (47)(62) "Volatile Organic Compound (VOC) field screening instrument" means a photoionization detector, flame ionization detector, field portable gas chromatograph/mass spectrometer or another portable instrument approved by the Secretary as a part of a work planto detect VOCs. - (48)(63) "Water table" means the top of the saturated zone where the fluid pressure equals the atmospheric pressure. # SUBCHAPTER 3. SITE INVESTIGATION # § 35-301. APPLICABILITY AND REQUIREMENT TO PERFORM SITE INVESTIGATION. - Unless an action This section applies to any release or suspected release that is taken as an emergency response not fully investigated pursuant to § 35-102(c) or has been investigated as a (emergency response), or Subchapter 5 (response action; heating oil-fuel release and has satisfied the Secretary's requirements under Subchapter 4, a) of this rule. - (a)(b) A person who may be liable for the release or suspected release of a hazardous material as established in 10 V.S.A. § 6615 shall conduct a site investigation in accordance with the requirements of this chapter. - (b) A PRP shall provide the Secretary with a site investigation work plan within 30 days of the release or discovery of the release. The Secretary may establish, in writing, an alternative timeframe for providing a work plan. # § 35-302. OBJECTIVES OF SITE INVESTIGATION # Objectives of a site investigation are to: - (e)(a) Develop a Conceptual Site Model (CSM) in accordance with § 35-303; - (b) The Identify the source, degree, and spatial extent of contamination in all impacted or potentially impacted environmental media; - (c) Identify pathways that are conveying or could convey hazardous materials to sensitive receptors; - (d) Identify sensitive receptors that have been or may be impacted by the release; - (e) Identify data gaps that must be addressed to confirm the CSM or evaluate corrective action alternatives; and - (f) Identify the need to conduct further investigation or corrective action based on the results of all site characterization data gathered to date. # § 35-303. CONCEPTUAL SITE MODEL - (d)(a) A preliminary CSM shall be developed during the preparation of the <u>site</u> investigation workplanwork plan required by § 35-303. 304. The CSM shall be further refined as new <u>site data is collected.</u> - (b) The CSM is a tool to identify sources, receptors, and pathways associated with the site and should support scientific and technical decisions. A CSM is an iterative process of characterizing site contamination based on available site data and both historical and existing conditions. The CSM shall evaluate and present the data in a narrative format that depicts the fate and transport of site contaminants, addresses the threat or potential threat to human health and the environment from the site contaminants, and identifies data gaps. - (e)(c) The CSM shall identify the following or identify how the information will be obtained in the context of the site investigation: - (1) Source(s) of the release; - (2) The <u>location</u>, <u>depths</u>, <u>and</u> characteristics of <u>existing and former</u> engineered structures, subsurface infrastructure, tanks, and containers <u>present or known or suspected to have been present at the site</u>, from which or through which the suspected contaminants may have been released, transported, or may impact a sensitive receptor; - (3) Historical <u>and current</u> land uses <u>and activities for the site and immediate surrounding</u> area; - (4) Sources and contaminants; - (A) Identify all potential hazardous materials and all potential and actual sources of a release; - (B) Identify, to the extent possible, the release date(s), location(s) known volume(s), and any prior remedial actions; - (B)(C) Identify all hazardous material phases (e.g. NAPL, sorbed to matrix, dissolved in groundwater or soil moisture, and in vapors in the vadose zone); - (C)(D) Identify all hazardous material physical properties; and and the likely behavior (mobility, physical state, and persistence) of each chemical within environmental media; - (E) If known, an estimate of the amount of hazardous material mass on the site: and - (F) If known, an estimate of the amount of contaminated soil. - (5) Identify the environmental media that is affected or threatened from the release. - (6) Geology. A brief description of regional and site-specific soils and bedrock. Boring logs, well logs and groundwater confining layers shall be included, if available and have not been previously submitted to the Secretary. If applicable, values for soil bulk density, porosity, fraction organic content, pH and reduction-oxidation potential, shall be included. If available include geologic maps, fracture trace maps, geophysical data, and cross sections; - (7) Hydrogeology. Describe regional and site-specific hydrogeology, horizontal and vertical groundwater flow gradients and direction, and an assessment of the potential for
preferential pathways and multiple aquifers. If available, hydraulic conductivity, transmissivity, and other parameters shall be included; - (8) Contaminant fate and transport. Describe the hazardous material distribution, migration pathways, the amount of migration occurring, the predicted migration of the contamination over time, and if available, the adsorption, desorption, absorption, and retardation of the hazardous material, and naturally occurring degradation processes. If historical groundwater quality data have been collected, estimate the duration of groundwater contamination to determine if groundwater - reclassification is warranted according to per the Groundwater Protection Rule and Strategy; - (9) Receptor Studystudy and Evaluation Evaluation. Identify all potentially threatened sensitive receptors and complete exposure pathways. A list of the names and addresses of impacted or threatened third parties shall be included, if applicable. Compare all measured concentrations of hazardous materials with applicable environmental media standards; and - (10) Potential exposure If appropriate, a figure illustrating the site setting and key contaminant migration mechanisms and pathways from all potentially impacted media., both complete and incomplete. # § 35-302.§ 35-304. SITE INVESTIGATION WORK PLAN - (a) Applicability. This section applies to any release that is not fully investigated pursuant to: - (1) § 35-102(c) (emergency response); or - (2) Subchapter 4 (response action; heating fuel). - (b) Purpose and objectives of a site investigation work plan are to: - (1) Identify the source, degree, and spatial extent of contamination in all impacted or potentially impacted environmental media; - (2) Identify pathways that are conveying or could convey hazardous materials to different sensitive receptors; - (3) Identify sensitive receptors that have been or may be impacted by the release based upon an evaluation of pathways; - (4) Identify the need to conduct further investigation or corrective action based on results of site characterization data gathered to date; - (5) Develop the Conceptual Site Model in accordance with §35-302; and - (6) Identify data gaps that must be addressed to confirm the site conceptual model or evaluate corrective actions. # (e)(a) General requirements. - (1) A site investigation work plan shall be submitted to the Secretary no later than 30 days of the date the Secretary was notified of a release or upon request by the Secretary, unless the Secretary agrees to approves an alternate alternative schedule. - (2) A site investigation work plan shall be approved by the Secretary prior to the initiation of on-site work. - (d)(b) Minimum content. Content requirements. A site investigation work plan shall, at a minimum, include the following: - (1) Site information. Table of names, addresses, email addresses, and phone numbers of the following: - (A) Property owner and operator; and - (B) Any person or entity who released a hazardous material at the site. - (2) Current <u>land</u> use <u>or uses and activities</u> of the property; - (3) Uses Land uses and activities of properties adjacent to the site. - (4) Site description. A physical and environmental description of the site. - (5) Site characterization <u>objectives and</u> strategy. This strategy shall address known data gaps and include contaminant characterization methods, sampling locations and methods, and <u>the rationale for that how this</u> strategy <u>will meet the site investigation</u> objectives; - (6) Identification of analytical methods - (7) A list of consultant standard operating procedures to be used during the site investigation, which shall be submitted to the Secretary upon request. - (8) A CSM and a description on how the site investigation will gather information to further develop and refine the CSM_{7.} - (9) A discussion of how investigation_derived waste will be managed, which shall be in accordance with \(\sigma 35-\frac{505(5)(C);611(c)}{.} \) - (10) A quality assurance and quality control (QA/QC) plan- - (11) Maps. At a minimum Unless otherwise required by the Secretary, a vicinity map in accordance with § 35-305(b)(1314)(A) and a site map in accordance with § 35-305(b)(1314)(B) showing proposed environmental media sampling locations shall be included: - (12) Latitude/longitude of the site, as close as possible to the known or suspected release location or locations, referenced to the WGS1984 coordinate system (Mercator), in decimal degrees. Minimum with a minimum acceptable accuracy isof plus-or-minus 15 feet. - (13) Estimated costs, if requested by the Secretary— - (14) A site investigation work plan implementation schedule; and - (15) Signature. A site investigation work plan shall be signed by the environmental professional in accordance with § 35-104. # § 35-303. SITE INVESTIGATION WORK PLAN; SECRETARY REVIEW AND DETERMINATION - (a) The Secretary shall only approve, in writing, a site investigation work plan upon finding the investigation will: meet the objectives of § 35-302. - (1) Aid in determining the degree and extent, and fate and transport of contamination at the Site; and - (2) Characterize any threat that may exist to a sensitive receptor. - (b) A PRP shall implement an approved site investigation work plan no later than 60 days from the date of the Secretary's approval, unless an alternate implementation timeline is approved by the Secretary. ## § 35-304.§ 35-306. SITE INVESTIGATION REPORT - (a) The A site investigation report shall be submitted to the Secretary within 90 days of receipt of final laboratory data, or within an alternate schedule approved by the Secretary. - (b) A site investigation report shall include the following: - (1) Executive summary. A site investigation report shall include an executive summary of the site investigation, consisting of a summary of findings, conclusions, and recommendations based upon the data collected during the site investigation. - (2) Site <u>contact</u> information. Table of names, addresses, email addresses, and phone numbers of the following: - (A) Property owner and operator; and. - (B) Any personPotentially Responsible Party who released caused or may have caused a release a hazardous material at the site. - (3) Current use or uses of the property. - (4) Uses Land uses and activities of properties adjacent to the site. - (5) Site description. A physical and environmental description of the site. - (6) Latitude/longitude of the site, as close as possible to the known or suspected release location or locations, referenced to the WGS1984 coordinate system (Mercator), in decimal degrees. Minimum acceptable accuracy is plus-or-minus 15 feet. - (7) Property history. Past and present land use, waste storage or disposal areas, potential sources of contamination, and hazardous waste and hazardous materials disposal practices, including any associated EPA ID numbers. The property history section shall include a description of current and historical property uses in the surrounding area. A list of all recognized environmental conditions should be provided if an ASTM Phase I or Phase II Environmental Site Assessment has been completed. Presentation may include copies of historical maps (including Sanborn Fire Insurance Maps, town maps) and copies of town directories. - (8) Site contaminant background. A description of all known releases of hazardous materials, including the following information: - (A) The date and a description of each release, if known, the discovery date of each release, the location of each release, and the PRP for each release. - (B) The date each release was reported to the Secretary. - (C) A description of response actions taken for each release. - (D) A list of any previous environmental investigations and reports (including Phase I Environmental Site Assessments) pertinent to the site relating to a release of hazardous materials, including a summary of findings. - (E) A copy of any previous investigation or report relating to a release of hazardous materials, if not already on file with the Secretary; and. - (F) A list of governmental records reviewed relating to the site. - (9) A CSM as detailed in § 35-303. - (9)(10) Work plan protocol deviations. Any deviations from the approved work plan shall be identified and discussed. - (10)(11) Sample-collection documentation. Documentation of the sample location and, method of collection in accordance with the approved work plan, and well identification number. - Contaminated media characterization. Analytical results from the Site Investigation and applicable prior investigations shall be tabulated and compared to the applicable environmental media standard located in Appendix A and the following in accordance with Subchapter 4, unless a site-specific risk assessment was conducted pursuant to \$35-505306(b)(1213) or a site-specific background study was performed in accordance with Appendix B: (in which case the analytical results from the Site Investigation will be compared with these alternative values). - (A) Soil. Soil sample results shall be compared to the Soil Screening Values for the appropriate residential or industrial scenario. The Vermont Screening Levels (VSL) are for residential scenarios. In the absence of a VSL, the EPA Regional Screening Value shall be used. For industrial scenarios, the industrial EPA Regional Screening Value shall be used. The VT DEC Background Soil Concentration values are to be used when the Background value for benzo(a)pyrene (TEQ) or arsenic is greater than the VSL. - (B) Groundwater. Sample results shall be compared to the Vermont Groundwater Quality Standards (Vermont Groundwater Enforcement Standard or Health Advisory). - (C) Drinking water. Sample results shall be compared to the applicable Vermont Health Advisory, Vermont Action Levels, or EPA Maximum
Contaminant Levels (MCLs). - (D) Surface water. Sample results shall be compared to the Vermont Water Quality Standards; and if applicable, compared to the respective Vermont Health Advisory, Vermont Action Levels, or EPA Maximum Contaminant Levels (MCLs). - (E) Sediment. Sample results shall be compared to the Threshold Effect Concentration (TEC) and Probable Effects Concentration (PEC) for sediments. - (F) Soil gas and indoor air. Soil gas and indoor air shall be compared to: (i) the most recent EPA Vapor Intrusion Screening Value, EPA Regional Screening Levels; or - (ii) the Vermont Department of Health Risk Based Residential and Industrial Air Screening Level where available. See Appendix A. - (G) Any site-specific health advisory, Soil Screening Value, developed by the Vermont Department of Health when a standard does not exist for a hazardous material. - (11)(13) AAs applicable, a site-specific risk assessment that includes use of chemical and endpoint specific toxicity values and site-specific exposure assumptions may be performed for both current and potential future site uses. A site-specific risk assessment shall follow standard USEPAU.S. E.P.A. risk assessment methodology to determine if an incremental lifetime cancer risk of 10⁻⁶ or a hazard index of 1.0 is exceeded. - (12)(14) Maps. All maps shall include the location of the site, physical and environmental features, the Vermont Department of Environmental Conservation Hazardous Site number, legend, graphical scale bar, and a base map source reference. All maps shall be accurate and to scale. The following maps shall be included: - (A) Vicinity map (or sensitive receptor map). Prepared using the Vermont Agency of Natural Resources online Natural Resource Atlas, Waste Management Theme as a base map including property boundary lines, surrounding land use, buildings, hazardous sites, hazardous materials sources, street names, drinking water sources, surface water bodies and any other sensitive receptors identified in § 35-302(b)(8), surface water bodies, chemical storage or process areas, waste storage and disposal areas, floor drains, drywells and hazardous materials-303(c)(9) within 42,000 feet of the site. -Alternative base maps and fewer map elements may be used if pre-approved by the Secretary. - (B) Site map. A site investigation map shall include the following: - (i) <u>surface Surface</u> topography spot elevations or contours: - (ii) property Property boundary lines;. - (iii) environmental Environmental media sample locations; - (iv) <u>contaminant Contaminant</u> source areas, including former or current tank locations, release areas, <u>chemical storage</u> or <u>process areas</u>, waste <u>storage and disposal locations</u>; or other areas as appropriate. - (v) <u>engineered Engineered</u> structures, including asphalt parking surfaces, concrete sidewalks, drainage ways, diversion ditches, drain tiles, manholes, lined areas, leachate collection systems, septic systems, sewer lines, <u>floor drains</u>, drywells; and. - (vi) <u>surveySurvey</u> benchmark. A permanent and recoverable site feature shall be assigned as the site survey benchmark. The use of the top of monitoring well risers, road box covers, or concrete pads as a benchmark is prohibited. - (C) Groundwater flow direction contour map. The groundwater flow direction contour map shall include the location of all monitoring points and data collected to create groundwater elevation contours. Multiple maps may be needed to show groundwater flow in different aquifers. A groundwater flow direction contour map will not be required if the site investigation did not include the installation of groundwater monitoring wells. - (D) Contaminant distribution map. A contaminant distribution map shall include the location of all monitoring points and, as required by the Secretary, concentration of any hazardous material at laboratory analytical result (including non-detect) for that monitoring point. As applicable, based on the site-specific geology and distribution of contaminants, of concerns (i.e. exceeding a standard), isopleths shall be used to indicate the approximate location of compound-specific contaminant plumes that exceed the applicable environmental media standard. Multiple maps may be required to illustrate multiple contaminants or multiple aquifers. Maps solely depicting total contaminants (e.g. total VOCs) will not be accepted—<u>, unless otherwise</u> approved by the Secretary. At sites where isopleth maps are not appropriate, contaminant concentrations shall be plotted on the maps adjacent to the sampling points. - (13)(15) Discussion. The discussion shall include a descriptive analysis of how the data gathered further refines the CSM, how the CSM has been updated, and how the site investigation work plan-objectives in § 35-303(b302(a)) have been met. The discussion shall also establish that the data collected are suitable to determine the existing and future exposure to sensitive receptors and, the need for further characterization. Only data that meets quality assurance quality control (QA/QC) criteria will be accepted. A discussion of data which doesn't meet QA/QC criteria shall be included. The report shall evaluate if the data demonstrates that groundwater contamination is confined to the same property where the release occurred and if not, if it will recede to the property boundary within the timeline established in the Vermont Groundwater Protection Rule and Strategy. Vermont Groundwater Enforcement Standards (VGES) are met at compliance points, and if not, the estimated timeframe for meeting VGES at compliance points. - (14)(16) Data presentation. All collected data shall be organized in a narrative, tabular, and graphical form; data shall be presented on maps and cross sections when appropriate. All detected hazardous material concentrations shall be reported. Detection limits shall be provided along with analytical results. Hazardous materials that are not detected shall be reported as non-detect. less than the numerical detection limit. Detection limits shall be below the environmental media standards and shall be provided in tabular format with the analytical results. All laboratory data qualifications must be included in tabulated data presentations. - (15)(17) QA/QC sample results. At a minimum, a trip blank, a method blank and a duplicate sample will be required. If field analytical methods are approved in the work plan, the Secretary may require that a subset of samples be analyzed at a fixed base laboratory. Additional QA/QC samples (e.g. field blanks) may be required by the Secretary depending on the complexity of the investigation or sampling methods used. Any deviations from QA/QC procedures or acceptable limits shall be identified and discussed. Only data that meets quality assurance quality control (QA/QC) criteria specified in the QA/QC Plan will be accepted. - (16)(18) Investigation-derived waste. All investigation derived waste generated during the site investigation shall be managed in accordance with § 35-505(a)(5)(C611(c)). A discussion of how the investigation derived waste was managed shall be included in the site investigation report. - (17)(19) Conclusions and recommendations. The site investigation report shall include a discussion of the findings of the investigation that substantiate the revised CSM, and, specifically, the risk that hazardous materials pose to identified sensitive receptors. Further this section shall identify completed exposure pathways, data gaps, and potential corrective actions. The PRP shall make recommendations on proposed monitoring and frequency and need for further investigation, an evaluation of corrective action alternatives, corrective action, institutional control, or site closure. If additional data collection is necessary in order to identify an appropriate corrective action, then additional site investigation will be required. - (18)(20) Signature and certification. A site investigation report shall be certified by the environmental professional that it was conducted in accordance with the approved workplan and signed in accordance with § 35-104. - (21) Appendices. - (A) Standard operating procedures. A list of consultant standard operating procedures (SOPs) that were used during site investigation. SOPs shall be listed in the report and provided to the Secretary upon request. - (19) Appendices. - (A)(B) Monitoring well and soil boring logs. At a minimum, logs shall include a description and discussion of monitoring well, soil boring and test pit installation. Logs shall include well boring or test pit location with latitude and longitude. In addition, logs shall include the installation method, blow count data, elevation, total depth, depth to groundwater, soil or rock descriptions, well construction, hole backfill, or sealing information, odors noted, and field screening results. - (B)(C) Photographic documentation. Color images showing work performed at the site (UST closure, soil stockpiles, etc.) and pertinent site or vicinity features shall be included as an appendix. Each photographic presentation shall include the date and time, location, and orientation. - (C)(D) Field notes. Copies of the original field notes shall be attached as an appendix and the field notes shall contain the following minimum content: the date the work was performed, name of the person conducting the work, tasks completed, date, documentation of weather conditions, sampling timeline with locations, sampling logs, field monitoring results, and calibration information for each type of field analytical equipment. - (D)(E) Laboratory results. A copy of the laboratory results, chains of custody documentation and all QA/QC data, as specified in the approved work plan shall be included. - (E)(F) Calculations. All calculations, such as contaminant mass or volume, travel and migration time, natural attenuation, <u>Cumulative Risk
Assessment</u> and groundwater gradients. If computer modeling is conducted, a reference to the model used, the data inputs, and data output package shall be included. - (F)(G) If a quantitative human health risk assessment is conducted, the full risk assessment report, including summary tables and electronic copies of calculating spreadsheets, shall be included. - (C)(H) Hydrogeologic cross sections. When requested by the Secretary or approved in a work plan. #### § 35-305.§ 35-307. REVIEW OF SITE INVESTIGATION REPORT The Secretary shall review the site investigation report for completeness with the requirements of § 35-305306(b). - (b)(a) After determining that the site investigation report contains all the information required in §35-305(b), the Secretary) and shall, in writing notify provide written notification to the PRP÷ of one of the following determinations: - (1) The site investigation report has met the objectives of § 35-302, has adequately defined the scopedegree and extent of contamination, and risks to sensitive receptors have been appropriately evaluated and are absent or have been adequately managed—, and that: - (A) The site is potentially eligible to for closure in accordance with Subchapter 10; - (B) Long-term monitoring may be elosed required in accordance with Subchapter 7; or - (A)(C) Institutional Controls may be required in accordance with Subchapter 79. - The site investigation report has not met the objectives of § 35-302 and/or has not adequately defined the scope and extent of contamination or risk to sensitive receptors and the. The PRP shall submit a supplemental site investigation work plan that meets the requirements of § 35-304(b) within 30 days of the Secretary's notification to address data gaps or other deficiencies identified by the Secretary; - (3) The <u>The site investigation report is incomplete. The site investigation report has not met the objectives in the approved workplan or is incomplete, and will be returned to the PRP for revisions additional information and resubmittal within a timeframe established by the Secretary; or</u> - (4) The site investigation report has met the objectives of § 35-302 and has adequately defined the scope degree and extent of contamination but risks to sensitive receptors are present or have not been appropriately adequately managed. The PRP shall develop a An evaluation of corrective action alternatives, or corrective action plan in accordance with Subchaptershall be completed in accordance with Subchapter 6. If requested by the Secretary, a work plan or cost estimate for an Evaluation of corrective action alternatives (ECAA) and/or CAP may be required. #### SUBCHAPTER 4. DATA EVALUATION #### § 35-401. EVALUATION OF ENVIRONMENTAL MEDIA LABORATORY ANALYTICAL RESULTS - (a) Applicability. A PRP shall evaluate laboratory analytical data for samples collected from environmental media as part of site characterization or to document corrective action implementation and completion. Acceptable methods for data evaluation include direct comparison to environmental media standards and cumulative assessment of risk. Specific environmental data evaluation methods shall be utilized as provided in this Subchapter. - (b) Applicable standards comparison. All analytical results shall be compared to the applicable standard set forth in Appendix A, the Vermont Groundwater Protection Rule and Strategy and the Vermont Water Quality Standards. In the absence of an applicable standard, a PRP shall refer to the applicable and most current US EPA Regional Screening Level. - (c) Soil analytical results comparison. All soil sample results for each sample shall be compared to the Vermont Soil Standards in Appendix A of this Rule. Laboratory analytical results shall be compared to Vermont Residential Soil Standards unless the property is zoned for non-residential use only. - (d) The following methods shall be applied to determine risk to public health, as applicable: - (1) Method 1 Soil Screening employs a direct comparison of individual soil sample laboratory analytical results to the applicable Vermont Residential or Non-residential Soil Standards as follows: - (A) All detected contaminant concentrations shall be compared to the applicable Vermont Soil Standard (VSS). - (B) All laboratory results that are estimated shall be compared to the VSS using the value reported from the lab. Alternatively, the sample may be re-analyzed by a more sensitive laboratory method to lower the MDL to generate a value that is not estimated. - (C) Any non-detect result for contaminants of concern with an MDL that exceeds the VSS shall be considered a detected concentration equivalent to the MDL. - (D) If the sample was collected from a depth of 0 to 18 inches below ground surface and detected compound concentrations for contaminants of concern do not exceed any VSS, a Method 2 cumulative risk assessment for surface soils shall be performed. - (2) Method 2 Cumulative Risk Assessments (CRA) for surface soils. The Method 2 CRA determines if an incremental lifetime cancer risk (ILCR) of 10⁻⁶ or a hazard index (HI) of 1.0 is exceeded based on direct contact. The risk is expressed as the total (summed) risk made up of each individual compound. - (A) Compounds with non-detect results shall be not be included in the Method 2 CRA. - (B) A Method 2 CRA shall be performed by using the calculations provided in Appendix E. - (3) Method 3 Site-Specific Risk Assessment. A PRP may elect to perform a site-specific risk assessment (SSRA). The Method 3 SSRA determines if an incremental lifetime cancer risk of 10⁻⁶ or a hazard index of 1.0 is exceeded. - (e) Vapor intrusion evaluations. If indoor air sampling is required based on existing soil gas or groundwater analytical data, the presence of non-aqueous phase liquid, and an assessment of vapor intrusion pathways, then an evaluation shall be conducted in accordance with this subsection. - (1) Soil gas analytical results. All detected compound concentrations shall be compared to the Vapor Intrusion Standards (VIS) for soil gas provided in Appendix A of this rule. - (2) Groundwater analytical results. All detected compound concentrations shall be compared to the VISs for groundwater provided in Appendix A of this rule. - (f) Indoor air sample analytical results. All indoor air sample results attributable to a release shall be compared to the applicable Vermont Indoor Air Standards found in Appendix A. Laboratory analytical results shall be compared to Vermont Residential Indoor Air Standards unless the property is zoned for non-residential use only. - (g) The following methods shall be applied to determine risk to public health, as applicable: - (1) Method 1 Indoor Air Screening employs a direct comparison of detected indoor air analytical concentrations in each sample to the applicable Vermont Indoor Air Standards (VIAS) as follows: - (A) All detected analytical concentrations shall be compared to VIAS. - (B) All laboratory estimated concentrations shall be compared to VIAS. - (C) Any non-detect result for contaminants of concern where the MDL exceeds the VIAS shall be considered a detection above a standard. - (D) If detected analytical concentrations for contaminants of concern do not exceed the VIAS, a Method 2 cumulative risk assessment shall be performed. - (2) Method 2 CRA for indoor air. - (A) Compounds with non-detect results shall be not be included in the Method 2 CRA. - (B) Method 2 CRA shall be performed by using the calculations provided in Appendix E. - (3) Method 3 SSRA. A PRP may elect to perform a site-specific risk assessment. The Method 3 SSRA determines if an incremental lifetime cancer risk of 10⁻⁶ or a hazard index of 1.0 is exceeded. - (h) Groundwater analytical results. All detected compound concentrations shall be compared to the Vermont Groundwater Enforcement Standards. - (i) Drinking water analytical results. All detected compound concentrations shall be compared to the Vermont Groundwater Enforcement Standards or, when available, the Vermont Action Levels. - (j) Surface water analytical results. All detected compound concentrations shall be compared to the Vermont Water Quality Standards. - (k) Sediment analytical results. All detected compound concentrations shall be compared to the Threshold Effect Concentration (TEC) and Probable Effects Concentration (PEC) provided in Appendix A. - (l) Data evaluation for specific contaminant classes. - (1) Some chemicals are members of the same family or group and have been shown to exhibit similar toxicological properties; however, each chemical may differ in the degree of toxicity. In such instances, a toxicity equivalence factor (TEF) or relative potency factor (RPF) shall be applied to convert the reported concentration of each member of the group to a toxicity equivalence quotient (TEQ) relative to the toxicity of the index chemical for the group. The index chemical is assigned a TEF of 1. Total TEQ for a sample shall then be compared to the value for the index chemical. - (2) Evaluating classes of contaminants such as dioxins, carcinogenic polycyclic aromatic hydrocarbons, and polychlorinated biphenyls shall be reported as follows: - (A) Dioxins, furans, and dioxin-like PCBs. Soil and sediment results must be compared to (2,3,7,8) tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalency as follows: - (i) Laboratory results must include the 2,3,7,8-TCDD TEFs employed, raw concentrations and TEQ values for each individual dioxin-like compound. The TEF are found in Appendix F of this rule. - (ii) For dioxin-like compounds that are non-detect, a value equal to one half the reported MDL shall be used to calculate the TEQ. - (iii) The total TEQ per sample shall be reported. - (B) Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs). cPAHs shall be evaluated as follows: - (i) Soil analytical results for cPAHs shall be reported as benzo(a)pyrene TEQ. - (ii) For cPAH compounds that are
non-detect, a value equal to one half the reported MDL shall be used for calculating the TEQ. Sediment shall be compared to the individual PAH in Appendix A. Relative potency factors are found in Appendix F. - (C) Polychlorinated Biphenyls (PCBs). Analytical results for PCBs shall be evaluated as follows: - (i) If results are analyzed as PCB Aroclors, analytical results shall be totaled and used to estimate total PCBs and compared to the VSS or VGES as applicable. - (ii) If PCBs are reported as homologs, the sum of all homologs will be used as an estimate of total PCBs and shall be compared to the VSSs located in Appendix A, or appropriate groundwater enforcement standards or VISs. If PCBs are reported as congeners, dioxin-like congeners shall be segregated and assessed and included in estimates of 2,3,7,8-TCDD TEQ, per the above section. Non-dioxin-like congeners shall be summed and compared to the VSS. - (iii) If PCBs are included in a Method 2 CRA, PCB Aroclor and homolog concentrations shall be added to the concentration for PCBs. PCB congener data shall be separated as described above. - (iv) The total PCBs will be evaluated for noncancer hazard based on the noncancer toxicity value of Aroclor 1254. - (m) Data Quality Assurance/Quality Control Analytical Results. - (1) Depending on site-specific conditions and quality assurance/ quality control (QA/QC) objectives included in the QA/QC plan, a trip blank, a method blank and a duplicate sample may be required. - (2) If field analytical methods are approved in the work plan, the Secretary may require that a subset of samples be analyzed at a fixed base laboratory. - (3) Additional QA/QC samples (e.g. field blanks) may be required by the Secretary depending on the complexity of the investigation or sampling methods used. - (4) Any deviations from QA/QC procedures or acceptable limits shall be identified. - Only data that meets quality assurance quality control (QA/QC) criteria specified in the QA/QC Plan will be accepted. ## (4)—SUBCHAPTER 5. #### **SUBCHAPTER 4.** RESPONSE ACTIONS; RELEASES OF HEATING FUELS ## $\S 35-401\underline{501}$. Applicability This subchapter applies to the release of heating fuel from a category four underground storage tanks or aboveground storage tanks used for storage of heating fuel. At the Secretary's discretion, responses to releases of heating fuel may be managed under Subchapter 3 (site investigation) or Subchapter 6 (corrective action) of this rule. # § 35-402. 502. INITIAL RELEASE INVESTIGATION; SOIL REMOVAL AND DRINKING WATER - Soil removal. Following approval from the Secretary, a PRP shallmay remove impacted soil in the area where a release of heating oil occurred. Removal shall occur until: - (1) VOC field screening instrument readings are below 10 ppmv₋, or - (2) the water table or bedrock is encountered, or - (3) a predetermined volume as approved by the Secretary is achieved. - (b) Soil treatment or disposal. Soil treatment or disposal shall be approved in writing by the Secretary and performed in accordance with Subchapter 8. A Soil Management Plan shall be required if requested by the Secretary. - (a)(c) <u>Soil analysis.</u> <u>Discrete Ppost excavation soil samples shall be collected <u>for laboratory analysis</u> to document removal of contamination or to characterize soil contamination remaining in place. If removal of <u>all contaminated</u> soil is not possible due to physical constraints, the PRP shall:</u> - (1) Collect and analyze a soil-discrete sample of soilssoil remaining in place from the area(s) determined to be the most contaminated by based on VOC field measurements creening instrument results; and - (2) If groundwater is encountered, collect and analyze a groundwater sample for laboratory analysis from the excavation area. - (d) Additional site investigation. If contaminated soil excavation is not feasible, additional site investigation in accordance with § 35-505 shall be required as directed by the Secretary. The Secretary shall have discretion to determine the feasibility of excavation of soil for purposes of this provision. - (b)(e) Bedrock. Soil If soil excavation is performed following approval from the Secretary, the excavation shall be extended to the soil bedrock interface to determine if impacted-contaminated soil is present unless: - (1) the vertical extent of contaminated soil is delineated and determined to be adequately separated from the bedrock surface; or - (2) the water table is encountered; or - (2)(3) excavation to bedrock is physically impossible or, a confining soil layer is present, in which case the PRP shall collect a water sample from all drinking water supply wells drilled into bedrock within 200 feet of or an alternate remedial approach is approved by the release Secretary. - (c)(f) Drinking water. If a drinking-water supply well is located anywhere on the property or an off-site property within 200 feet of the release, a sample shall be collected from the public water system or potablethis water supply for appropriate laboratory analysis. - (d)(g) Vapor intrusion. If there is any building is located within 30 feet of the release, indoor air shall be screened with a VOC field screening instrument. - (e)(h) Surface waters. If visual observations or VOC field screening instrument readings indicate that a release may have impacted surface water then, the PRP shall immediately take measures to abate any continuing release to surface water and remove to the extent possible any product heating fuel in the surface water. ## § 35-403. 503. INITIAL RELEASE INVESTIGATION AND SOIL REMOVAL REPORT - (a) Within 30 days of receipt of laboratory data, or <u>upon</u> an alternate timeframe approved in writing by the Secretary, a PRP shall provide the Secretary a report that contains the following: - (1) Site description, in accordance with $\sqrt{35-305306}$ (b) $(5\frac{1}{12})$. - (2) Property history, in accordance with $\S 35-\frac{305}{306}$ (b)(7): - (3) Results of contaminated environmental media characterization, in accordance with § 35-305306(b)(11);12). - (4) Maps, in accordance with \$% 35-305306(b)(1314)(A) and 35-305306(b)(1314)(B). - (5) Data presentation, in accordance with $\S 35-\frac{305}{306}(b)(\frac{15}{16})$. - (6) Conclusions and recommendations, in accordance with $\S 35-\frac{305}{306}(b)(\frac{18}{19})$. - (7) Photographic documentation in accordance with § 35-305306(b)(21)(B);C). - (8) Copies of laboratory Laboratory reports, in accordance with § 35-305 (b) (21) (D); E). - (9) Waste disposal documentation, in accordance with § 35-505(5)(C) and 35-507(b)(14); and manifests, bill of lading, and weight slips as appropriate. - (10) Recommendations for closure or <u>no further action</u>, additional release characterization, or <u>corrective action</u>, as appropriate. ## § 35-504. RESPONSE TO REPORT - (a) The Secretary shall respond, in writing, to the investigation and reporting required by this section, as follows and shall provide written notification to the PRP of one of the following determinations: - (1) No further workaction is required; - (2) An additional site investigation in accordance with § 35-405505 is necessary required; - (3) A site investigation in accordance with Subchapter 3 or corrective action in accordance with Subchapter 56 is required; or - (4) The report is incomplete and will be returned to the PRP-and the environmental professional for revision and resubmission. ## § 35-505. ADDITIONAL SITE INVESTIGATION - (a) If required by the Secretary under § 35-404(2)504 of this sectionsubchapter, a PRP shall prepare an additional site investigation work plan and provide it to the Secretary for review and approval prior to implementation. At a minimum, the additional site investigation work plan shall include: - (b) An additional site investigation work plan shall include: - (1) Soil borings and soil samples. - Soil borings shall be advanced to below the water table characterize the degree and extent of petroleum impacts to soil and evaluate risk to groundwater. Soil borings shall be advanced: - (A) within the former UST location or AST release area and in the downgradient direction. (if this/these area(s) have not been adequately characterized under § 35-502); and - (A) A representative number of borings shall be advanced to define the extent of the impact to soil. - (B) Soil samples shall be collected for until VOC field screening instrument readings are below 10 ppmv for at least five consecutive feet, or other such depth as is required by the Secretary. - (2) <u>Soil</u> analysis. <u>SamplesIf required by the Secretary, soil samples</u> shall be collected for laboratory analysis from <u>each boring</u>: - (A) at the water table or the water table if deepest point of the boring if soil screening results from a VOC field instrument are non-detect throughout the soil boring, or - (A)(B) from the location of the highest VOC field screening instrument result. If the water table is not encountered and soil reading if contamination above 10 ppm is present, the boring shall be advanced 5 feet beyond the depth of non-detect readings as measured with a VOC field screening instrument, or until refusal. - (3) Installation of Groundwater monitoring wells. If VOC field screening instrument screening results exceed 10 ppmv in any boring at or above within five feet of the water table, the PRP shall install monitoring wells sufficient to determine the extent of impacts to groundwater and groundwater flow direction. Groundwater and shall collect groundwater samples shall be collected for appropriate laboratory analysis. - (4) Surface water and sediment. Representative If applicable, representative samples shall be collected for laboratory analysis to determine whether there are exceedances of environmental media standards in surface water and sediment. ## § 35-506. ADDITIONAL SITE INVESTIGATION WORK PLAN;
APPROVAL AND IMPLEMENTATION - (a) Final determination on additional site investigation work plan. The Secretary shall-only approve an additional site investigation work plan if the work plan is designed to adequately characterize the degree and extent of the release and provide provides sufficient information sufficient to evaluate the impact of the release on any sensitive receptor. The Secretary's final decision under this section shall be made in writing. - (b) Implementation of additional site investigation. Upon approval, a PRP shall implement the approved additional site investigation work plan within 30 days of the date of the approval or within an alternate timeframe approved by the Secretary. The work plan shall be implemented under the supervision of an environmental professional. - (c) Any deviations to the approved work plan dictated by site conditions during site investigation implementation shall be approved by the Secretary prior to the change. ## § 35-507. ADDITIONAL SITE INVESTIGATION REPORT SUBMISSION AND REVIEW - (a) An additional site investigation report shall be submitted within 90 days of receipt of laboratory data or in accordance with an alternate schedule approved by the Secretary. The additional site investigation report shall include the components elements of a site investigation report, as required by in § 35-305, and 306(b) that were approved in by the additional site investigation work plan. Secretary per §35-506(a). - (b) Upon review of the additional site investigation report, the Secretary shall, in writing, notify the PRP that of one of the following conclusions: - (1) The additional site investigation has adequately defined the scopedegree and extent of contamination and risks to sensitive receptors have been appropriately managed. - The site No further action will be closed in accordance with Subchapter 7; required following proper decommissioning of any monitoring wells or other remedial equipment. - (2) The additional site investigation has not adequately defined the scopedegree and extent of contamination and the PRP is required to investigate conduct additional investigation of the site in accordance with Subchapter 3;. - (3) The additional site investigation report is inadequate and will be returned to the PRP and the environmental professional for revisions; or - (3) The additional site investigation has adequately defined the scopedegree and extent of contamination but risks to sensitive receptors have not been appropriately managed. mitigated, and the PRP shall develop a corrective action plan in accordance with Subchapter 6 of this rule. - (4) The additional site investigation has adequately defined the degree and extent of contamination exceeding applicable environmental media standards and risks to sensitive receptors have been appropriately managed. An institutional control will be required in accordance with Subchapter 9. - (4)(5) The additional site investigation report is inadequate and requires revisions. The PRP shall develop a corrective action plan in accordance with Subchapter 5. Secretary shall identify the inadequacies and a revised report and any additional information shall be submitted within 30 days or an alternate schedule approved by the Secretary. ## **SUBCHAPTER 56** CORRECTIVE ACTION #### § 35-601. APPLICABILITY Except as exempted in § 35-602 of this section, a PRP shall initiate corrective action upon a finding by the Secretary that a site investigation has adequately defined the extent of contamination but risks to sensitive receptors have not been appropriately managed. ## § 35-601.§ 35-602. EXEMPTIONS FROM CORRECTIVE ACTION - (a) Exemptions. The following are exempt from the corrective action requirements of §35-604, §35-606, §35-608, and §35-610 in this Subchapter: - (1) An emergency response performed pursuant to § 35-102(c), provided no corrective action is required after the emergency response is completed; of this rule. - (2) A response action to address the release of heating fuels pursuant to Subchapter 4;5 of this rule. - (3) A Resource Conservation and Recovery Act (RCRA) corrective action taken pursuant to 10 V.S.A. § 6606, the Vermont Hazardous Waste Management Regulations, and 40 C.F.R. Part 264 Subpart F; - (3) Releases remediated Following approval from the Secretary, removal of petroleum contaminated soils during the closure or replacement of an underground storage tank. - (4) Management of contaminated soils under CERCLA; and - (4) Anan approved soil management plan per Section § 35-804 of this rule. - (5) A PRP shall not be required to conduct corrective action in accordance with this Subchapter upon conclusion of a site investigation report which concludes all the following: #### (b) that-: - (A) there are no exceedances of any applicable Vermont Groundwater Quality Standards (Vermont Groundwater Enforcement Standards or Vermont Health Advisory Action Levels) at drinking water sources, vapor intrusion is not occurring and there are no other impacts that may present a threat to human health or the environment; - (B) groundwater contamination is confined to the same property where the release occurred; - (C) a demonstration that contamination will not migrate at concentrations exceeding standards, given the current data that is available, and concentrations are stable or declining; - (D) the hazardous material release has been addressed through a removal of a limited amount of source contaminated material; - (E) the site investigation demonstrates that there are no direct contact threats; and (F) the Secretary has approved an institutional control plan that meets the requirements of Subchapter 69 of this rule. ## § 35-602.§ 35-603. OBJECTIVES OF CORRECTIVE ACTION - (a) All corrective actions shall be designed to mitigate the impact of hazardous materials to sensitive receptors to the maximum extent practicable. A corrective action shall accomplish this by implementing the following approaches, in order of priority: - (1) Treatment of environmental media to the maximum extent practicable, or to levels where the risk may be managed via engineered controls or institutional controls; - (2) Removal and proper disposal of environmental media impacted by hazardous materials; - (3) Use of engineered and other controls to contain hazardous materials and to mitigate impacts to environmental media and sensitive receptors; and - (4) Use of institutional controls to mitigate exposure to sensitive receptors. #### § 35-603. § 35-604. EVALUATION OF CORRECTIVE ACTION ALTERNATIVES - (a) Evaluation required. At sites that are not exempt in accordance with § 35-501602 or subsection (b) of this section, the PRP shall evaluate corrective action alternatives prior to submitting a corrective action plan to the Secretary. If pilot testing or additional data collection is necessary as part of the evaluation, a work plan shall be submitted for approval by the Secretary. - (b) Exemption. A PRP may submit a corrective action plan without conducting an evaluation of corrective action alternatives pursuant to this section, provided all the following have been demonstrated to the satisfaction of the Secretary: - (1) The site investigation report demonstrates that there are no impacts to drinking water sources, and vapor intrusion is not occurring, and there are no other impacts that present a threat to human health; - (2) For impacted groundwater, the site investigation report demonstrates that the groundwater contamination is confined to the property where the release occurred on meets Vermont Groundwater Enforcement Standards at established compliance points or will recede to the property boundary meet VGES at established compliance points within the timelineten years as established in the Vermont Groundwater Protection Rule and Strategy;—. - (3) Except when the hazardous material Any direct contact threats to sensitive receptors can be addressed through a-removal of a limited amount of source material, the site investigation demonstrates that there are no direct contact threats to sensitive receptors; and or capping with an engineered barrier. - (4) A corrective action plan will document that the proposed remedy, with respect to the hazardous material in question, has been utilized at other sites and has been - demonstrated to be reliable, cost effective, and effective in addressing remediation of the hazardous material. - (5) For Development Soil development soil receiving sites, all requirements in §_35 512805(d) have been met, and a corrective action plan which addresses potential direct contact with development soils by the public, including capping and land use restrictions, has been approved by the Secretary. - (c) Identification of corrective action alternatives. The PRP shall identify corrective action alternatives that will eliminate exposure pathways to sensitive receptors. The number and type of alternatives to be considered shall be determined by taking into account the scope, characteristics, and complexity of the problem being addressed. At each site, at least the following alternatives shall be considered: - (1) An alternative that reduces the toxicity, mobility, or volume of the hazardous materials released to the extent feasible. This alternative shall minimize the need for long term management at the site; and - (2) An alternative that involves little or no treatment, but controls impacts to sensitive receptors through engineered controls, containment, long term monitoring, and institutional controls. - (d) Evaluation of corrective action alternatives-(ECAA). For each proposed eleanup corrective action alternative, the PRP shall evaluate and document the following: Compliance with legal requirements. Alternatives shall be evaluated to determine whether the PRP can obtain all federal, state, and local permits for the proposed alternative as well as describe how the alternative will meet those regulatory requirements. -
(1) Overall protection of human health and the environment. Alternatives shall be assessed to determine whether they can adequately protect human health and the environment, by either eliminating, reducing, or controlling exposures to levels established by the corrective action objectives consistent with § 35-502603. Overall protection of sensitive receptors shall also assess long-term effectiveness and permanence, short-term effectiveness, and compliance with federal, state, and local laws. - (2) Compliance with legal requirements. Alternatives shall be evaluated to determine whether the PRP can obtain all federal, state, and local permits for the proposed alternative as well as describe how the alternative will meet those regulatory requirements. - (2) Long-term effectiveness and permanence. Alternatives shall be assessed for long-term effectiveness and permanence. Factors that shall be considered include the following: - (3) Adequacy and reliability of the proposed alternative such as containment systems and institutional controls that are necessary to manage treatment residuals and untreated waste. This factor addresses the uncertainties and risks associated with long term management of the remedy. - (4) Land use restrictions. Alternatives shall identify whether and what type of land use restrictions are required following implementation of the remedy. - (4)(5) Reducing toxicity, mobility, or volume through treatment. The degree to which alternatives reduce toxicity, mobility, or volume shall be assessed, including how treatment is used to address the principal threats posed by the site. Factors that shall be considered include the following: - (A) The treatment or recycling processes the alternatives employ and materials they will treat; - (B) The amount of hazardous materials that will be destroyed, treated, or recycled; - (C) The degree of expected reduction in toxicity, mobility, or volume of the hazardous materials due to treatment or recycling and the specification of which reduction(s) are occurring; - (D) The degree to which rebound of contaminants may occur; - (E) The type and quantity of residual contamination that will remain following treatment, considering the toxicity, mobility, propensity to bioaccumulate, and persistence of such hazardous materials and their constituents; and - (F) The degree to which treatment reduces the inherent hazards posed by principal threats at the site. - (5)(6) Short-term effectiveness. The short-term impacts of alternatives shall be assessed by considering the following: - (A) Short-term risks that might be posed to sensitive receptors during implementation of an alternative; - (B) Potential impacts to workers during corrective action and the effectiveness and reliability of protective measures; and - (C) Potential environmental impacts of the corrective action and the effectiveness and reliability of mitigation measures during implementation. - (6)(7) Implementability. The relative degree of difficulty in implementing the alternatives shall be assessed by considering the following: - (A) Technical feasibility, including technical difficulties and uncertainty associated with construction and operation of a corrective action, the reliability of the technology, ease of undertaking additional corrective actions, and the ability to monitor the corrective action's effectiveness; - (B) Administrative feasibility, including activities needed to coordinate with other offices and agencies and the need to obtain any necessary approvals and permits; and - (C) Availability of services and materials, including the adequate off-site treatment, storage capacity, and disposal capacity and services; the availability of necessary equipment and subcontractors, and any necessary additional resources. - (7)(8) Cost. The types of costs that shall be assessed include the following: - (A) Capital costs; - (B) Annual operation and maintenance (O&M) costs; and - (C) Costs to implement land use restrictions; and - (C)(D) Net present value of capital and O&M costs. - (8)(9) Environmental impact and sustainability. Include a discussion of waste generation and disposal requirements, as well as a discussion of methods to implement best management practices to reduce the environmental impact of the proposed remedies in accordance with <u>US_EPA</u> guidance or ASTM Standard Guide for Greener Cleanups. - Note: EPA guidance materials may be found at: https://www.epa.gov/greenercleanups - (9)(10) Community acceptance. This assessment includes determining which components of the alternatives interested persons in the community may support, have reservations about, or oppose. The Secretary may require a public comment period and informational meeting on the alternatives or consider community acceptance in the context of public input on the corrective action plan. - (e) MinimumRequired elements. The PRP shall provide the Secretary with an ECAA report that contains the following: - (1) An executive summary of the corrective action alternatives considered, including a recommended alternative, based on criteria in subsection (d) of this section. - (2) Tabulated results and a narrative discussion of any pilot testing completed during the evaluation. - (2)(3) A proposal for any site-specific background standards that the PRP proposes to apply to the site in accordance with Appendix B of this rule. - (3)(4) A proposal for any waiver that the PRP proposes to apply to the site in accordance with Appendix C<u>of this rule</u>. - (4)(5) A detailed evaluation of the criteria established under subsection (d) of this section for each remedial option selected under subsection (c) of this section. - (6) A proposal for additional pilot testing or data collection to refine the remedial design for the selected remedy. - (5)(7) A detailed justification for the selected remedy. #### § 35-604. 35-605. SECRETARY EVALUATION OF CORRECTIVE ACTION ALTERNATIVES - (a) The Secretary shall evaluate each corrective action alternative presented in the evaluation of corrective action alternative report utilizing the criteria of § 35-503604(d). - (b) The Secretary shall provide a written response to the PRP that: - (1) Approves the corrective action alternative recommended in the report; - (2) Approves an alternate alternative that was considered but not recommended; - (3) Requires additional alternative alternatives to be evaluated; - (4) Requires additional analysis of one, pilot testing, or data collection to support further evaluation of the alternatives reviewed as a part of the report; or - (5) The report is inadequate and will be returned to the PRP and the environmental professional for revisions. (c) The PRP shall, within 30 days of the Secretary's response, or within an alternate schedule approved by the Secretary), provide the Secretary with a response to any comment provided by the Secretary including a revised evaluation of corrective action alternatives or a corrective action plan for the selected alternative. ## § 35-605. Some Corrective Action Plan - (a) Except as exempted in § 35-602 of this section, a PRP shall submit a corrective action plan to address impacts or risks to sensitive receptors that are not managed. - (a)(b) A corrective action plan shall include the following: - (1) Executive summary. An executive summary that includes a description of the contamination, a review of the results of the investigation, remediation and remedial objectives, a summary of the alternatives considered, a description of the chosen corrective action technology, a statement of site operations and monitoring activities, and an estimate of the duration of the remedial action. - (2) Site history and updated Conceptual Site Model. - (2)(3) Public notice: parcel map. A list shall be included of the persons who will receive notice under § 35-506(a607(b)(1), including contact names, addresses, email addresses, and phone numbers. A parcel boundary map shall be included showing all such parcels. - (3)(4) Performance standards-, to include the following: - (A) A discussion of how the corrective action achieves the corrective action objectives identified in § 35-502603. - (B) A list of environmental media standards that apply to the site. - (C) A map identifying the compliance points that will be used to monitor compliance with the environmental media standards. - (D) A narrative explanation as to why these compliance points were chosen. - (E) A narrative explanation as to how any corrective action will ensure that there are no completed pathways that would result in an impact to a sensitive receptor. - (F) An estimate of the contaminant mass or volume, and expected removal rates, and the estimated duration of the remediation. - (G) Identify performance standards for demonstrating substantial completion of the corrective action for sites receiving a Certificate of Completion. - (H) Estimated duration of active remediation and transition to long-term monitoring or site closure. - (5) <u>Permits.</u> A list of all local, state, and federal permits required for the project, and the contacts necessary to obtain these permits and a demonstration of compliance with all local, state, and federal rules and regulation. - (6) Remedial construction plan. For any Any corrective action involving construction of a treatment system, engineered system, including a cap, a containment system, or any other control that requires an engineered design, shall include the following: - (A) Detailed plans and specifications of the corrective action remedial design and related calculations. - (B) Tabulated results and narrative discussion of any additional analysis or pilot testing performed. - (B)(C) A Vermont licensed professional engineer's signature of review of the remedial system design. - (4) Waste management; contaminated soil plan. - (7) A discussion of any waste material that will be generated by the corrective action, including a hazardous waste
determination. If managing contaminated soil, the plan shall also include a plan for managing contaminated soil in accordance with Subchapter 8 and § 35-611. - (A) A plan for managing contaminated soil in accordance with § 35-510, §35-511, or §35-512. - (B) Investigation and remediation derived wastes shall be managed and disposed as follows: - (i) If the waste meets the definition of hazardous waste, the waste shall be managed in accordance with the Vermont Hazardous Waste Management Regulations. - (ii) If the waste contains polychlorinated biphenyls (PCBs), it shall be managed in accordance with the Toxic Substance Control Act (TSCA), provided the PCBs are present at concentrations in excess of 50 parts per million (ppm). The waste also shall be managed as a hazardous waste in accordance with the Vermont Hazardous Waste Management Regulations (VT01 hazardous waste code). If PCBs are present at concentrations below 50 ppm, the waste is not regulated by the VHWMRs but may still require management under TSCA. - (iii) If the waste does not meet the criteria of subdivisions (i) or (ii) of this subsection, then the waste shall be disposed of: - (I) in accordance with the Solid Waste Management Rules, or - (II) under a waste management plan approved as a part of the site investigation work plan, provided no investigation and remediation derived waste with a hazardous material above an environmental standard is transported beyond the site. - (iv) Petroleum contaminated purge water from groundwater monitoring wells and equipment decontamination water may be returned to the ground within the area where it was extracted. - (v) Non-petroleum, non-hazardous waste contaminated purge water may be returned to the ground within the area where it was extracted, if approved by the Secretary. - (8) Implementation schedule. A corrective action plan shall include anAn implementation schedule that contains milestones for implementing the corrective action and dates for when those milestones will be reached. The schedule shall include proposed deliverables including the CACCR report and initial performance monitoring or operation and maintenance reporting, as applicable. - (9) Corrective action operation and maintenance plan. The corrective action plan shall include a long-term monitoring plan in accordance with § 35-509. The plan shall describe the following: - (A) How A description of how any engineered solution will be monitored and maintained to ensure that it continues to operate as designed. - (B) HowA discussion of the performance monitoring and data collection strategy during active remediation. - (B)(C) A description of how any institutional controls will be monitored and maintained. - (C)(D) At the request of As requested by the Secretary, a cost estimate for the implementation of the corrective action maintenance plan and a financial responsibility instrument to assure the implementation of the corrective action stewardship plan. Financial assurance under this rule shall be accomplished in the same manner as financial assurance under 40 C.F.R. Part 264 Subpart H; - (D)(E) A discussion of the operation and maintenance of any active remedial option after its construction until it attains performance standards the corrective action objectives established in subsection (3) of this section; and 35-603. - (E)(F) A discussion of how any treatment system will be deconstructed or decommissioned prior toonce remedial objectives have been met. - (10) Institutional Control Plancontrol plan. The corrective action plan shall include an institutional control plan in accordance with § 35-601901, unless the corrective action does not leave any Secretary determines that no residual contamination remains in place that exceeds exceedance of any applicable environmental media standards. - (11) Long term monitoring plan. Where long term monitoring is the remedy or will be required following the completion of corrective action, a long-term monitoring work plan in accordance with § 35-702 will be required. - (11)(12) Redevelopment and Reuse Plan. If applicable, the corrective action plan shall include the redevelopment and reuse plan for the property following implementation of the corrective action. Changes or modifications to this plan may require an amendment to the corrective action plan to ensure that sensitive receptors are not adversely impacted. - (12)(13) Quality Assurance and Quality Control (QA/QC) Plan. The corrective action plan shall contain the following: - (A) A list of the Standard Operating Procedures (SOPs) appropriate to the technologies being proposed for the corrective action. The SOP's shall be provided to the Secretary upon request. - (B) A Quality Assurance/Quality Control plan. What methods will be employed to ensure the validity and accuracy of the data and technologies implemented. - (13)(14) Cost Estimate. - (A) Applicability. A corrective action plan shall include a cost estimate if State or federal funding will be utilized, if the project is enrolled in the BRELLA program, or if requested by the Secretary, - (B) Contents. A cost estimate shall be broken down by task, materials, labor costs, sub-contractor costs, and equipment costs. -Estimates for sub-contractors shall also be itemized into labor, materials, and equipment costs-Lump-sum estimates will not be accepted. when available. The cost estimate shall contain a separate itemized cost estimate for Corrective Action Plan implementation and system operations and maintenance (O&M). - (14)(15) An updated set of maps as per § $35-\frac{305}{306}(b)(\frac{13}{14})$. - (15)(16) Tabular, time series summaries of contaminant concentrations by mediumin environmental media in accordance with § 35-305(b)(1516). - (16)(17) Cross-sections of the contaminated zone depicting well or boring depths, soil stratigraphy, recent soil contaminant concentrations, and recent water levels as appropriate to site-specific conditions. - (17)(18) A list of all proposed contractors, sub-contractors, including contacts, addresses, email addresses, addresses and phone numbers. ## § 35-606.§ 35-607. CORRECTIVE ACTION PLAN REVIEW; PUBLIC NOTICE; FINAL DECISION - (a) Complete Review of draft corrective action plan. - (1) Upon a determination by the Secretary that the corrective action plan is complete, a PRP shall provide notice of the corrective action plan to all property owners impacted by the release and to all impacted adjoining property owners, on a form provided by the Secretary. - (2) ____The Secretary will postshall approve a copy of the proposed corrective action plan electronically for public comment. - (b)(a) Review of corrective action. The Secretary shall only approve a corrective action plan upon finding: - (1) That the corrective action plan demonstrates that the proposed corrective action meets the criteria of § 35-502 (corrective action objectives),603 and § 35-505606, and that the proposed corrective action in either: - (A) ensures that no sensitive receptor will be adversely impacted by the corrective action; or - (B) that the corrective action is an interim measure that addresses a portion of the release and that further corrective action is planned to ensure that no sensitive receptor will be adversely impacted—; and - (e) Public notice. - (2) The Secretary shall electronically provide all interested persons with notice of the draft approval of a applicable requirements of 10 V.S.A. chapter 170 (pertaining to public notice) have been satisfied. - (d)(b) Public notice of administratively complete draft corrective action plan. Interested persons shall have 30 days from - (1) Upon a determination by the Secretary that the date of notice to comment on the draft approved corrective action plan and approval. - (2) Any interested person may request administratively complete, a public informational meeting within 14 days of the date of notice. The Secretary shall provide notice to interested persons of a public informational meeting at least 14 days in advance of the meeting. - (3)(1) After the close of the comment period, the Secretary shall consider comments prior to issuing a final approval to a PRP shall provide notice of the draft corrective action plan. A final approval shall be accompanied by a response to comments made during the comment period to all property owners impacted by the release and to all impacted adjoining property owners on a form provided by the Secretary. - (4)(2) The Secretary applicant shall provide notice signed certification to interested persons the Secretary that all adjoining property owners have been notified of the approved corrective action plan. - (3) The Secretary will post a copy of the draft corrective action plan electronically on the Environmental Notice Bulletin for public comment in accordance with 10 V.S.A. chapter 170. - (e)(c) The Secretary will approve, in writing, the draft corrective action plan upon a finding that the corrective action plan, if requirements of § 35-506607(a) has have been met. The Secretary shall provide notice, in writing, to the potentially responsible party and other interested parties of the final corrective action plan approval. - (f)(d) Corrective action plan. The corrective action plan shall be implemented within 90 days of the approval or in accordance with a schedule approved by the Secretary. - (g)(e) Amendments to a corrective action plan. - (1) Major amendments. All amendments that do not meet the definition of minor amendments to the corrective action plan shall be considered major amendments. Major amendmentsnecessitate technical review shall be noticed in the same manner as required by subsection (b) of this section. - (2) Minor amendments. Minor amendments to a corrective action are All amendments that do not require a change the remedial approach in a condition or design in the approved corrective action plan. The PRP requirement but do not necessitate technical review and are not administrative
amendments shall notify be processed pursuant to 10 V.S.A. § 7715 (Type 4), except the Secretary and the Secretary need not provide notice of an administratively complete plan. (2)(3) Administrative amendments. All amendments that correct typographical errors, changes the name or mailing address of an individual, or makes other similar changes to a plan that do not require technical review or the imposition of new conditions or requirements shall approve the amendment prior to implementing the minor amendment not require review under 10 V.S.A. chapter 170. #### § 35-607.§ 35-608. CORRECTIVE ACTION CONSTRUCTION COMPLETION REPORT - (a) A corrective action completion report shall be submitted within 90 days of completing the construction of any remedy, as applicable, or in accordance with the schedule approved in the corrective action plan. - (b) A corrective action completion report shall include the following elements when, as applicable: - (1) Corrective Action Objectives. - (2) Description of work performed; including preliminary data collection. - (3) Description of remedial system installed. - (4) Certification that the remedial system was installed in accordance with the approved Corrective Action Plan; - (5)(4) A description of any field-based minor amendments to the corrective action and a justification for them. - (6)(5) Site plans reflecting post-CAP implementation conditions: - (7)(6) Mechanical system layout and list of major components with serial numbers: - (8)(7) Piping, control, and instrumentation diagrams along with any modifications to the O&M chapters of the corrective action plan for the installed system; - (9)(8) Photo documentation, including: - (A) contamination encountered during the corrective action; - (B) the installed remedy; and - (C) the site before and after implementation of the CAP. - (10)(9) Initial remedial system operation data, including: - (A) Flow rate: - (B) Pressure or vacuum radius of influence; - (C) Contaminant removal rates; and - (D) Treatment system influent and effluent sample results. - (10) Injection program specifications, including: - (A) Reagent mixing data; - (B) Flow rates and pressures; - (C) Volume of injected material; - (D) Amendment distribution; and - (E) Initial post-injection data. - (11) Documentation that the site has been stabilized, physical hazards have been minimized, restored to the restoration plan included in the approved corrective plan; - (12) Recovery or injection well boring logs; - (13) Copies of all federal, state, and local permits; - (14) Waste disposal manifests and bills of lading; - (15) Applicable inspection results including building, zoning, plumbing, and electrical; - (16) Recommendations for additional work; and - (17) A certification that the activities were performed in accordance with the Corrective Action Plan. ## § 35-608.§ 35-609. REVIEW AND FINAL DECISION OF CORRECTIVE ACTION CONSTRUCTION COMPLETION REPORT - The Secretary shall review thea corrective action completion report and determine whether the corrective action conforms to the CAP approved by the Secretary. - (a) If the The Secretary concludes will respond, in writing, that either: - (1) The corrective action conforms to the CAP; - (2) The corrective action does not conform to the CAP and that additional work is required to bring the corrective action undertaken by into compliance with the PRP fails to implement the approved CAP, the Secretary may require a supplemental; or - (1)(3) The corrective action completion report, is not functioning as designed and additional investigation, or is required to determine the cause, to develop an effective remedy, or to implement additional corrective action at the site. # § 35-609.§ 35-610. Long Term Corrective Action Performance Monitoring and O&M - (a) All sampling points In accordance with the schedule approved by Secretary, periodic performance monitoring and O&M reports shall be monitored at submitted to the Secretary. - (b) As applicable, performance monitoring or O&M reports shall include a frequency defined in recommendation for: - (1) continued performance monitoring or O&M; - (2) discontinuance of corrective action due to poor system performance; - (3) modifications to the approved CAP. Any adjustment shall be corrective action plan; or - (4) cessation of corrective action when the objectives specified in § 35-603 have been met. - (c) The Secretary shall provide a written response to the PRP in response to recommendations outlined in the report. #### § 35-611. SITE GENERATED WASTES - (a) <u>Unless</u> approved by the Secretary in writing for management in an Area of Contamination, site generated hazardous waste shall be managed in accordance with the Vermont Hazardous Waste Management Rules. - (a) The The Secretary may allow for the on-site remediation of a site contaminated with a hazardous material without requiring hazardous waste certification and permitting provided such activity is conducted in accordance with an approved Corrective Action Plan. - (b) Investigation derived wastes shall be managed and disposed as follows: - (1) If a hazardous waste, in accordance with the Vermont Hazardous Waste Management Regulations. - (2) If the waste contains polychlorinated biphenyls (PCBs) in excess of 50 parts per million (ppm), it shall be managed in accordance with the Toxic Substance Control Act (TSCA). Such waste also shall be managed as a hazardous waste in accordance with the Vermont Hazardous Waste Management Regulations (VT01 hazardous waste code). If PCBs are present at concentrations below 50 ppm, the waste shall may also be subject to management under TSCA. - (3) If the waste does not meet the criteria of subdivisions (c)(1) or (c)(2) of this subsection, the waste shall be disposed of: - (A) in accordance with the Solid Waste Management Rules, or - (B) under a waste management plan approved as a part of the site investigation work plan, provided no investigation derived waste containing a hazardous material above an environmental standard is transported off the site. - (4) Petroleum contaminated purge water from groundwater monitoring wells and equipment decontamination water may be returned to the ground within the area where it was extracted as approved by the Secretary. - Non-petroleum, non-hazardous waste contaminated purge water may be returned to the ground within the area where it was extracted as approved by the Secretary. #### SUBCHAPTER 7 LONG TERM MONITORING #### § 35-701. APPLICABILITY All required long term monitoring shall be performed in accordance with this subchapter. Long term monitoring of environmental media shall be conducted to evaluate the effectiveness of the remedial goals outlined in the corrective action plan and until the site meets the conditions for Subchapter 10 (site closure), or as required by the Secretary. #### § 35-702. Long Term Monitoring Work Plan - (a) A PRP shall submit an initial long term monitoring work plan within 30 days of receiving Secretary approval of a CAP where long term monitoring is a remedy or will be required following the completion of corrective action. Subsequent long term monitoring work plans may be required as requested by the Secretary. - (b) A long term monitoring workplan shall be approved by the Secretary prior to the initiation of monitoring work. #### § 35-703. GENERAL REQUIREMENTS FOR LONG TERM MONITORING - Monitoring shall be conducted in accordance with an approved CAP, or as approved by the Secretary prior to July 27, 2017 if the site investigation has demonstrated that all requirements presented in § 35-304(b) are met. Any change to the plan shall be approved by the Secretary in writing. - (b) The Secretary shall be notified immediately if a change in site conditions affect the performance of an approved work plan. The Secretary may require revisions to the monitoring work plan based on site condition changes. ## § 35-704. REPORTING - (a) A long-term monitoring report shall be submitted on an annual basis, or on a schedule approved by the Secretary. - (a)(b) Except as provided by subsection (c) of this section, the long-term monitoring report, including analytical results, shall be submitted to the Secretary no later than 45 days from the receipt of analytical results from the laboratory or within an alternate schedule approved by the Secretary, except in the following circumstances, in which case the results shall be reported immediately: - (c) In the following circumstances, results shall be reported as indicated: - (1) Drinking water supply laboratory analytical results which report an exceedance of the groundwater enforcement standards shall be submitted verbally within 24 hours and - written analytical results shall be provided to the Secretary within five business days thereafter. - (2) Indoor air quality laboratory analytical results that report an exceedance of vapor intrusion targetan indoor air concentrations standard shall be submitted verbally within 24 hours and written analytical results shall be provided to the Secretary within five business days thereafter. - (b) If site conditions have changed such that the monitoring work plan cannot be carried out as originally approved, then the Secretary shall be notified immediately. - (e) The Secretary may modify the number of wells sampled or frequency of sampling based on data collected through the site investigation, through long term monitoring, and the Secretary's understanding of site conditions. - (b)(d) A long-term monitoring report shall include the following, as applicable: - (1) Updated executive summary. Brief summary of findings, conclusions, and recommendations based upon the data collected during the monitoring event. - (2) An updated CSM in accordance with § 35-302303. - (3) Contaminated media characterization in accordance with § 35-305306(b)(1112). - (4) Updated site maps in accordance with $\S 35-305306(b)(1314)$. - (5) Documentation of the sample location
and method in accordance with the consultant's standard operating procedures (SOP). Justification for deviations from the SOPs shall be described. - (6) A discussion of first-time detections of contaminant concentrations or NAPL in any monitoring point. Also, include a discussion of significant changes in concentrations in any monitoring point if applicable. - (6)(7) Any deviations from the approved work plan shall be identified and justified. - (7)(8) A descriptive analysis of how the data gathered supports the CSM, and whether the corrective action or site investigation objectives continue to be achieved. The discussion must also establish that the data collected are suitable to determine the risk posed by the hazardous materials, the need for further characterization, and the potential remedial actions. Only data that passes Quality Assurance/Quality Control criteria will be acceptable. - (8)(9) All collected data shall be organized in narrative, tabular, and graphical form, including maps and cross sections and shall include all appropriate historical site data. Graphs of hazardous material concentration versus time; including results from discontinued monitoring locations in the report. All detected hazardous material concentrations shall be reported. Detection limits shall be provided along with analytical results. Hazardous materials that are not detected shall be reported as less than the numerical detection limit. Detection limits shall be below the environmental media standards. Hazardous materials that are not detected shall be reported as 'ND', and shall be provided in tabular format with the analytical results. All laboratory data qualifications must be included in tabulated data presentations. - (10) Data used in spreadsheets or models shall be submitted if requested by the Secretary. (9)(11) NAPL recovery results, when applicable. - (10)(12) Field screening results from contaminated stockpiled soils in tabular format, with a map showing the locations of the screened samples and the stockpile location in reference to other pertinent physical features including buildings, roadways, and surface water bodies. - (11)(13) A description of the current <u>site conditions</u>, condition of the monitoring network, <u>remediation system</u>, <u>soil stockpile</u>, any maintenance activities conducted since the last monitoring event, and any required maintenance that must be completed with a schedule to complete the work. - (12)(14) Observable changes in site and neighboring property conditions which may affect site management. These changes may include change in property use, change in property occupancy, water supply changes, and construction. - (13)(15) Any observable changes to the property that conflictCompliance with any institutional controls developed as part of the response to contamination. - (14)(16) Documentation of the handling of any investigation and remediation derived waste, which shall be dealt with in accordance with § 35-505(5)(611(c). - (15)(17) Conclusions and Recommendations. A discussion of the findings of the investigation that substantiate the revised CSM, and, specifically, the risk hazardous materials pose to identified receptors, completed exposure pathways, the identification of data gaps, potentially appropriate corrective actions, proposed monitoring frequency, and need for further investigation, additional corrective action, or site closure. - (16)(18) The report shall be signed by an environmental professional and certified in accordance with § 35-104. - (e) If required by the Secretary, interim data transmittals shall be used to submit results of monitoring events between long term monitoring reports. Interim data transmittals shall include: - (1) Contaminated media characterization in accordance with § 35-306(b)(12); - (2) Updated site maps in accordance with § 35-306(b)(14); - (3) Laboratory analytical reports; and - (4) If applicable; - (A) NAPL recovery results; and - (B) Photographic documentation. #### § 35-705. SECRETARY REVIEW OF LONG TERM MONITORING REPORT - (a) The Secretary shall review the long term monitoring report for completeness and shall provide written notification to the RPP that: - (1) The long term monitoring report demonstrates that the site has met the corrective action objectives and the site can be closed in accordance with Subchapter 10; - (2) Long term monitoring shall continue at the sampling locations and monitoring frequency established in the site investigation or corrective action plan, or at an alternate frequency based on site conditions as approved by the Secretary; or - (3) Additional site investigation or corrective action is required. #### SUBCHAPTER 8 CONTAMINATED SOIL #### § 35-801. APPLICABILITY - (a) The following soils containing hazardous materials at concentrations exceeding the applicable Vermont Soil Standards shall be managed in accordance with this section: - (1) Non-hazardous waste contaminated soil. - (2) Development soils. - (3) Petroleum contaminated soils that are exempted from management under VHWMR § 7-203(p). #### **§ 35-802.** EXEMPTIONS - (a) Petroleum contaminated soil that is excavated and then backfilled into a tank grave during an UST closure or replacement are exempt from management under this Subchapter. These soils may require future site investigation or corrective action. - (b) Petroleum contaminated soils excavated during an emergency response or UST closure or replacement are exempt from § 35-803(a) unless required by the Secretary. ## § 35-801.§ 35-803. Non-Hazardous Waste Contaminated Soil - (a) Except as provided in subsection (d) Approval of this section, off site stockpiling management. All management of any contaminated soil is prohibited under this Subchapter shall be pre-approved by the Secretary. - (b) VHWMR petroleum-contaminated soil. Petroleum contaminated soils are not hazardous in accordance with the Vermont Hazardous Waste Regulations. - (b)(c) On-site soil management and treatment; non-hazardous waste petroleum contamination in soil polyencapsulation: - (1) Excavated and Soil Stockpiling. Non-hazardous waste contaminated soil may be stockpiled soils on the site where the release occurred in accordance with this section. - (A) Non-hazardous waste, non-petroleum soils may be temporarily stockpiled for up to 90 days. Stockpiling may not occur between December 1st and April 1st, unless under an alternate schedule or work plan that is approved by the Secretary. A final offsite disposal and treatment plan and request form shall be submitted and approved by the Secretary. - (B) On-site soil stockpiles shall meet the following criteria: - (i) Soils shall be completely contained or encapsulated within a polyethylene plastic liner, which shall be a minimum thickness of 6 mils or another containment method determined by the Secretary to be equally protective at least as effective in isolating the soils from impacting the environment. - (1) The integrity of the polyethylene liner shall be maintained throughout treatment. - (ii) The soils shall remain polyencapsulated on-site until vapor levels are non-detectable (< 1 parts per million by volume (ppmv) headspace) using a field screening instrument, and there is no olfactory or visual evidence of contamination. Aerating the soil pile to accelerate remediation is prohibited-stockpiling. - (iii) No additional soil may be added to the existing soil stockpile, unless <u>first</u> approved by the Secretary. - (iv) Polyencapsulated soils Soils shall be periodically monitored at a frequency defined in an approved corrective action plan to track by the rate of biodegradation and Secretary to ensure the integrity of the encapsulated soil pile. - (v) The Unless otherwise approved by the Secretary, the location of the polyencapsulated stockpiled soil shall be in an area where: - (I) there There are no sources for public water systems or potable water supplies within a minimum 300-foot radius. This limit may need to be extended if water supplies supply sources are shown to be hydraulically downgradient; - (II) There are no sensitive environments including a stream, river, lake, pond, state or federally listed threatened or endangered species or habitat, wetland, floodplain, Class I or II groundwater, residence, property boundary, or other similar areas, within 100 feet of the treatment location; - (III) The treatment location is not within zone one or two of a groundwater source protection area; - (vi) Public access to the location where polyencapsulated soils are stockpiled shall be prohibited through posting no trespassing signs and other appropriate means as approved by the Secretary; - (vii) If the landowner of the property where polyencapsulated soils are to be stockpiled is different from the soil generator, written approval for from the soil treatment landowner that also grants access for to the Secretary, has been obtained before treatment stockpiling begins; - (viii) The location where polyencapsulated soils are stockpiled shall be depicted on the site map; and - (ix) Failure to adequately maintain polyencapsulated soil piles will result in a new release subject to soil may require additional investigation and corrective action as a new release as required by the Secretary. - (2) Thin-spreading. The following requirements shall be met prior to thin-spreading non-Soil Treatment. - (B)(A) Polyencapsulation. Non-hazardous waste petroleum contaminated soil stockpiles: may be treated onsite by polyencapsulation following approval from the Secretary. Such treatment shall be subject to the following requirements: - (i) The soils shall remain polyencapsulated on-site until vapor levels are non-detectable (less than 1.0 parts per million by volume (ppmv) headspace) using a field screening instrument, and there is no olfactory or visual evidence of contamination. - (ii) Aerating the soil pile to accelerate remediation is prohibited. - (iii) Soils shall be
periodically monitored at a frequency approved by the Secretary to track the rate of biodegradation using a VOC field screening instrument and to ensure the integrity of the encapsulated soil pile. - (iv) Amendments shall be added to the soil stockpile only upon approval by the Secretary. - (B) Thin-spreading. Thin-spreading of non-hazardous waste petroleum contaminated soils shall be approved by the Secretary. Such treatment shall be subject to the following requirements: - (i) Vapor levels are less than 1.0 parts ppmv in discrete soil samples when measured with a VOC field screening instrument; - (ii) Soils contain no olfactory or visual evidence of contamination; - (iii) Confirmatory lab samples as required by the approved corrective action or soil management plan; - (A) There are no public water systems or potable water supplies within a 300foot radius of the location where soils are thin spread. This limit may need to be extended if water supplies are shown to be hydraulically downgradient; - (B) There are no sensitive environments including a stream, river, lake, pond, state or federally listed threatened or endangered species or designated or identified habitat, wetland, floodplain, Class I groundwater zone, residence, property boundary, or other similar areas, within 100 feet of the treatment location: - (C) The thin-spread location is not within zone one or two of a groundwater source protection area; and - (D) Thinspreading has been approved by the Secretary. - (v) Thin-spreading shall be in an area that complies with § 35-803(c)(1)(B)(v). - (d) Additional treatment. Additional on-site treatment options for non-hazardous <u>waste</u> contaminated soil shall be approved by the Secretary. - (2)(3) Off-site treatment; non-hazardous waste petroleum contamination in soil. The off-site treatment of soil under this section shall be preapproved by the Secretary prior to the shipment off-site. The local municipality shall be notified in writing of the polyencapsulated soil. If applicable, local permits have been obtained. In addition to meeting the requirements of subsection (b) of this section, the PRP shall provide the Secretary with the are only allowable following: approval from the Secretary. - (1) The amount of soil that is to be transported to the off-site location; and - (2) The latitude and longitude of the exact location where the soil was stockpiled. - (3) On-site soil management capping. Non-hazardous waste contaminated soil may be managed capped on the site property where the release occurred and within the area of contamination, provided all the following have been demonstrated: - (A) The proposed management capping area meets the siting criteria of subsection (b)(6) of this section; 35-803(c)(1)(B)(v). - (B) Management will occur Capped soils shall be located above the seasonal high-water table; - (C) An engineered soil cap shall be installed following the management to eliminate contact risk. The engineered soil cap shall be: - (i) If not covered by an impervious surface, a minimum of 18" thick; or - (ii) If covered by an impervious surface, 6" thick of fill or sub-base material under the impervious surface. - (iii) Alternate cap thicknesses may be utilized, providing provided additional institutional controls are placed on the property to ensure protection of human health and the environment, and pre-approval is granted by the Secretary. - (iv) The engineered soil cap shall be clearly Clearly marked with a material that distinguishes the divide between the non-hazardous contaminated soils and the clean backfill; - (D) Soils managed under this subsection shall be shown not to be a risk to groundwatersensitive receptors, by appropriate sampling methodology. - (E) A draftAn institutional control plan has been included part of approved by the corrective action plan. Secretary. (e)(d) Off-site soil management and treatment. - (1) Off-site stockpiling or treatment of non-hazardous waste contaminated soil. The off-site stockpiling of soil under this section shall be approved by the Secretary prior to the shipment off-site. In addition to meeting the requirements of §35-803(c)(1)(B)(v), the following are required: - (A) PRP shall provide the Secretary with the following: - (i) the contaminant concentrations and amount of soil that is to be transported to the off-site location; - (ii) an ANR Atlas generated map including the latitude and longitude of the exact location where the soil will be stockpiled, referenced to the WGS1984 coordinate system (Mercator), in decimal degrees. Minimum acceptable accuracy is plus-or-minus 15 feet; and - (iii) A completed ANR Off-site Soil Treatment form. - (B) The municipality in which the soil will be stockpiled or treated shall be notified in writing of the soil stockpile or treatment location. If applicable, local permits have been obtained. All required local permits must be obtained prior to off-site management, or a demonstration made that no local permits are required. - (1)(2) Off-site disposal. Non-hazardous <u>waste</u> contaminated soil may be treated or disposed at <u>an off-site location</u>. This soil may shipped to one of the following locations: following approval by the Secretary: - (A) An in-state or out of state solid waste disposal facility; - (B) An in-state or out of state treatment facility; or - (C) As provided in § 35-512 for For development soils, a location that meets the requirements of § 35-805(c). ### Non-hazardous ### § 35-804. SOIL MANAGEMENT PLANS - (a) Applicability. A soil management plan may be required by the Secretary in the following instances: - (1) When soil management is necessary prior to meeting the objectives of Subchapter 3. - (2) The site is exempt from corrective action in accordance with § 35-602, and a project is being conducted where contaminated soil may be temporarily stockpiled at encountered or generated. - (3) The site has received a Site Management Activity Completed designation or Certificate of Completion that includes a land use restriction in a designated area. A project is being conducted in the designated area where residual contamination may be encountered. - (4) A public works or linear construction project is being proposed where contaminated soil may be encountered or generated. - (1)(5) A construction or redevelopment project is being conducted by an offsite location providing pre-approval is granted by the Secretary, and the following criteria are met:impacted third party who is not a PRP under 10 V.S.A. § 6615 and contaminated soil may be encountered. - (A) Excavated and stockpiled soils shall be completely contained or encapsulated within a polyethylene plastic liner, which shall be a minimum thickness of 6 mils or another containment method determined by the Secretary to be equally protective. - (B) The integrity of the polyethylene liner shall be maintained. - (6) No additional soil may be added to the existing A construction or redevelopment project is being conducted in an area with historical fill. - (7) When source removal is determined to be feasible during a UST removal. - (b) Plan content requirements. A soil management plan shall include the following: - (1) Description of project. - (2) Goals and objectives. - (3) Description of contamination (source, type, volume, area) to be encountered during the project. - (4) A discussion of any waste material that will be generated by the project - (5) A plan for managing contaminated soil in accordance with § 35-803. - (6) Excavation oversight and soil stockpile, unless inspection frequency. - (7) Project schedule. - (8) Description of how the site will be restored upon project completion. - (9) An updated set of maps per § 35-306(b)(14) or as otherwise directed by the Secretary. - (10) List of contractors and contact information. - (b)(c) Plan approval. A soil management plan shall be approved by the Secretary—prior to implementation. The Secretary shall only approve, in writing, a soil management plan upon finding: - (C) The location degree and extent of the polyencapsulated contaminated soil shall be, in anthe area where: - there are no public water systems requiring excavation for proper treatment or potable water supplies within a minimum 300-foot radius. This limit may need disposal, has been delineated in a precharacterization or site investigation report and has been determined to be extended if water supplies are shown to be hydraulically downgradient; - (ii) There are no sensitive environments including a stream, river, lake, pond, state or federally listed threatened or endangered species or identified or designated habitat, wetland, floodplain, Class I or II groundwater, residence, property boundary, or other similar areas, within 100 feet of non-hazardous. The pre-characterization report shall include the stockpile location; and - (iii) The stockpile location is not within zone one or two of a groundwater source protection area. - (D) Public access to the location where polyencapsulated soils are stockpiled shall be prohibited through posting no trespassing and other means; - (E) If the landowner of the property where polyencapsulated soils are stockpiled is different from soil generator, written approval for the soil stockpile that also grants access for elements as outlined in § 35-306(b), or as directed by the Secretary, has been obtained before stockpiling begins; - (F) The location where polyencapsulated soils are stockpiled shall be depicted on the site map; - (1) Failure to adequately maintain polyencapsulated soil piles will result in a new release subject to. Additional site investigation and corrective action; may be required. - (2) Soils may only be temporarily stockpiled for up The planned construction or redevelopment project/activity will not worsen any existing contamination on the site, or cause impacts to receptors. - (d) Certification of completion. Following implementation of the soil management plan
the PRP shall, within 90 days of completion, provide documentation to the Secretary demonstrating that the work has been completed in accordance with § 35-804(b). If soils were transported offsite, the PRP shall also provide disposal documentation including waste manifest and bill of lading. ### § 35-805. DEVELOPMENT SOILS - (G) Applicability. Soils exhibiting concentrations of contaminants limited to 90 days, or under an alternate schedule approved by the Secretary; lead, arsenic, and - (H) Temporary stockpiling may not occur between December 1* and April 1*. (3) For soils that meet the levels established for urban background/or PAHs in Appendix Bexceedance of this Rule, those soils applicable standards Vermont Soil Standards may be managed in an area designated as urban within the ANR Atlas. ### § 35-610. SITE GENERATED HAZARDOUS WASTES - (a) Site generated hazardous waste shall be managed in accordance with the Vermont Hazardous Waste Management Rules unless managed in an area of contamination under the this section upon approval of the Secretary. - (a) Contained-in determination. On-site media that contain listed hazardous waste identified in the Vermont Hazardous Waste Management Regulations shall be managed as hazardous waste until the media no longer contains the waste. This may be demonstrated by providing the Secretary with data demonstrating that: - (1) The source of the contamination is known and meets the definition of a listed waste; - (2) The media of concern does not contain hazardous constituents in concentrations that exceed the characteristic hazardous waste concentrations; - (3) The media of concern has been appropriately characterized by representative sampling; - (4) Concentrations of contaminants do not present a threat to human health or the environment at final disposition; and - (5) Concentrations of the listed waste do not exceed federal land disposal restrictions. - (b) Prior to managing hazardous wastes under subsection (b) of this section, the Secretary shall determine that the elements of (b)(1) (5) have been met. ### § 35-611. DEVELOPMENT SOILS. - (b) <u>Sampling work plan; content requirements.</u> A person who applies<u>proposes</u> to manage development soils under this section shall have completed a site investigation pursuant to Subchapter 3 of this rule prior to the excavation of the development soils. In addition to the requirements contained in Subchapter 3, a work plan shall be submitted for approval which shall develop and submit a sampling work plan that includes the following: - (1) Soil sample collection methods, which shall consist of one of the following methods: - (A) Discrete sampling methodology in a grid pattern. The sampling grid, which shall be appropriately scaled in order to cover the entire proposed area of excavation, and sample points shall be co-located in areas of concern; - (B) Application of Incremental Sampling Methodology consistent with the Interstate Technology and Regulatory Council's (ITRC) Incremental Sampling Methodology (February 2012); or - (C) Other soil characterization methods, as approved by the Secretary. - If soil is proposed to be disposed of in accordance with § 35-512(b)(3)(receiving site),805(d), the number and location of soil samples that will be analyzed using Synthetic Precipitation Leaching Procedure (EPA Method 1312) (SPLP). to determine if there is a potential for contaminants to impact groundwater. The number of locations shall be based on the volume of soils planned for management and there shall be minimum one sample for every 200 tons of soil, or as approved by the Secretary. Samples shall be taken from the soils most likely to leach contaminants and from the most impacted soil locations based on laboratory analysis, field screening, and visual and olfactory evidence. - (c) Disposal of Development Soils. development soils. Upon a determination approval by the Secretary, in writing, that the soils proposed for management are development soils, those these soils may be disposed at: - (1) A categorical solid waste facility that is permitted to receive development soils; - (2) A solid waste facility for use as alternate daily cover; or - (3) An approved receiving site that meets the requirements of subsection (ed) of this section. - (d) Receiving site. - (1) The receiving site shall meet the siting requirements established in § 35-510(b)(6); - (1) Work plan. Prior to receiving development soils, a work plan for sampling of the receiving site shall be submitted for approval which includes the following: - (A) Soil sample collection methods which shall consist of one of the following methods: - (i) Discrete sampling methodology in a grid pattern. The sampling grid shall be appropriately scaled in order to cover the entire area proposed for deposition of development soils and shall include information regarding seasonal groundwater elevations determined through subsurface characterization; or - (ii) Application of Incremental Sampling Methodology consistent with ITRC Incremental Sampling Methodology (February, 2012) and shall include information regarding seasonal groundwater elevations determined through subsurface characterization. - (B) The address of the proposed receiving site location and the GIS coordinates of the area where the development soils are proposed to be disposed. - (2) General requirements. The following shall apply to management of development soils at a receiving site: - (A) A receiving site shall meet the siting requirements established in § 35-803(c)(1)(B)(v). - (C)(B) The receiving site shall have concentrations of arsenic, lead, and PAH's PAHs that are equal to or greater than the concentrations from the site undergoing redevelopment of the development soils proposed to be received. - (D)(C) Receiving sites that have concentrations of arsenic, lead and PAH's hazardous materials in excess exceedance of industrial risk-based residential soil standards will be required to conduct a site investigation in accordance with Subchapter 3. - (E)(D) The receiving site has an approved institutional control plan in accordance with § 35-601-901 that addresses potential direct contact with development soils by the public, including appropriate capping and establishment of land use restrictions. ### SUBCHAPTER 69. INSTITUTIONAL CONTROLS ### § 35-901. INSTITUTIONAL CONTROL PLAN - (a) Purpose. The purpose of an institutional control plan is to identify a series of institutional controls and use restrictions to ensure the protection of human health and the environment. - (b) Acceptable Alternate Institutional Controls. In addition to the institutional controls identified in § 35-602902 and § 35-603903, the following institutional controls may be acceptable when included as a part of an institutional control plan approved by the Secretary: - (1) Zoning Ordinances. Zoning ordinances that place restrictions on uses of an area where the property (e.g. zoning an area commercial or industrial or limits subsurface excavation) is located may be considered as a part of an institutional control plantage. Zoning an area for non-residential use only or limiting subsurface excavation. Institutional control plans shall address how long term reporting on zoning ordinances will take place to ensure that future modifications to ordinances or bylaws do not allow uses land use to adversely affect human health or the environment. - (2) Water Ordinances. Water ordinances that require all homeowners property owners to be connected to a public community water supply when service is available may be an acceptable institutional control for groundwater use restrictions. Institutional control plans shall address how long term reporting on water ordinances will take place to ensure that future modifications to ordinances or bylaws do not allow uses to adversely impact human health or the environment to ensure compliance with land use restrictions. - (3) Groundwater reclassification. Groundwater reclassifications may be an acceptable institutional control for groundwater use restrictions. - (4) Judicially approved controls. Judicial controls may be an acceptable short-term institutional control. The institutional control plan shall identify how the judicially approved controls will allow the control to survive changes to property ownership or other transfers of the property. - (5) Approval of institutional control plan. The Secretary PRP shall approve submit an institutional control plan providing to the Secretary for approval. The plan shall include the following are demonstrated: - (A) The PRP has identified all residual contamination that remains in place on the property; - (B) The PRP has identified what appropriate restrictions are necessary to ensure that exposure pathways are not created by uses or activities that take place on the property; - (C) The PRP has identified a control or controls that <u>adequately</u> address the <u>land</u> <u>use</u> restrictions identified in subsection (c)(2) of this section; and - (D) The PRP has identified a long term monitoring programmeans to ensure that the controls continue to be effective until the contamination no longer poses an unacceptable impact to human health or the environment. ### § 35-902. NOTICE TO THE LAND RECORDS. - (a) Purpose. The purpose of a notice to the land records is to inform present and future property owners of the presence of residual subsurface contamination at the property, and applicable land use restrictions. - (b) Applicability. A Notice to the Land Records is an acceptable institutional control when corrective actions have addressed any exposure pathways to a sensitive receptors, but residual contamination above applicable environmental media standards may be present on site. - (c) MinimumRequired Elements. At a minimum, all All notices to the land record shall contain: - (1) A brief description of the release of hazardous materials; - (2) A brief
description of the any corrective action that took place on the site; - (3) What <u>residual</u> hazardous materials remain on the site <u>above applicable media</u> <u>standards</u> and the location of those hazardous materials; and - (4) A description of the necessary propertyland use restrictions to ensure that no further exposure to hazardous materials takes place can occur; and. - (5) The following language shall be included: "If a person fails to follow the <u>land</u> use restrictions contained within this notice the person may be liable for further site investigation, remediation, and penalties pursuant to the Vermont Waste Management Act, 10 V.S.A. chapter 159." - (d) Filing. A PRP shall file an approved notice to the land records within one week of its approval and by the Secretary. The PRP shall provide a copy to the Secretary, including the recorder stamp, date of recording, book, and page number, of the recorded notice to the land record within one week 10 days of its recording. ### § 35-903. DEED RESTRICTION/ENVIRONMENTAL EASEMENT- - (a) Purpose. The purpose of a deed restriction an environmental easement is to place legally enforceable land use restrictions on a property to prevent exposure to any hazardous material left on the property and to ensure the protectiveness of any corrective action at the property. - (b) Applicability. The Secretary may require the use of a deed restriction an environmental easement in the following situations: - (1) When long term maintenance or monitoring of the corrective action, <u>engineered</u> remedy or <u>propertyland</u> use restrictions are required to prevent contamination from posing a risk to human health or the environment; - (2) When land use restrictions will include restrictions for residential property use; - (2)(3) When active remedial infrastructure must remain in place in order to prevent contamination from posing a risk to human health or the environment; - (3)(4) When a Technical Impracticality (TI) Waiver has been granted by the Secretary in accordance with Appendix €C; or - (4)(5) When groundwater contamination remains, or is projected to remain at the site above the Vermont Groundwater Enforcement Standards at a compliance point in accordance with the timeline established in the Vermont Groundwater Protection Rule and Strategy. - (c) Minimum Elements: - (c) Required Elements. The following shall be included in an environmental easement: - (1) A legal description of the site property; - (2) A description of the release, corrective action, and statement of the need for a deed restriction an environmental easement an environmental easement on the property; - (3) A grant of access to the Agency of Natural Resources to the property for any reason related to the purpose of the easement, including monitoring of the site, monitoring of the land use controls restriction, planning future corrective action; - (4) Restrictions on future uses of the property or portions of the property to prevent receptors from being exposed to any residual contamination that remains on the property and to ensure the effectiveness of any corrective action; - (5) A process for enforcing the terms of the easement; and - (6) A map including the most recent parcel boundary survey that depicts the area of where restricted areas are located on the property in recordable form, unless the parcel to which the restrictions apply to the property without restriction. - (d) Approval. The Secretary shall review and approve the environmental easement upon demonstration that easement complies with the requirements of § 35-903(c). - (d)(e) Filing. A PRP shall file an approved deed restriction environmental easement and all exhibits within one week of its approval by the Secretary and shall provide a copy to the Secretary, including the recorder stamp, book, and page number, of the recorded deed restriction environmental easement on within one week of its recording. ### § 35-904. § 35-604. LAND USE RESTRICTIONS WITHIN A CERTIFICATE OF COMPLETION - (a) Purpose. The Secretary may establish land use restrictions within a certificate of completion upon closure of a site enrolled in BRELLA pursuant 10 V.S.A. Chapter 159. The purpose of these restrictions is to ensure the ongoing effectiveness of response actions taken at the site. - (b) Applicability. The Secretary may restrict future uses of a property as a part of a certificate of completion in any of the following situations: - When long term maintenance or monitoring of the corrective action or propertyland use restrictions are required to ensure a risk to human health or the environment will not occur; - (1)(2) When land use restrictions will include constraints regarding residential property use; - (2)(3) When active remedial infrastructure must remain in place in order to prevent contamination from posing a risk to human health or the environment; - (3)(4) When a Technical Impracticality (TI) Waiver has been granted by the Secretary in accordance with Appendix €C; or - (4)(5) When groundwater contamination remains or is projected to remain at the site above the Vermont Groundwater Enforcement Standards at a compliance point in accordance with the timeline established in the Vermont Groundwater Protection Rule and Strategy. - (c) MinimumRequired Elements. At a minimum, a certificate shall be issued to include the following items: - (1) A legal description of the site property; - (2) A description of the release, corrective action, and statement of the need for aland use restrictions on the property; - (3) Access to Agency of Natural Resources personnel to access the site at all reasonable times to inspect compliance with the land use restrictions identified herein, as well as to assess the need for, planning, or implementing additional response actions at or near the site; - (4)(3) Restrictions on future uses of the property or portions of the property to prevent receptors from being exposed to any residual contamination that remains on the property and to ensure the effectiveness of any corrective action; and - (5)(4) A map of where restricted areas are located onincluding the property in recordable form, unless most recent parcel boundary survey that depicts the area of the parcel to which the restrictions apply to the property without restriction. - (d) Recording. The PRP shall record a certificate of completion and all supporting documentation and exhibits with the land records of the municipality or municipalities in which the site is located. Such recording shall be made within one week of the date of issuance of the certificate of completion. Within one week of the date of recording, the PRP shall provide a copy of the recorded and stamped certificate of completion and all recorded documents withto the AgencySecretary, which includes the book and page number of where those documents were recorded. ### **SUBCHAPTER 710. SITE CLOSURE** ### § 35-1001. SITE MANAGEMENT ACTIVITIES COMPLETE - Effect of site management activity complete designation (SMAC). The SMAC designation means no additional work related to the identified release or releases is required at the time the designation is issued. A SMAC designation shall not release the PRP or parties from any past or future liability associated with the release or releases identified as a part of the response, or from any contamination discovered after the site receives this designation. A SMAC designation does not prevent the Secretary from reassessing the site in light of the reasons stated in subsection (e) of this section, a change in environmental media standards, identification of new or emerging contaminants of concern that require additional responses, new information, or a change in condition that shows sensitive receptors are at risk from the release. - (a) Request for a SMAC designation. In order to obtain a SMAC designation, the PRP or the SecretaryPurpose. A Site Management Activities Complete (SMAC) designation may be issued to signify that, based on current information, no additional work related to a release is required. - (b) <u>Eligibility</u>. A <u>PRP</u> shall submit a request for a SMAC designation that summarizes the site investigation, and corrective action undertaken at the site and <u>documents</u> that <u>demonstrates</u> all the following: - (1) The Each source area or areas were that was removed, remediated, or adequately controlled. - (2) Hazardous material data trends collected from site specific environmental media demonstrate that <u>contaminant</u> concentrations are stable, falling, or are not detectable. - (3) Groundwater enforcement standards as adopted in the Groundwater Protection Rule and Strategy have been met at compliance points established for the site, and groundwater has been reclassified in accordance with the Groundwater Protection Rule and Strategy, if necessary. - (4) No hazardous materials associated with the site are present in drinking water supplies at concentrations in excess of Vermont Groundwater Quality Standards Vermont's groundwater quality standards (Vermont Groundwater Enforcement Standards or Vermont Health Advisory Action Levels, when one is available). - (5) Active remedial activities associated with remediation at the site have has been completed. - (6) Soil standards have been met at compliance points or, if soil standards have not been met, then a corrective action plan has been implemented with as well as approved engineering and institutional controls to prevent contact to contaminated soils and land use restrictions, as necessary. - (7) Vermont water quality standards Water Quality Standards have been achieved at all surface water compliance points established for the site. - (8) Sediment evaluation remediation has been completed and remediation is or was not required. - (9) Migration of hazardous materials from soil to groundwater is not occurring at a concentration which will result in an exceedance of
the Vermont Groundwater Enforcement Standards. - (10) No completed vapor intrusion pathway exists. - (11) The site has been properly closed following the corrective action, including: - (A) All groundwater monitoring wells have been properly closed in accordance with the Vermont Water Supply Rule or an alternate plan has been approved by the Secretary for maintaining the monitoring wells. The Secretary shall be notified of the closure of the monitoring wells. - (B) Abandoned water supply wells and monitoring wells have been properly closed in accordance with the Vermont Water Supply Rule. - (C) All site remedial infrastructure or monitoring points have been closed in a manner to prevent impacts to the environment or human health. - (D) Contaminated Excavated contaminated soils have been properly treated or disposed of in accordance with § 35-510803, § 35-511611, or § 35-512804. - (12) Any outstanding or overdue balances owed to the State (e.g. <u>Petroleum Cleanup fund</u> "PCF" <u>deferred</u> deductible, <u>PCF cost recovery</u>, Environmental Contingency Fund (ECF) cost recovery, <u>UST loan</u>, <u>settlement agreements</u>, <u>penalties</u>, <u>fines</u>, <u>natural resources damage assessments</u>, <u>taxes</u>, <u>unpaid child support</u>, <u>etc.</u>) have been paid to the satisfaction of the <u>SecretaryState</u>. - (13) Injection wells <u>and floor drains</u> have been closed in accordance with the Underground Injection Control Rule, as appropriate. - (14) All required institutional controls, engineered controls, and inspection plans are in place and copies have been provided to the Secretary. - (15) All documentation required by this rule has been submitted to and approved by the Secretary. - (c) Issuance of SMAC designation. If the The Secretary determines that all of shall issue a SMAC designation for the site upon compliance with the requirements of subsection (b) of this section have been met, the . The Secretary may issue a SMAC designation for the site. upon his or her own discretion upon a demonstration that the requirements of subsection (b) are met. - (d) SMAC as notice to the land records. A copy of the SMAC designation shall be recorded in municipal land records in the municipality where the site is located. - (1) The PRP shall within 10 days of recording provide to the Secretary a copy of the recorded SMAC letter with the recorder's stamps.stamp, recording date, Book and Page number(s). - (2) SMAC letters shall include a copy of the site map showing properly decommissioned historical monitoring points, original source area(s), remediated area(s) and the approximate extents of residual contamination. - (e) Effect on liability. A SMAC designation shall not release the PRP(s) from any past or future liability associated with an identified release or a release discovered after such designation. A SMAC designation does not prevent the Secretary from requiring further assessment of the site pursuant to subsection (f) of this section. - (e)(f) Reopening of SMAC designation. The Secretary shall return the site to active status on may require additional investigation or remediation of a designated site upon finding any of the following: - (1) <u>previous remedial Previous remediation</u> activities that are found to have been were inadequate; - (2) newNew information is discovered regarding the time, extent, amount, type, or nature of materials released; - (3) newNew information is discovered regarding the migration of the hazardous materials, health effects of the hazardous materials, or site conditions; - (4) the The Secretary identifies errors or omissions in any of the investigation, or corrective action plan, or their associated implementation; - (5) $\frac{\partial}{\partial A}$ new hazardous material is listed or identified that requires a response by the PRP; - (6) additional releases Additional release(s) occur; - (7) A condition of the SMAC designation was not completed; - (8) <u>A</u> requirement of the institutional control plan or necessary reporting was not followed; or - (9) any Any other condition that presents a threat of unreasonable exposure to humans or the environment from a hazardous material that was released from the site. ### § 35-1002. CERTIFICATE OF COMPLETION - (a) Eligibility for Certificate of Completion. A PRP shall not obtain may receive a certificate of completion unless all pursuant to this section if the following have been established: - (1) The PRP meets the eligibility requirements identified in 10 V.S.A. § 6645; and has been accepted into the BRELLA program; - (2) The Secretary determines that all work required pursuant to 10 V.S.A. Chapter 159, Subchapter 3 has been completed; and - (3) The Secretary determines that the requirements of this section have been met. - (b) Application for certificate of completion. Request; review. A PRP may request the Secretary issue a certificate of completion by filing an application in the same manner as required by § 35-7011001(b). The Secretary shall review a request for a certificate of completion in the same manner as § 35-1001(b). - (e) Review of request for certificate of Substantial completion. The Secretary shall review a request for a certificate of completion in the same manner as § 35-701(c). - (d)(c) Review of request for certificate of completion on substantial completion.—A PRP may request that the Secretary issue a certificate of completion based on upon substantial completion of the corrective action. Issuance of a certificate of completion under this subsection is shall only eligible for be issued to persons who entered the BRELLA program as a prospective purchaser, and only upon determination by the Secretary that one of the following elements of the corrective action remain uncompleted bases exists at the time the application for a certificate of completion is filed with the Secretary: - (1) When the Secretary has determined that long term monitoring is a component of the corrective action, but the long-term monitoring has not been completed; or - (2) When the Secretary has required institutional controls but the institutional controls are required but have not yet been recorded at the time of the request. - (e)(d) Failure to comply with condition subsequent on substantial conditions for a certificate of completion. AAny protections provided by a certificate of completion issued on substantial completion is shall be contingent upon the PRP completing the PRP's compliance with conditions subsequent in a timeframe identified by the Secretary. If the PRP fails to do so the certificate of completion shall be void and the PRP Failure to comply with such conditions shall be required to reapply for nullify any such protections or other terms of a certificate of completion. ## SUBCHAPTER <u>\$11</u>. REQUESTS FOR REIMBURSEMENT FOR MUNICIPAL WATER LINE EXTENSIONS FROM THE PETROLEUM CLEANUP OR ENVIRONMENTAL CONTENGENCY FUNDS ## § 35-1101. REIMBURSEMENT OF MUNICIPALITIES TO PROVIDE ALTERNATE WATER SUPPLIES - (a) Applicability. This section shall apply when the following apply: - (1) there There has been a release of a hazardous material; - (2) the The construction or expansion of or connection to a municipal water line eliminates a sensitive receptor's exposure to a hazardous material; and - (3) the The work is performed by a municipality and meets the requirements of this section. - (b) Source of funds. When the release is predominately gasoline, fuel oil, or the release of another petroleum product that would potentially be eligible for reimbursement from the fund established under 10 V.S.A. § 1941 then the reimbursement shall be made from the Petroleum Cleanup Fund; all other reimbursements shall be made from the Contingency Fund established pursuant to 10 V.S.A. § 1283. - (c) Prohibition on Reimbursement. - (1) Reimbursements from the Petroleum Cleanup Fund shall be limited to the reimbursement caps established in 10 V.S.A. § 1941(a)(1) and shall only be for uninsured costs. - (2) Reimbursements from the Contingency Fund shall be limited to the caps established in 10 V.S.A. § 1283(b) or an amount established by the Secretary taking into consideration the current fund balance and known and estimated future obligations on the fund, whichever is lesser. - (3) Where there is a potentially responsible party who has refused to reimburse a municipality for the extension of a municipal water line, the Secretary may condition reimbursement on the successful recovery of funds from that responsible party. - (d) Requirements for reimbursement. - (1) The municipality has applied for all necessary permits required for the project, including public drinking water supply permits. - (2) Municipality shallmust submit a cost estimate for review and approval by the Secretary for all work proposed for reimbursement. If an evaluation of corrective action alternatives, including cost effectiveness compared to water treatment or well replacement, has not been completed prior to the final design of a municipal water line extension, the Secretary may require such an analysis prior to approval of the preliminary approval or prior to the construction of the water line extension. - (3) Prior to bidding on a construction project that may encounter contaminated media an environmental professional shall, at a minimum, provide the Secretary with the following: - (A) Identify any land uses that may have resulted in the release of hazardous materials on the route of the municipal water line extension. Identification shall be confined to a review of records at the Agency and municipal records. - (B) If sampling is necessary, submit a plan to conduct limited sampling to estimate the costs associated with management of contaminated soil and groundwater when installing the municipal water line. - (C) Soil management plan. This plan shall include work procedures, treatment, and disposal locations for contaminated soil encountered during the
construction process. Contaminated soils shall be backfilled during construction unless it is clearly documented that the soils are geotechnically unsuitable or cannot be replaced within the excavation. Contaminated soils to be backfilled, shall be placed at the bottom of the trench with at least 18" of uncontaminated soil used for closing the trench. - (D) Groundwater management plan. If contaminated groundwater is expected to be encountered, the municipality shall have an environmental professional develop a plan for the treatment of contaminated groundwater. Treatment methods may include re-injection through an infiltration basin, filtration through activated carbon, air stripping, pumping to fractionation tanks, or disposal to a wastewater treatment plant (with appropriate permission from the plant owner and Wastewater Management Division). - (e) Approval of prebidpre-bid preliminary investigation. Prior to implementing any work proposed for reimbursement, the Secretary shall approve the prebidpre-bid preliminary investigation. The Secretary may require additional investigation and work as a part of the approval. The Secretary may disprove any cost associated with a request provided there is a reasonable basis for the disapproval. If an evaluation of corrective action alternatives has not been completed prior to the construction of a municipal water line extension, the Secretary may require such an analysis prior to approval of the prebidpre-bid preliminary investigation. - (f) Final reimbursement request. As a part of any request for reimbursement, a municipality shall provide the Secretary, at a minimum, the following information: - (1) The results of any investigation, sampling, and field work that took place as a part of the investigation. - (2) Receipts for any waste discovered and disposed during the municipal water line extension. - (3) Documentation, such as as-builts and certificate of completions, that the constructed municipal water line extension was constructed per the applicable permit requirements. - (4) The amount requested for reimbursement, including detailed supporting information such as contracts to perform work, detailed invoices from contractors, and other similar information. - (5) The Secretary may require additional documentation to support the request for reimbursement. - Approval of final reimbursement request. Prior to reimbursing a municipality for the extension of a municipal water line the Secretary shall approve the final reimbursement request. The Secretary may require additional documentation to support the request for reimbursement. The Secretary may disprove any cost associated with a request provided there is a reasonable basis for the disapproval. ## APPENDIX A. ENVIRONMENTAL MEDIA STANDARDS- §-APX-A1. SOIL SCREENING VALUES STANDARDS §-APX-A2. VAPOR INTRUSION VALUES STANDARDS §-APX-A3. SEDIMENT STANDARDS Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 ## <u>VERMONT DEPARTMENT OF HEALTH</u> <u>EXPOSURE ASSUMPTIONS, PARAMETER VALUES AND FACTORS</u> <u>2019 RESIDENTIAL SOIL VALUES</u> | SYMBOL | DEFINITION (units) | VALUE | |----------------------------------|--|------------------------------| | RSV | Residential Soil Value (mg/kg) | Chemical-Specific | | RSV _{nc-ing} | Resident, Soil, Noncancer, Ingestion (mg/kg) | Chemical-Specific | | RSV _{nc-der} | Resident, Soil, Noncancer, Dermal (mg/kg) | Chemical-Specific | | RSV _{nc-inh} | Resident, Soil, Noncancer, Inhalation (mg/kg) | Chemical-Specific | | RSV _{nc-comb} | Resident, Soil, Noncancer, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | RSV _{ca-ing} | Resident, Soil, Cancer, Ingestion (mg/kg) | Chemical-Specific | | RSV _{ca-der} | Resident, Soil, Cancer, Dermal (mg/kg) | Chemical-Specific | | RSV _{ca-inh} | Resident, Soil, Cancer, Inhalation (mg/kg) | Chemical-Specific | | RSV _{ca-comb} | Resident, Soil, Cancer, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | RSV _{m-ing} | Resident, Soil, Mutagenic, Ingestion (mg/kg) | Chemical-Specific | | RSV _{m-der} | Resident, Soil, Mutagenic, Dermal (mg/kg) | Chemical-Specific | | RSV _{m-inh} | Resident, Soil, Mutagenic, Inhalation (mg/kg) | Chemical-Specific | | RSV _{m-comb} | Resident, Soil, Mutagenic, Combined Routes of Exposure (mg/kg) | Chemical-Specific | | RfD _O | Chronic Oral Reference Dose (mg/kg-d) | Chemical-Specific | | RfC | Chronic Inhalation Reference Concentration (mg/m ³) | Chemical-Specific | | <u>CSF</u> _O | Oral Cancer Slope Factor (mg/kg-d) ⁻¹ | Chemical-Specific | | <u>IUR</u> | Inhalation Unit Risk (µg/m³)-1 | Chemical-Specific | | THQ | Target Hazard Quotient (unitless) | 1.0 | | TR | Target Incremental Lifetime Cancer Risk (unitless) | 1x10 ⁻⁶ | | LT | Lifetime (years) | 70 | | AT _{R-nc} | Averaging Time, Resident, Noncancer (days) | $365 \times ED_{YC} = 2190$ | | AT _{R-ca} | Averaging Time, Resident, Tvohcaneer (days) Averaging Time, Resident, Cancer (days) | $365 \times ED_{LT} = 25550$ | | IR _{YC} | Soil Ingestion Rate, Young Child _{Birth} —(spears (mg/day) | 200 | | IR _{OC} | Soil Ingestion Rate, Older Child _{6-(18years} (mg/day) | 100 | | | Soil Ingestion Rate, Fine Age Range Child _{Birth-<2years} (mg/day) | 200 | | IR _{Birth-<2 yr} | Soil Ingestion Rate, Fine Age Range Child ₂ -(6years (mg/day) | 200 | | IR _{2-<6yr} | Soil Ingestion Rate, Fine Age Range Child _{6~(16years} (mg/day) | 100 | | <u>IR</u> _{6-<16yr} | | 100 | | <u>IR_{16-<18yr}</u> | Soil Ingestion Rate, Fine Age Range Child _{16-<18years} (mg/day) | 100 | | IR _A | Soil Ingestion Rate, Adult (mg/day) Resident Soil Ingestion Rate Factor, Age-adjusted (mg/kg) | 65,439 | | IFS _{R-adj} | | | | IFSM _{R-adj} | Resident Mutagenic Soil Ingestion Rate Factor, Age-adjusted (mg/kg) | <u>250,620</u> | | SA _{YC} | Skin Surface Area, Young Child _{Birth-<6years} (cm ²) Skin Surface Area, Older Child _{6-<18years} (cm ²) | <u>2336</u> | | SAoc | | <u>4591</u> | | SA _{Birth-<2 yr} | Skin Surface Area, Fine Age Range Child _{Birth-Qyears} (cm ²) | 2028 | | SA _{2-<6yr} | Skin Surface Area, Fine Age Range Child _{2-<6years} (cm ²) | <u>2490</u> | | SA _{6-<16yr} | Skin Surface Area, Fine Age Range Child _{6-<16years} (cm ²) | <u>4407</u> | | <u>SA</u> _{16-<18yr} | Skin Surface Area, Fine Age Range Child _{16<18years} (cm ²) | <u>5512</u> | | SA _A | Skin Surface Area, Adult (cm²) | 6034 | | DFS _{R-adj} | Soil Dermal Contact Factor, Age-adjusted (mg/kg) | <u>266,522</u> | | DFSM _{R-adj} | Mutagenic Soil Dermal Contact Factor, Age-adjusted (mg/kg) | 770,281 | | AD _c | Soil on Skin Adherence Factor, Child (mg/cm²) | 0.2 | | $\underline{AD}_{\underline{A}}$ | Soil on Skin Adherence Factor, Adult (mg/cm²) | 0.07 | | $\underline{\mathrm{BW}}_{\mathrm{YC}}$ | Body Weight, Young Child _{Birth-<6years} (kg) | <u>15</u> | |---|--|------------------------| | <u>BW</u> _{OC} | Body Weight, Older Child _{6-<18years} (kg) | <u>48</u> | | BW _{Birth-<2yr} | Body Weight, Fine Age Range, Child _{Birth-<2 years} (kg) | <u>10</u> | | $\underline{\mathrm{BW}}_{26\mathrm{yr}}$ | Body Weight, Fine Age Range, Child _{2-<6years} (kg) | <u>17</u> | | <u>BW</u> _{6-<16yr} | Body Weight, Fine Age Range, Child _{6-<16years} (kg) | <u>44</u> | | <u>BW</u> _{16-<18yr} | Body Weight, Fine Age Range, Child _{16<18years} (kg) | <u>67</u> | | $\underline{\mathrm{BW}}_{\mathrm{A}}$ | Body Weight, Adult (kg) | <u>70</u> | | ABS_d | Fraction of chemical absorbed from soil due to dermal contact (unitless) | Chemical-specific | | <u>ABS</u> _{GI} | Fraction of chemical absorbed in gastrointestinal tract (unitless). If ABS _{GI} >50%, a value of 1 (100%) used. | Chemical-specific | | <u>EF_{YC}</u> | Exposure Frequency, Young ChildBirth-<6years (days/year) | <u>365</u> | | <u>EF_{oc}</u> | Exposure Frequency, Older Child _{6-<18years} (days/year) | <u>365</u> | | EF _{Birth-<2yr} | Exposure Frequency, Fine Age Range Child _{Birth-<2years} (days/year) | <u>365</u> | | EF _{2-<6yr} | Exposure Frequency, Fine Age Range Child _{2-<6years} (days/year) | <u>365</u> | | <u>EF</u> _{6-<16yr} | Exposure Frequency, Fine Age Range Child _{6-<16years} (days/year) | <u>365</u> | | <u>EF_{16-<18yr}</u> | Exposure Frequency, Fine Age Range Child _{16-<18years} (days/year) | <u>365</u> | | <u>EF</u> _A | Exposure Frequency, Adult (days/year) | <u>365</u> | | <u>ED</u> _{YC} | Exposure Duration, Young Child _{Birth-<6years} (years) | <u>6</u> | | <u>ED</u> _{oc} | Exposure Duration, Older Child _{6-<18years} (years) | <u>12</u> | | ED _{Birth-<2yr} | Exposure Duration, Fine Age Range Child _{Birth-<2years} (years) | <u>2</u> | | <u>ED</u> _{2-<6yr} | Exposure Duration, Fine Age Range Child ₂ -(6years (years) | <u>4</u> | | <u>ED</u> _{6-<16yr} | Exposure Duration, Fine Age Range Child _{6~16years} (years) | <u>10</u> | | <u>ED</u> _{16-<18yr} | Exposure Duration, Fine Age Range, Child _{16<18years} (years) | <u>2</u> | | ED_A | Exposure Duration, Adult (years) | <u>52</u> | | <u>ET_{YC}</u> | Exposure Time, Young Child _{Birth-<6years} (hours/day) | <u>24</u> | | <u>ET_{oc}</u> | Exposure Time, Older Child _{6<18years} (hours/day | <u>24</u> | | ET _{Birth-<2yr} | Exposure Time, Fine Age Range Child _{Birth-Qyears} (hours/day) | <u>24</u> | | <u>ET_{2-<6yr}</u> | Exposure Time, Fine Age Range Child _{2-<6years} (hours/day) | <u>24</u> | | <u>ET</u> _{6-<16yr} | Exposure Time, Fine Age Range Child
_{6-<16years} (hours/day) | <u>24</u> | | <u>ET</u> _{16-<18yr} | Exposure Time, Fine Age Range Child _{16-<18years} (hours/day) | <u>24</u> | | <u>ET</u> _A | Exposure Time, Adult (hours/day) | <u>24</u> | | <u>InFSM</u> _{R-adj} | Mutagenic Soil Inhalation Factor, Age-adjusted (days) | <u>42,340</u> | | PEF | Particulate Emission Factor (wind-driven) (m³/kg) | 1.36 x 10 ⁹ | | <u>VF</u> | Volatilization Factor (m³/kg) | Chemical-Specific | | RBA | Relative Bioavailability (unitless) | <u>1</u> | | <u>SCMF</u> | Snow Cover Modification Factor (unitless) | <u>(e)</u> | ### Notes: (a) Surface areas derived using information presented in EPA, 2011 and Boniol et al., 2007 for sexes combined. Mean of 50th percentile (consistent with EPA, 1989 p. 3-39) Total Body Surface Area for each age range of interest developed. Head, hands, forearms, lower legs and feet considered in contact/exposed for all Child age ranges. Consistent with EPA, 2004 (p. 3-10), head, hands, forearms and lower legs considered for Adult. Percent of Total Surface Area represented by body parts considered in contact/exposed was calculated (mean across age range of interest). - (b) Average mean annual Body Weight for age range of interest (based on both sexes) derived using information presented in Portier, et al., 2007. - (c) Default value employed in U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites. (accessed January 2019). - (d) Chemical-specific Volatilization Factors from U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites. (accessed September 10, 2018 through February 4, 2019). - (e) Snow Cover Modification Factor (SCMF) of 0.7342 applied only to soil inhalation route and only for chemicals that meet "v" criteria (effectively yields exposure frequency of 268 days per year for this route of exposure for this receptor). SCMF of 1 employed for all other routes and for chemicals that do not meet "v" criteria. Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 ### **References:** Boniol, et al, 2007. Proportion of skin surface area of children and young adults from 2 to 18 years old. J Investig Dermatol 128(2):461-464. EPA, 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. United States Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. EPA/540/1-89/002. December 1989. EPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors". United States Environmental Protection Agency. . Office of Solid Waste and Emergency Response. OSWER Publication 9285.6-03. March 1991. EPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9355.4-24-02. December 2002. EPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9285.7-02EP. July 2004. EPA, 2011. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency. Office of Research and Development. Washington, D.C. EPA/600/R-090/052F. September 2011. EPA, 2018. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. May and November 2018 editions. (accessed various times September 10, 2018 – February 4, 2019). Portier et al., 2007. Body weight distributions for risk assessment. Risk Anal 27(1):11-26. ### VERMONT DEPARTMENT OF HEALTH ENDPOINT AND PATHWAY SPECIFIC EQUATIONS 2019 RESIDENTIAL SOIL VALUES ### Noncarcinogenic (threshold type, systemic effects) ### Residential Soil Values $$RSV_{nc-ing}(mg/kg) = \frac{THQ * AT_{R-nc}\left(\frac{365\ days}{year} * ED_{YC}(6\ years)\right) * BW_{YC}(15\ kg)}{EF_{YC}\left(\frac{365\ days}{year}\right) * ED_{YC}(6\ years) * \frac{RBA}{RfD_0\left(\frac{mg}{kg-day}\right)} * IR_{YC}\left(\frac{200\ mg}{day}\right) * \frac{10^{-6}\ kg}{1\ mg}}$$ $$= \frac{THQ * AT_{R-nc} \left(\frac{365 \ days}{year} * ED_{YC}(6 \ years)\right) * BW_{YC}(15 \ kg)}{EF_{YC} \left(\frac{365 \ days}{year}\right) * ED_{YC}(6 \ years) * \frac{1}{\left(RfD_0 \left(\frac{mg}{kg - day}\right) * ABS_{GI}\right)} * SA_{YC} \left(\frac{2336 \ cm^2}{day}\right) * AD_C \left(\frac{0.2 \ mg}{cm^2}\right) * ABS_d * \frac{10^{-6} \ kg}{1 \ mg}}$$ $$RSV_{nc-inh}(mg/kg) = \frac{THQ * AT_{R-nc} \left(\frac{365 \ days}{year} * ED_{YC}(6 \ years)\right)}{EF_{YC} \left(\frac{365 \ days}{year}\right) * SCMF * ED_{YC}(6 \ years) * ET_{YC} \left(\frac{24 \ hours}{day} * \frac{1}{24 \ hours}\right) * \frac{1}{RfC \binom{mg}{m^3}} * \left(\frac{1}{VF \left(\frac{m^3}{ka}\right)} + \frac{1}{PEF \left(\frac{m^3}{ka}\right)}\right)}$$ ### o Combined Routes of Exposure RSVs for individual routes of exposure and various routes combined are presented in Attachment 2a $$RSV_{nc-comb}(mg/kg) = \frac{1}{\frac{1}{RSV_{nc-ing}} + \frac{1}{RSV_{nc-der}} + \frac{1}{RSV_{nc-inh}}}$$ ### Carcinogenic Residential Soil Values $$RSV_{ca-ing}(mg/kg) = \frac{TR*AT_{R-ca}\left(\frac{365\;days}{year}*LT(70\;years)\right)}{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}*RBA*IFS_{R-adj}\left(\frac{65,439\;mg}{kg}\right)*\frac{10^{-6}\;kg}{mg}}$$ Where: $$IFS_{R-adJ}\left(\frac{65,439 \ mg}{kg}\right) = \frac{EF_{YC}\left(\frac{365 \ days}{year}\right) * ED_{YC}(6 \ years) * IRS_{YC}\left(\frac{200 \ mg}{day}\right)}{BW_{YC}(15 \ kg)} + \frac{EF_{oC}\left(\frac{365 \ days}{year}\right) * ED_{oC}(12 \ years) * IRS_{oC}\left(\frac{100 \ mg}{day}\right)}{BW_{oC}(48 \ kg)} + \frac{EF_{A}\left(\frac{365 \ days}{year}\right) * ED_{A}(52 \ years) * IRS_{A}\left(\frac{100 \ mg}{day}\right)}{O \ Dermal}$$ $$RSV_{ca-der}(mg/kg) = \frac{TR * AT_{R-ca}\left(\frac{365 \ days}{year} * LT(70 \ years)\right)}{\left(\frac{CSF_{0}\left(\frac{mg}{kg - day}\right)^{-1}}{ABS_{GI}}\right) * DFS_{R-adj}\left(\frac{266,522 \ mg}{kg}\right) * ABS_{d} * \left(\frac{10^{-6} \ kg}{mg}\right)}$$ $$\frac{Where:}{DFS_{R-adj}\left(\frac{266,522 \ mg}{year}\right) * ED_{YC}(6 \ years) * SA_{YC}\left(\frac{2336 \ cm^{2}}{day}\right) * AD_{C}\left(\frac{0.2 \ mg}{cm^{2}}\right)}{BW_{yc}(15 \ kg)}$$ $$+ \frac{EF_{oC}\left(\frac{365 \ days}{year}\right) * ED_{oC}(12 \ years) * SA_{oC}\left(\frac{4591 \ cm^{2}}{day}\right) * AD_{C}\left(\frac{0.2 \ mg}{cm^{2}}\right)}{BW_{oC}(48 \ kg)}$$ $$+ \frac{EF_{A}\left(\frac{365 \ days}{year}\right) * ED_{A}(52 \ years) * SA_{OC}\left(\frac{6034 \ cm^{2}}{day}\right) * AD_{C}\left(\frac{0.2 \ mg}{cm^{2}}\right)}{BW_{oC}(48 \ kg)}}{BW_{oC}(10 \ kg)}$$ $$RSV_{ca-inh}(mg/kg) = \frac{TR*AT_{R-ca}\left(\frac{365\;days}{year}*LT\;(70\;years)\right)}{IUR(^{\mu g}/_{m^3})^{-1}*\left(\frac{1000\;\mu g}{mg}\right)*EF_R\left(\frac{365\;days}{year}\right)*SCMF*\left(\frac{1}{VF\left(\frac{m^3}{kg}\right)} + \frac{1}{PEF\left(\frac{m^3}{kg}\right)}\right)*ED_R(70\;years)*ET_R\left(\frac{24\;hours}{day} * \frac{1\;day}{24\;hours}\right)}$$ ### o Combined Routes of Exposure RSVs for individual routes of exposure and various routes combined are presented in Attachment 2a $$RSV_{ca-comb}(mg/kg) = \frac{1}{\frac{1}{RSV_{ca-ing}} + \frac{1}{RSV_{ca-der}} + \frac{1}{RSV_{ca-inh}}}$$ Carcinogenic via Mutagenic Mode of Action and Default ADAFs used Residential Soil Values $$\frac{\text{o} \quad \text{Ingestion}}{CSF_{0}(mg/kg)} = \frac{TR*AT_{R-ca}\left(\frac{365 \, days}{year}*LT(70 \, years)\right)}{CSF_{0}\left(\frac{mg}{kg}-day\right)^{-1}*RBA*IFSM_{R-adj}\left(\frac{250,620 \, mg}{kg}\right)*\frac{10^{-6} \, kg}{mg}}$$ Where: $$\frac{1FSM_{R-adj}\left(\frac{250,620 \, mg}{kg}\right)}{kg} = \frac{EF_{Birth-c2yr}\left(\frac{365 \, days}{year}\right)*ED_{Birth-c2yr}(2 \, years)*IR_{Birth-c2yr}\left(\frac{200 \, mg}{day}\right)*10}{EW_{Birth-c2yr}\left(\frac{365 \, days}{year}\right)*ED_{E-c6yr}(4 \, years)*IR_{2-c6yr}\left(\frac{200 \, mg}{day}\right)*10}{EW_{R-c1yr}\left(\frac{365 \, days}{year}\right)*ED_{E-c6yr}(4 \, years)*IR_{6-c1kyr}\left(\frac{200 \, mg}{day}\right)*3}{EW_{R-c1kyr}\left(\frac{365 \, days}{year}\right)*ED_{E-c6yr}\left(\frac{365 \, days}{day}\right)*ED_{E-c1kyr}\left(\frac{100 \, mg}{day}\right)*3}{EW_{R-c1kyr}\left(\frac{365 \, days}{day}\right)*ED_{E-c1kyr}\left(\frac{365 \, days}{day}\right)*1} + \frac{EF_{16-c1kyr}\left(\frac{365 \, days}{year}\right)*ED_{16-c1kyr}\left(\frac{200 \, mg}{year}\right)*IR_{16-c1kyr}\left(\frac{100 \, mg}{day}\right)*1}{EW_{16-c1kyr}\left(\frac{365 \, days}{year}\right)*ED_{16-c1kyr}\left(\frac{365 \, days}{year}\right)*IR_{16-c1kyr}\left(\frac{100 \, mg}{day}\right)*1} + \frac{EF_{16}\left(\frac{365 \, days}{year}\right)*ED_{16-c1kyr}\left(\frac{365 \, days}{year}\right)*IR_{16-c1kyr}\left(\frac{365 days$$ ### o Inhalation $$RSV_{m-inh}(mg/kg) = \frac{TR * AT_{R-ca} \left(\frac{365 \ days}{year} * LT \ (70 \ years) \right)}{IUR(^{\mu g}/_{m^3})^{-1} * \left(\frac{1000 \ \mu g}{mg} \right) * SCMF * \left(\frac{1}{VF \left(\frac{m^3}{kg} \right)} + \frac{1}{PEF \left(\frac{m^3}{kg} \right)} \right) * InFSM_{R-adj}(42,340 \ days)}$$ Where: $$\begin{array}{l} \underline{\text{Mhere:}} \\ \underline{\text{InFSM}_{R\text{-adj}}\left(42,340 \text{ days}\right)} = \\ \underline{\left[ET_{Birth-<2yr}\left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{Birth-<2yr}\left(\frac{365 \text{ days}}{year}\right) * ED_{Birth-<2yr}(2 \text{ years}) * 10] + \\ \underline{\left[ET_{2-<6yr}\left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{2-<6yr}\left(\frac{365 \text{ days}}{year}\right) * ED_{2-<6yr}(4 \text{ years}) * 3] + \\ \underline{\left[ET_{6-<16yr}\left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{6-<16yr}\left(\frac{365 \text{ days}}{year}\right) * ED_{6-<16yr}(10 \text{ years}) * 3] + \\
\underline{\left[ET_{16-<18yr}\left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{16-<18yr}\left(\frac{365 \text{ days}}{year}\right) * ED_{16-<18yr}(2 \text{ years}) * 1] + \\ \underline{\left[ET_{4}\left(\frac{24 \text{ hours}}{day} * \frac{1 \text{ day}}{24 \text{ hours}}\right) * EF_{4}\left(\frac{365 \text{ days}}{year}\right) * ED_{4}(52 \text{ years}) * 1]} \end{aligned}}$$ ### o Combined Pathways RSVs for individual routes of exposure and various routes combined are presented in Attachment 2a $$RSV_{m-comb}(mg/kg) = \frac{1}{\frac{1}{RSV_{m-ing}} + \frac{1}{RSV_{m-der}} + \frac{1}{RSV_{m-inh}}}$$ ## <u>VERMONT DEPARTMENT OF HEALTH</u> <u>EXPOSURE ASSUMPTIONS, PARAMETER VALUES AND FACTORS</u> 2019 COMMERCIAL WORKER SOIL VALUES | $ \begin{array}{c} CSV_{ne-comb} \\ \hline CSV_{ca-ing} \\ \hline CSV_{ca-ing} \\ \hline Commercial Worker, Soil, Cancer, Ingestion (mg/kg) \\ \hline CSV_{ca-der} \\ \hline Commercial Worker, Soil, Cancer, Ingestion (mg/kg) \\ \hline CSV_{ca-der} \\ \hline Commercial Worker, Soil, Cancer, Dermal (mg/kg) \\ \hline CSV_{ca-inb} \\ \hline CSV_{ca-inb} \\ \hline Commercial Worker, Soil, Cancer, Inhalation (mg/kg) \\ \hline CSV_{ca-inb} \\ \hline CSV_{ca-inb} \\ \hline Commercial Worker, Soil, Cancer, Combined Routes of Exposure \\ \hline (mg/kg) \\ \hline Chemical-Specific \\ \hline (mg/kg) \\ \hline RfD_O \\ \hline Chronic Oral Reference Dose (mg/kg-d) \\ \hline RfC \\ \hline Chronic Inhalation Reference Concentration (mg/m^3) \\ \hline Chemical-Specific \\ \hline CSF_O \\ \hline Oral Cancer Slope Factor (mg/kg-d)^1 \\ \hline Chemical-Specific \\ \hline IUR \\ \hline Inhalation Unit Risk (\mug/m^3)^{-1} \\ \hline Chemical-Specific \\ \hline THQ \\ \hline Target Hazard Quotient (unitless) \\ \hline LT \\ \hline Lifetime (years) \\ \hline AT_{R-nc} \\ \hline Averaging Time, Commercial Worker, Noncancer (days) \\ \hline AT_{R-ca} \\ \hline Averaging Time, Commercial Worker, Cancer (days) \\ \hline SAW \\ \hline Soil Ingestion Rate, Commercial Worker (mg/day) \\ \hline SAW \\ \hline Soil on Skin Adherence Factor, Adult (mg/cm^2) \\ \hline AD_W \\ \hline Soil on Skin Adherence Factor, Adult (mg/cm^2) \\ \hline AD_{SGI} \\ \hline Fraction of chemical absorbed from soil due to dermal contact (unitless) \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Commercial Worker, Commercial Worker (mg/day) \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Commercial Bosorbed from soil due to dermal contact (unitless) \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Commercial Worker, Voncancer (unitless) \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Commercial Worker, Combined Routes of Exposure Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSV_{ca-comb} \\ \hline Chemical-Specific CSC_{ca-comb} \\ \hline Chemical-Specific CSC_{ca-comb} \\ \hline Chemical-Specific CSC_{ca-com$ | SYMBOL | DEFINITION (units) | VALUE | |--|-------------------------------|--|--------------------------------| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Commercial Worker, Soil, Noncancer, Ingestion (mg/kg) | | | $ \begin{array}{c} CSV_{\text{De-comb}} \\ \hline CSV_{\text{De-comb}} \\ \hline CSV_{\text{ca-ing}} \\ \hline Commercial Worker, Soil, Noncancer, Combined Routes of Exposure \\ \hline (mg/kg) \\ \hline CSV_{\text{ca-ing}} \\ \hline CSV_{\text{ca-ing}} \\ \hline Commercial Worker, Soil, Cancer, Ingestion (mg/kg) \\ \hline CSV_{\text{ca-ind}} \\ \hline CSV_{\text{ca-ind}} \\ \hline CSV_{\text{ca-ind}} \\ \hline Commercial Worker, Soil, Cancer, Dermal (mg/kg) \\ \hline CSV_{\text{ca-ind}} \\ \hline CSV_{\text{ca-ind}} \\ \hline Commercial Worker, Soil, Cancer, Inhalation (mg/kg) \\ \hline Chemical-Specific \\ \hline CSV_{\text{ca-comb}} \\ \hline Commercial Worker, Soil, Cancer, Combined Routes of Exposure \\ \hline (mg/kg) \\ \hline RfD_O \\ \hline Chronic Oral Reference Dose (mg/kg-d) \\ \hline RfC \\ \hline Chronic Inhalation Reference Concentration (mg/m^3) \\ \hline Chemical-Specific \\ \hline CSF_O \\ \hline Oral Cancer Slope Factor (mg/kg-d)^1 \\ \hline Chemical-Specific \\ \hline CSF_O \\ \hline Oral Cancer Slope Factor (mg/kg-d)^1 \\ \hline Chemical-Specific \\ \hline THQ \\ \hline Target Hazard Quotient (unitless) \\ \hline TR \\ \hline Target Incremental Lifetime Cancer Risk (unitless) \\ \hline LT \\ \hline Lifetime (years) \\ \hline AT_{R-nc} \\ \hline Averaging Time, Commercial Worker, Noncancer (days) \\ \hline SAW \\ \hline Soil Ingestion Rate, Commercial Worker, Cancer (days) \\ \hline SAW \\ \hline Skin Surface Area, Adult (cm^2) \\ \hline AD_W \\ \hline Soil on Skin Adherence Factor, Adult (mg/cm^2) \\ \hline Dotal Cancer Stope Fraction of chemical absorbed from soil due to dermal contact (unitless) \\ \hline Chemical-Specific Chemical-specif$ | | Commercial Worker, Soil, Noncancer, Dermal (mg/kg) | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <u>CSV</u> _{nc-inh} | Commercial Worker, Soil, Noncancer, Inhalation (mg/kg) | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <u>CSV</u> _{nc-comb} | * | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | CSV _{ca-ing} | Commercial Worker, Soil, Cancer, Ingestion (mg/kg) | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Chemical-Specific | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Commercial Worker, Soil, Cancer, Combined Routes of Exposure | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | RfD_0 | | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Chemical-Specific | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1.0 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | <u>1x10⁻⁶</u> | | | | | <u>70</u> | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | AT _{R-nc} | Averaging Time, Commercial Worker, Noncancer (days) | $365 \times ED_{W} = 9125$ | | | | | 365 x ED _{LT} = 25550 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 100 | | | | | 3527 | | | | | 0.12 | | ABS _{GI} Fraction of chemical absorbed in gastrointestinal tract (unitless). If ABS _{GI} Chemical-specific >50%, a value of 1 (100%) used. | | Body Weight, Adult (kg) | 70 | | ABS _{GI} Fraction of chemical absorbed in gastrointestinal tract (unitless). If ABS _{GI} Chemical-specific >50%, a value of 1 (100%) used. | $\overline{ABS_d}$ | Fraction of chemical absorbed from soil due to dermal contact (unitless) | Chemical-specific | | | | | Chemical-specific | | (days/year) | <u>EF</u> w | Exposure Frequency, Ingestion & Dermal Commercial Worker | <u>250</u> | | ET _W Exposure Time, Adult (hours/day) 10 | ETw | | 10 | | PEF Particulate
Emission Factor (wind-driven) (m ³ /kg) 1.36 x 10 ⁹ | | | | | | | | Chemical-Specific | | RBA Relative Bioavailability (unitless) | | | 1 | ### Notes: - (a) Surface areas derived using information presented in EPA, 2011, Table 7-2; weighted average of mean values for head, hands, and forearms (male and female, 21+years) - (b) Average mean annual Body Weight for age range of interest (based on both sexes) derived using information presented in Portier, et al., 2007. - (c) Default value employed in U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites (accessed January 2019). - (d) Chemical-specific Volatilization Factors from U.S. EPA Regional Screening Levels for Chemical Contaminants at Superfund Sites (accessed September 10, 2018 through February 2019). ### References: ## Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 BLS, 2016. United States Bureau of Labor Statistics. Division of Labor Force Statistics. Labor Force Statistics from Current Population Survey. Household Data. Annual Average. Last modified February 8, 2017 (accessed 3/28/2017) https://www.bls.gov/cps/cpsaat19.htm. EPA, 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. United States Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. EPA/540/1-89/002. December 1989. EPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors". United States Environmental Protection Agency. . Office of Solid Waste and Emergency Response. OSWER Publication 9285.6-03. March 1991. EPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9355.4-24-02. December 2002. EPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. U.S. Environmental Protection Agency. Washington, D.C. OSWER 9285.7-02EP. July 2004. EPA, 2011. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency. Office of Research and Development. Washington, D.C. EPA/600/R-090/052F. September 2011. EPA, 2015. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. November 2015 edition. (accessed December 11, 2015). EPA, 2018. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. May and November 2018 editions. (accessed September 10, 2018 through February 2019). Portier et al., 2007. Body weight distributions for risk assessment. Risk Anal 27(1):11-26. ### VERMONT DEPARTMENT OF HEALTH ENDPOINT AND PATHWAY SPECIFIC EQUATIONS 2019 COMMERCIAL WORKER SOIL VALUES ### Noncarcinogenic (threshold type, systemic effects) Commercial Worker Soil Values $$CSV_{nc-ing}(mg/kg) = \frac{THQ * AT_{W-nc}\left(\frac{365 \ days}{year} * ED_{W}(30 \ years)\right) * BW_{W}(70 \ kg)}{EF_{W}\left(\frac{250 \ days}{year}\right) * ED_{W}(30 \ years) * \frac{RBA}{RfD_{0}\left(\frac{mg}{kg-day}\right)} * IR_{W}\left(\frac{100 \ mg}{day}\right) * \frac{10^{-6} \ kg}{1 \ mg}}$$ $$= \frac{THQ * AT_{W-nc} \left(\frac{365 \ days}{year} * ED_{W}(30 \ years)\right) * BW_{W}(70 \ kg)}{EF_{W} \left(\frac{250 \ days}{year}\right) * ED_{W}(30 \ years) * \frac{1}{\left(RfD_{0} \left(\frac{mg}{kg - day}\right) * ABS_{GI}\right)} * SA_{W} \left(\frac{3527}{day}\right) * AD_{W} \left(\frac{0.12 \ mg}{cm^{2}}\right) * ABS_{d} * \frac{10^{-6} \ kg}{1 \ mg}}$$ $$CSV_{nc-inh}(mg/kg) = \frac{THQ * AT_{W-nc} \left(\frac{365 \ days}{year} * ED_{W}(30 \ years)\right)}{EF_{W} \left(\frac{250 \ days}{year}\right) * ED_{W}(30 \ years) * ET_{W} \left(\frac{10 \ hours}{day} * \frac{1 \ day}{24 \ hours}\right) * \frac{1}{RfC \left(\frac{mg}{m^{3}}\right)} * \left(\frac{1}{VF \left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF \left(\frac{m^{3}}{kg}\right)}\right)}$$ ### o Combined Routes of Exposure CSVs for individual routes of exposure and various routes combined are presented in Attachment $$CSV_{nc-comb}(mg/kg) = \frac{1}{\frac{1}{CSV_{nc-ing}} + \frac{1}{CSV_{nc-der}} + \frac{1}{CSV_{nc-inh}}}$$ ### • Carcinogenic ### • Commercial Worker Soil Values ### o Ingestion $$CSV_{ca-ing}(mg/kg) = \frac{TR*AT_{W-ca}\left(\frac{365\;days}{year}*LT(70\;years)\right)}{CSF_0\left(\frac{mg}{kg-day}\right)^{-1}*RBA*\left(\frac{EF_w\left(\frac{250\;days}{year}\right)*ED_w\left(30years\right)*IRS_w\left(\frac{100\;mg}{day}\right)}{BW\left(70kg\right)}\right)*\frac{10^{-6}\;kg}{mg}}$$ ### o Dermal $$= \frac{TR * AT_{W-ca} \left(\frac{365 \ days}{year} * LT(70 \ years)\right)}{\left(\frac{CSF_0 \left(\frac{mg}{kg - day}\right)^{-1}}{ABS_{GI}}\right) * \left(\frac{EF_W \left(\frac{250 \ days}{year}\right) * ED_W \left(30 \ years\right) * SA_W \left(\frac{3527 \ cm^2}{day}\right) * AD_W \left(\frac{0.12 \ mg}{cm^2}\right)}{BW \left(70 kg\right)}\right) * ABS_d * \left(\frac{10^{-6} \ kg}{mg}\right)}$$ ### o Inhalation $$CSV_{ca-inh}(mg/kg) = \frac{TR * AT_{W-ca} \left(\frac{365 \ days}{year} * LT \ (70 \ years) \right)}{IUR(^{\mu g}/_{m^3})^{-1} * \left(\frac{1000 \ \mu g}{mg} \right) * EF_W \left(\frac{250 \ days}{year} \right) * \left(\frac{1}{VF \left(\frac{m^3}{ka} \right)} + \frac{1}{PEF \left(\frac{m^3}{ka} \right)} \right) * ED_W (30 \ years) * ET_W \left(\frac{10 \ hours}{day} \ * \ \frac{1 \ day}{24 \ hours} \right)}$$ ### o Combined Routes of Exposure $\underline{\text{CSVs}}$ for individual routes of exposure and various routes combined are presented in Attachment $\underline{2b}$ $$CSV_{ca-comb}(mg/kg) = \frac{1}{\frac{1}{CSV_{ca-ing}} + \frac{1}{CSV_{ca-der}} + \frac{1}{CSV_{ca-inh}}}$$ Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 # VERMONT DEPARTMENT OF HEALTH EXPOSURE ASSUMPTIONS, PARAMETER VALUES AND FACTORS 2019 RESIDENTIAL AIR VALUES (RAVs) 2019 NONRESIDENTIAL AIR VALUES (NAVs) | SYMBOL | DEFINITION (units) | VALUE | |----------------------------------|---|------------------------------| | DIVIDOL | DEFINITION (units) | VALUE | | RAV | Residential Air Value (µg/m³) | Chemical-Specific | | RAV _{nc-inh} | Resident, Air, Noncancer, Inhalation (µg/m³) | Chemical-Specific | | RAV _{ca-inh} | Resident, Air, Cancer, Inhalation (µg/m³) | Chemical-Specific | | RAV _{m-inh} | Resident, Air, Mutagenic, Inhalation (µg/m³) | Chemical-Specific | | NAV | Nonresidential Air Value (µg/m³) | Chemical-Specific | | NAV _{nc-inh} | Nonresidential, Air, Noncancer, Inhalation (µg/m³) | Chemical-Specific | | NAV _{ca-inh} | Nonresidential, Air, Cancer, Inhalation (µg/m³) | Chemical-Specific | | RfC | Chronic Inhalation Reference Concentration (mg/m³) | Chemical-Specific | | IUR | Inhalation Unit Risk (μg/m³)-1 | Chemical-Specific | | THQ | Target Hazard Quotient (unitless) | 1.0 | | TR | Target Incremental Lifetime Cancer Risk (unitless) | 1x10 ⁻⁶ | | LT | Lifetime (years) | 70 | | AT _{R-ca} | Averaging Time, Resident, Cancer (days) | 365 x ED _R =25550 | | AT _{N-nc} | Averaging Time, Nonresidential, Noncancer (days) | 365 x ED _N =10950 | | AT _{N-ca} | Averaging Time, Nonresidential, Cancer (days) | 365 x ED _N =25550 | | EF _R | Resident Exposure Frequency (days/year) | 365 | | EF _{Birth-<2yr} | Resident Exposure Frequency, Fine Age Range Child _{Birth-Qyears} (days/year) | 365 | | EF _{2-<6yr} | Resident Exposure Frequency, Fine Age Range Child _{2-<6years} (days/year) | <u>365</u> | | EF _{6-<16vr} | Resident Exposure Frequency, Fine Age Range Child _{6-<16years} (days/year) | 365 | | <u>EF_{16-<18yr}</u> | Resident, Exposure Frequency, Fine Age Range Child _{16-<18years} (days/years) | 365 | | <u>EF</u> _A | Resident Exposure Frequency, Adult (days/year) | <u>365</u> | | EF _N | Nonresidential Exposure Frequency (days/year) | 250 | | <u>ED</u> _R | Resident Exposure Duration (years) | 70 | | ED _{Birth-<2yr} | Resident Exposure Duration, Fine Age Range ChildBirth-<2years (years) | 2 | | <u>ED</u> _{2-<6yr} | Resident Exposure Duration, Fine Age Range Child _{2-<6years} (years) | 4 | | <u>ED</u> _{6-<16yr} | Resident Exposure Duration, Fine Age Range Child _{6~16years} (years) | <u>10</u> | | <u>ED</u> _{16-<18yr} | Resident Exposure Duration, Fine Age Range Child _{16<18years} (years) | <u>2</u> | | <u>ED</u> _A | Resident Exposure Duration, Adult (years) | <u>52</u> | | <u>ED</u> _N | Nonresidential Exposure Duration (years) | <u>30</u> | | ET _R | Resident Exposure Time (hours/day) | <u>24</u> | | ET _{Birth-<2yr} | Resident Exposure Time, Fine Age Range Child _{Birth-<2years} (hours/day) | <u>24</u> | | <u>ET</u> _{2-<6yr} | Resident Exposure Time, Fine Age Range Child _{2-<6years} (hours/day) | <u>24</u> | | <u>ET</u> _{6-<16yr} | Resident Exposure Time, Fine Age Range Child _{6-<16years} (hours/day) | <u>24</u> | | <u>ET</u> _{16-<18yr} | Resident Exposure Time, Fine Age Range Child _{16-<18years} (hours/day) | <u>24</u> | | <u>ET</u> _A | Resident Exposure Time, Adult (hours/day) | <u>24</u> | | <u>ET</u> _N | Nonresidential Exposure Time (hours/day) | 10 | | <u>IFAM_{R-adj}</u> | Resident Mutagenic Air Inhalation Factor, age-adjusted (hours) | <u>1,016,160</u> | ### Notes: (a) General estimate of years of service for full benefits ### References: BLS, 2016. United States Bureau of Labor Statistics. Division of Labor Force Statistics. Labor Force Statistics from Current Population Survey. Household Data. Annual Average. Last modified February 8, 2017 (accessed 3/28/2017) https://www.bls.gov/cps/cpsaat19.htm. EPA, 1989. Risk Assessment Guidance for Superfund. Volume I: Human
Health Evaluation Manual (Part A). Interim Final. United States Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. EPA/540/1-89/002. December 1989. EPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors". United States Environmental Protection Agency. Office of Solid Waste and Emergency Response. OSWER Publication 9285.6-03. March 1991. EPA, 2016. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. May 2016 edition. (accessed June 6, 2016). https://www.epa.gov/risk/regional-screening-levels-rsls. # VERMONT DEPARTMENT OF HEALTH SCENARIO, ENDPOINT AND PATHWAY SPECIFIC EQUATIONS 2019 RESIDENTIAL AIR VALUES (RAVs) 2019 NONRESIDENTIAL AIR VALUES (NAVs) ### I. RESIDENTIAL AIR VALUES ### • Noncarcinogenic (threshold type, systemic effects) ### o Inhalation (simplified equation) $RAV_{nc-inh}(\mu g/m^3) = INHALATION REFERENCE CONCENTRATION (\mu g/m^3) * THO$ ### • Carcinogenic $$RAV_{ca-inh}(\mu g/m^{3}) = \frac{TR * AT_{R-ca}\left(\frac{365 \ days}{year} * LT \ (70 \ years)\right)}{IUR(^{\mu g}/_{m^{3}})^{-1} * EF_{R}\left(\frac{365 \ days}{year}\right) * ED_{R}(70 \ years) * ET_{R}\left(\frac{24 \ hours}{day} * \frac{1 \ day}{24 \ hours}\right)}$$ ### • Carcinogenic via Mutagenic Mode of Action and Default ADAFs used ### o Inhalation $$RAV_{m-inh}(\mu g/m^3) = \frac{TR*AT_{R-ca}\left(\frac{365\;days}{year}*LT\;(70\;years)\right)}{IUR(^{\mu g}/_{m^3})^{-1}*\left(\frac{1\;day}{24\;hours}\right)*IFAM_{R-adj}(\;1,016,160\;hours)} \\ \frac{Where:}{IFAM_{R-adj}\;(1,016,160\;hours)} = \\ [ET_{Birth-<2yr}\left(\frac{24\;hours}{day}\right)*EF_{Birth-<2yr}\left(\frac{365\;days}{year}\right)*ED_{Birth-<2yr}(2\;years)*10] + \\ [ET_{2-<6yr}\left(\frac{24\;hours}{day}\right)*EF_{2-<6yr}\left(\frac{365\;days}{year}\right)*ED_{2-<6yr}(4\;years)*3] + \\ [ET_{6-<16yr}\left(\frac{24\;hours}{day}\right)*EF_{6-<16yr}\left(\frac{365\;days}{year}\right)*ED_{6-<16yr}(10\;years)*3] + \\ [ET_{16-<18yr}\left(\frac{24\;hours}{day}\right)*EF_{16-<18yr}\left(\frac{365\;days}{year}\right)*ED_{16-<18yr}(2\;years)*1] + \\ [ET_{A}\left(\frac{24\;hours}{day}\right)*EF_{A}\left(\frac{365\;days}{year}\right)*ED_{A}(52\;years)*1]$$ # II. NONRESIDENTIAL AIR VALUES # • Noncarcinogenic (threshold type, systemic effects) #### o Inhalation $$NAV_{nc-inh}(\mu g/m^3) = \frac{THQ*AT_{N-nc}\left(\frac{365\ days}{year}*ED_N\left(30\ years\right)\right)*\left(\frac{1000\ \mu g}{mg}\right)}{\frac{1}{RfC(\frac{mg}{m^3})}*EF_N\left(\frac{250\ days}{year}\right)*ED_N(30\ years)*ET_N\left(\frac{10\ hours}{day} * \frac{1\ day}{24\ hours}\right)}$$ # • Carcinogenic #### o Inhalation $$NAV_{ca-inh}\left(\mu g/m^{3}\right) = \frac{TR*AT_{N-ca}\left(\frac{365\;days}{year}*LT\;(70\;years)\right)}{IUR(^{\mu g}/_{m^{3}})^{-1}*EF_{N}\left(\frac{250days}{year}\right)*ED_{N}(30\;years)*ET_{N}\left(\frac{10\;hours}{day} * \frac{1\;day}{24\;hours}\right)}$$ Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 #### APPENDIX B. ESTABLISHMENT OF BACKGROUND CONCENTRATIONS #### § 35-APX-B1. ESTABLISHMENT OF SITE-SPECIFIC BACKGROUND LEVELS - (a) Purpose. A PRP may conduct a site-specific background study when there is reason to believe that the contamination present is naturally occurring. An approved site-specific background concentration will take the place of an adopted environmental media standard. - (b) Sampling plan. A sampling and monitoring plan shallmust be prepared by an environmental professional that will produce data representative of the site at and around the area of interest. -The plan shall identify, at a minimum, the following: - (1) the The number of monitoring points that will be sampled to establish a statistically defensible data set that will substantiate the validity of the background concentrations; - (2) the The location and depth of monitoring points, which shall be selected so as to be geologically and geochemically similar to the area of interest and to be unaffected by current and historic activities at the site, including by being hydrogeologically upgradient upgradient of such activities if possible; - (3) the The number and frequency of the samples to be taken from the monitoring points and any existing sources of data for the media for which a background standard is proposed, including water for potable water supplies, public water sources, or non-potable wells or springs; - (4) the The sampling methodology; - (5) the The contaminants of concern to be analyzed in the samples that are collected; - (6) the The analytical methods to be used in conducting the sample analysis; - (7) <u>identification</u> of whether samples obtained prior to the approval of the monitoring plan will be used as data points and, if so, the sampling date, location, method of analysis for each of the samples to be used; and - (8) A quality assurance/quality control plan for sample collection, testing, and analysis. - (c) Review of sampling plan. The information required by subsection (b) of this section may be included in a site investigation work plan submitted under Subchapter 3. The Secretary may request additional information from an applicant when the Secretary determines that the sampling and monitoring plan may not provide data representative of the background conditions at and around the area of interest. - (d) Report on background investigation. Following the Secretary's approval of the sampling and monitoring plan and the completion of sampling, the person seeking to establish a site-specific background standard shall report on the following as a part of their site investigation report required by § 35-305:306: - (1) All sampling results and data collected pursuant to the approved monitoring and sampling plan. - (2) An analysis of all data collected pursuant to the approved monitoring and sampling plan. - (3) Any discrepancies between the approved sampling and monitoring plan and the sampling completed for the area of interest. - (4) A proposed background concentration of all substances for which the person seeks to establish background standard and a justification for each concentration. The justification may include statistical analysis. - (5) Additional information the Secretary determines is necessary to approve or deny the proposed background groundwater concentrations. - (d)(e) Site-specific standard. Following submission of the proposed-background concentrations groundwater quality report to the Secretary, the Secretary shall approve or deny the request. proposed background groundwater concentrations or may establish alternative background groundwater concentrations based on the background groundwater quality report. #### APPENDIX C. SITE MANAGEMENT WAIVERS #### § 35-APX-C1. TECHNICAL IMPRACTICALITY. - (a) Purpose. A technical impracticality (TI) waiver is a mechanism to manage risks to human health and the environment in situations where there is no readily available technology to complete remediation and achieve compliance with the applicable environmental media standards within a reasonable timeframe. -A TI waiver does not waive the requirements to delineate the nature and extent of the release of pollutants, to remediate continuing sources of pollution, or to address potential risks to receptors. - (b) Applicability. A TI waiver may be considered as a part of § 35-503903. TI waivers may be considered for any of the following: - (1) The Secretary determines that there are non-aqueous phase liquids that cannot be contained or removed. - (2) The Secretary determines that there is only one response action for the activity and it cannot obtain other necessary permits; - (3) The Secretary determines that remediation has taken place to reduce in concentration hazardous materials in environmental mediagroundwater and the plume has been controlled to the extent practical based on an evaluation of reliable and innovative technologies; or. - (4) The Secretary determines that achieving compliance with the applicable criteria is technically impracticable as determined using Directive No. 9234.2-25 issued September 1993 by the U.S. Environmental Protection Agency's Office of Solid Waste and Emergency Response. - (c) Prohibition. A TI waiver is prohibited in the following circumstances: - (1) <u>situations Situations</u> where the Secretary determines that active remediation is necessary to control the migration of a plume or materially reduce the concentration of a hazardous material; or - (2) after After approval of a TI waiver there would continue to be unmanaged exposure to human health receptors. - (d) Technical impracticality waiver documentation. For any PRP proposing a TI waiver, the site investigation report prepared under § 35-305306 shall, in addition to all other requirements, contain the following materials: - (1) A proposal for the environmental standard or standards that for which the PRP is seeking a TI waiver for; - (2) A proposed TI zone for purposes of implementing the waiver that documents the following: - (A) The plume is not increasing in size or concentration in a manner which would alter the risk assumptions associated with the TI waiver request or the extent of the TI Zone₇₂. - (B) The plume is not increasing at compliance points at the TI Zone boundary. - (3) Documentation that all necessary permits have been applied for, made best efforts to obtain, and were denied. - (4) Documentation that the site has been adequately characterized including the nature and three-dimensional extent of the contamination; - Any potential changes in contaminant concentrations will not pose a risk to human health or the environment. - (6) Documentation that potential exposure pathways threatening human health and the environment from contaminated environmental mediapolluted groundwater have been identified and appropriately managed; - (7)
Documentation that all data gaps have been identified and evaluated for significance (a significant data gap would be one that limits the ability to formulate a single scientifically defensible interpretation of environmental conditions or potential risks, or that may affect the choice of remedial approach. - (8) An evaluation showing the remedial restoration times using active remedial treatments. All assumptions and the degree of uncertainty associated with any model shall be thoroughly discussed; - (9) An evaluation showing natural attenuation, based on monitoring subsequent to source remediation, has shown that contaminated environmental mediagroundwater will not achieve remedial criteria within a reasonable timeframe. All assumptions and the degree of uncertainty associated with any model shall be thoroughly discussed; - (10) An estimate the cost of remedial alternatives. Cost estimates shall include the present worth of construction, operation, and maintenance costs; and. - (11) An evaluation of implementing remediation alternatives for plume containment or for reduction of the concentration of hazardous materials in the plume. Note: When conducting a TI waiver analysis as a part of an evaluation of cleanup options, the Agency recommends review of the following guidance documents in preparing a request for a TI waiver: Technical Impracticability: Guidance for Evaluating Technical Impracticability of Ground-Water Restoration, September 1993. USEPAU.S. E.P.A. OSWER Directive 9234.2-25 Technical Impracticability Guidance for Groundwater, December 2013. New Jersey Department of Environmental Protection. Draft Guidance for Applying Technical Impracticability of Groundwater, February 2014. Connecticut Department of Energy and Environmental Protection. Chapter 12 Vermont Groundwater Protection Rule and Strategy # APPENDIX D. HAZARDOUS MATERIALS LISTING # §35-APX-D1 HAZARDOUS MATERIALS LISTING Pursuant to 10 V.S.A. § 6602(16)(A)(iv) any chemical or substance listed in the following table is a hazardous material. | CAS Number | Chemical Name | |------------------|---------------------------------------| | <u>335-67-1</u> | perfluorooctanic acid (PFOA) | | <u>1763-23-1</u> | perfluoro-octane sulfonic acid (PFOS) | | <u>355-46-4</u> | perfluorohexane sulfonic acid (PFHxS) | | <u>375-85-9</u> | perfluoroheptanoic acid (PFHpA) | | <u>375-95-1</u> | perfluorononanoic acid (PFNA) | #### APPENDIX E. CUMULATIVE RISK ASSESSMENTS # §35-APX-E1 Instructions for Calculating Cumulative Cancer Risk and Hazard Index Hypothetical Human Receptor: Soil and/or Indoor Air *Nota bene*: risk-based concentration (rbc) means the calculated concentration of a chemical (or group of chemicals) in an environmental medium estimated to correspond to a fixed level of risk e.g., a target Hazard Quotient (THQ) of 1.0 for noncarcinogenic (systemic, threshold) effects or target incremental lifetime cancer risk (ILCR) of one-in-one-million (1x10-6), for a predefined hypothetical human exposure scenario. Examples of rbcs for different environmental media based on different hypothetical exposure scenarios are included in this appendix as Tables 1-3. #### **I. SAMPLE-WISE APPROACH** For each Hypothetical Human Receptor Scenario and exposure medium (i.e., Soil, Indoor Air): - 1. In accordance with the IRULE, **for each sample**, identify chemicals that are present above detection and retained for further consideration. - 2. For each chemical, identify and record its receptor and medium-specific cancer and noncancer risk-based concentration (rbc) if both are available. Segregate cancer (c) from noncancer (nc) rbcs. - 3. For each carcinogen in a sample, calculate the associated Incremental Lifetime Cancer Risk (ILCR): - a. Calculate the ILCR associated with **each individual** chemical that has a cancer rbc: For a given chemical *i* in sample *j*: $$_Receptor \ \& \ Medium \ ILCR_{i,j} = \frac{\textit{Site Sample Concentration}_i}{\textit{rbc}_{i_c}} * Target \ \textit{Risk}_{\textit{rbc-c}}$$ <u>b.</u> Calculate the cumulative ILCR across **all chemicals in a sample** that have a cancer rbc: For a given number of chemicals (*n*) in sample *j*, where *i* is the first chemical: $$\textit{Receptor \& Medium Cumulative ILCR}_j = \sum\nolimits_{i=1}^{n} \textit{Receptor \& Medium ILCR}_{i,j}$$ - 4. For each noncarcinogen in a sample, calculate the associated Hazard Quotient (HQ): - <u>a.</u> Calculate the HQ associated with **each individual** chemical that has a noncancer rbc: For given a chemical *i* in sample *j*: $$Receptor \ \& \ Medium \ HQ_{i,j} = \frac{Site \ Sample \ Concentration \ _{i,j}}{rbc_{i-nc}} * Target \ Hazard \ Quotient_{rbc-nc}$$ <u>b.</u> Calculate the Hazard Index (sum of HQs) across all chemicals in a sample that have a noncancer rbc. Do not segregate chemicals by critical effect. For a given number of chemicals (n) in sample j, where i is the first chemical: $$Receptor \& Medium \ Hazard \ Index_j = \sum_{i=1}^n Receptor \& \ Medium \ Hazard \ Quotient_{i,j}$$ #### **Example Sample-wise Calculation for Direct Contact to Soil: Residential Scenario** 1. Benzene and ethylbenzene are detected in Soil Sample SO1 at the following concentrations: | | Soil Sample S01 | |----------------|----------------------| | <u>Analyte</u> | <u>(mg/kg)</u> | | Benzene | 4.00E ⁻⁰¹ | | Ethylbenzene | 6.00E ⁺⁰⁰ | 2. Use Table 1 to find Residential Soil cancer and noncancer rbcs for benzene and ethylbenzene: | | Sample
Concentration | Resident - Soil rbcs from Table 1 | | |---------------------|----------------------------|---|---------------------------------------| | <u>Analyte</u> | Soil Sample S01
(mg/kg) | <u>rbc_{cancer}*</u>
(mg/kg) | rbc _{noncancer} *
(mg/kg) | | Benzene | 4.00E ⁻⁰¹ | 6.98E ⁻⁰¹ | 1.11E ⁺⁰² | | Ethylbenzene | 6.00E ⁺⁰⁰ | 3.68E ⁺⁰⁰ | 4.45E ⁺⁰² | ^{*}Cancer rbcs are based on target ILCR=1E⁻⁰⁶; noncancer rbcs are based on target HQ=1.0 3. Calculate the Incremental Lifetime Cancer Risk (ILCR) associated with each individual chemical that has a cancer rbc: For given chemical *i* in sample *j*: $$\underline{Resident \, Soil \, ILCR_{i,j} = \frac{\textit{Site Soil Concentration}_{i,j}(\frac{mg}{kg})}{\text{rbc}_{i,c}(\frac{mg}{kg})} * Target \, Risk_{rbc-c} }$$ a. Benzene $$Resident \ Soil \ ILCR_{Benzene,S01} = \frac{Sample \ S01 \ Concentration_{Benzene}(\frac{mg}{kg})}{Resdient \ Soil_{rbc_{Benzene-c}}(\frac{mg}{kg})} * Target \ Risk_{rbc-c}$$ Resident Soil ILCR_{Benzene,S01} = $$\frac{4.00E^{-01} \frac{mg}{kg}}{6.98E^{-01} \frac{mg}{kg}} * (1E^{-06})$$ Resident Soil ILCR_{Benzene,S01} = $$5.73E^{-07}$$ b. Ethylbenzene $$Resident\ Soil\ ILCR_{Ethylbenzene,S01} = \frac{Sample\ S01\ Concentration_{Ethylbenzene}(\frac{mg}{kg})}{Resident\ Soil\ rbc_{Ethylbenzene-c}(\frac{mg}{kg})} * Target\ Risk_{rbc-c}$$ Resident Soil ILCR_{Ethylbenzene,S01} = $$\frac{6.00E^{+00} \left(\frac{mg}{kg}\right)}{3.68E^{+00} \left(\frac{mg}{kg}\right)} * (1E^{-06})$$ # Resident Soil ILCR_{Ethylbenzene,S01} = $1.63E^{-06}$ 4. Calculate the Receptor and Medium cumulative ILCR by summing the individual chemical cancer risks generated for a sample: For a given number of chemicals (n) in sample j, where i is the first chemical: Resident Soil Cumulative ILC $$R_j = \sum_{i=1}^{n} Resident Soil ILCR_{i,j}$$ Resident Soil Cumulative $ILCR_j = Resident Soil ILCR_{Benzene,j} + Resident Soil ILCR_{Ethylbenzene,j}$ Resident Soil Cumulative ILCR_{S01} = $$(5.73E^{-07}) + (1.63E^{-06})$$ # Resident Soil Cumulative ILCR_{S01} = $2.20E^{-06}$ 5. Calculate the Hazard Quotient (HQ) associated with each individual chemical that has a noncancer rbc: For given chemical / in sample j: $$Resident \, Soil \, HQ_{i,j} = \frac{Site \, Soil \, Concentration_{i,j}(\frac{mg}{kg})}{rbc_{i-nc}(\frac{mg}{kg})} * Target \, HQ_{rbc-nc}$$ #### a. Benzene $$Resident \, Soil \, HQ_{Benzene,S01} = \frac{Sample \, S01 \, Concentration \, _{Benzene}(\frac{mg}{kg})}{Resident \, Soil \, rbc_{Benzene-nc}(\frac{mg}{kg})} * Target \, HQ_{rbc-nc}$$ $$Resident\ Soil\ HQ_{Benzene,S01} = \frac{4.00 \mathrm{E}^{-01} \frac{mg}{kg}}{1.11 \mathrm{E}^{+02} \frac{mg}{kg}} * 1.0$$ Resident Soil $HQ_{Benzene.S01} = 3.60E^{-0.1}$ #### b. Ethylbenzene $$Resident \ Soil \ HQ_{Ethylbenzene,S01} = \frac{Sample \ S01 \ Concentration \ _{Ethylbenzene}(\frac{mg}{kg})}{Resident \ Soil \ rbc_{Ethylbenzene-nc}(\frac{mg}{kg})} * Target \ HQ_{rbc-nc}$$ $$Resident \, Soil \, HQ_{Ethylbenzene,S01} = \frac{6.00 E^{+00} \frac{mg}{kg}}{4.45 E^{+02} \frac{mg}{kg}} * 1.0$$ Resident Soil $HQ_{Ethylbenzene,S01} = 1.35E^{-02}$ 6. Calculate the noncancer Hazard Index (HI) across all the chemicals with a noncancer rbc. **Do not** segregate chemicals by critical effect.: For a given number of chemicals (*n*) in sample *j*, where *i* is the first chemical: Resident Soil Sample Hazard Index_j = $$\sum_{i=1}^{n}$$ Hazard Quotient_{i,j} Resident Soil Sample HI_j = $HQ_{Benzene,j}$ + $HQ_{Ethylbenzene,j}$ Resident Soil Sample HI_{S01} = $(3.60E^{-01})$ + $(1.35E^{-02})$ Resident Soil Sample HI_{S01} = $3.74E^{-01}$ 7. It may be helpful to consolidate all this information into a table such as the following: | | | | Resident - Soil | | | |---------------------|---------------------------------------|---|-----------------------------|--|---------------------------| | | | CANCER | | NONCAN | ICER | | <u>Analyte</u> | Site Concentration Sample S01 (mg/kg) | ^a rbc _{cancer}
(mg/kg) | Sample S01 ILCR (unitless) | ^b rbc _{noncancer}
(mg/kg) | Sample S01 HQ (unitless) | | <u>Benzene</u> | 4.00E-01 | <u>6.98E-01</u> | <u>5.73E-07</u> | <u>1.11E+02</u> | 3.60E-02 | | Ethylbenzene | 2.00E+00 | 3.68E+00 | 1.63E-06 | 4.45E+02 | 1.35E-02 | | | | Sample S01 Cumulative ILCR = | 2.20E-06 | Sample S01 Hazard Index = | 4.95E-01 | a. Cancer rbcs are based on a target Risk of 1E-06 - 8. The Cumulative ILCR
and HI can now be compared to the target ILCR and target HI to determine whether further action is warranted: - a. Is the cumulative ILCR > the target cancer risk? Is 2.20E⁻⁰⁶>1E⁻⁰⁶? Yes b. Is the HI > the target HI? Is 4.59E⁻⁰¹>1 No **c.** Because the Cumulative ILCR is greater than the target ILCR for the site, further attention is warranted. b. Noncancer rbcs are based on a target Hazard Quotient of 1.0 #### II. SITE-WIDE/EXPOSURE UNIT APPROACH: Summary Statistic used as Exposure Point Concentration For each Hypothetical Human Receptor Scenario and exposure medium (i.e., Soil, Indoor Air): - 1. In accordance with the IRULE, **for each site**, or each exposure unit if appropriate, identify chemicals that are present above detection and retained for further consideration - 2. Use appropriate Summary Statistic to develop chemical-specific Exposure Point Concentrations (EPCs). - 3. For each chemical, identify and record its receptor and medium-specific cancer and noncancer risk-based concentration (rbc), if both are available. Segregate cancer (c) from noncancer (nc) rbcs. - 4. For each carcinogen, calculate the associated Site Incremental Lifetime Cancer Risk (ILCR): - <u>a.</u> Calculate the ILCR associated with **each individual** chemical that has a cancer rbc: For given chemical *i*: $$Receptor \& Medium Site ILCR_i = \frac{Site Concentration_i}{rbc_{i,c}} * Target Risk_{rbc-c}$$ <u>b.</u> Calculate the cumulative Site ILCR across **all the chemicals** that have a cancer rbc: For a given number of chemicals (*n*), where *i* is the first chemical: Receptor & Medium Site Cumulative ILCR = $$\sum_{i=1}^{n}$$ Receptor & Medium Site ILCR_i - 5. For each **noncarcinogen**, calculate the associated Site Hazard Quotient (HQ): - a. Calculate the HQ associated with **each individual** chemical that has a noncancer rbc: For given chemical *i*: $$Receptor \ \& \ Medium \ Site \ HQ_i = \frac{Site \ Concentration_{\ i}}{rbc_{i.nc}} * Target \ Hazard \ Quotient_{rbc-nc}$$ b. Calculate the Hazard Index (sum of HQs) across all chemicals that have a noncancer rbc. **Do**not segregate chemicals by critical effect.: For a given number of chemicals (*n*), where *i* is the first chemical: $$\textit{Receptor \& Medium Site HI} = \sum\nolimits_{i=1}^{n} \textit{Receptor \& Medium Site Hazard Quotient}_{i}$$ #### **Example Site-wide Calculation for Direct Contact to Soil: Residential Scenario** 1. Benzene and ethylbenzene are detected in soil. The following Site-wide Exposure Point Concentrations (EPCs) are determined: | | <u>Soil</u> | |----------------|-----------------------| | | Exposure Point | | | Concentration | | <u>Analyte</u> | <u>(mg/kg)</u> | | Benzene | 4.00E ⁻⁰¹ | | Ethylbenzene | 6.00E ⁺⁰⁰ | | 2. | Use Table 1 to fir | nd Residential Soil cancer and | I noncancer rbcs for | Benzene and Ethylbenzene: | |----|--------------------|--------------------------------|----------------------|---------------------------| | | | | | | | | <u>Soil</u> | Resident - Soil rbcs from Table 1 | | |----------------|-----------------------|---|---------------------------------------| | <u>Analyte</u> | Concentration (mg/kg) | <u>rbc_{cancer}*</u>
(mg/kg) | rbc _{noncancer} *
(mg/kg) | | Benzene | 4.00E ⁻⁰¹ | 6.98E ⁻⁰¹ | 1.11E ⁺⁰² | | Ethylbenzene | 6.00E ⁺⁰⁰ | 3.68E ⁺⁰⁰ | 4.45E ⁺⁰² | *Cancer rbcs are based on a target ICLR=1E⁻⁰⁶; noncancer rbcs are based on target HQ=1.0 3. Calculate the Incremental Lifetime cancer Risk (ILCR) associated with each individual chemical that has a cancer rbc: #### For given chemical i: #### c. Benzene $$Resient \, Soil \, Site \, ILCR_{Benzene} = \frac{Site \, Concentration_{Benzene}(\frac{mg}{kg})}{Resident \, Soil_{rbc_{Benzene-c}}(\frac{mg}{kg})} * Target \, Risk_{rbc-c}$$ Resident Soil Site ILCR_{Benzene} = $$\frac{4.00E^{-01} \frac{mg}{kg}}{6.98E^{-01} \frac{mg}{kg}} * (1E^{-06})$$ Resident Soil Site ILCR_{Benzene} = $$5.73E^{-07}$$ #### d. Ethylbenzene $$Resident \, Soil \, Site \, ILCR_{Ethylbenzene} = \frac{Site \, Concentration_{Ethylbenzene}(\frac{mg}{kg})}{rbc_{Ethylbenzene_c}(\frac{mg}{kg})} * \, Target \, Risk_{rbc-c}$$ $$Resident \, Soil \, Site \, ILCR_{Ethylbenzene} = \frac{6.00 E^{+00} \, (\frac{mg}{kg})}{3.68 E^{+00} \, (\frac{mg}{kg})} * (1E^{-06})$$ # Resident Soil Site ILCR_{Ethylbenzene} = $1.63E^{-06}$ 4. Calculate the Receptor and Medium cumulative Site ILCR by summing the individual chemical cancer risks: For a given number of chemicals (n), where i is the first chemical: $$\textit{Resident Soil Site Cumulative ILCR} = \sum\nolimits_{i=1}^{n} \textit{Resident Soil Site ILCR}_{i}$$ $Resident\ Soil\ Site\ ILCR = Resident\ Soil\ Site\ ICLR_{Benzene} + Resident\ Soil\ Site\ ILCR_{Ethylbenzene}$ Resident Soil Site Cumulative ILCR = $(5.73E^{-07}) + (1.63E^{-06})$ ### Resident Soil Site Cumulative ILCR = $2.20E^{-06}$ 5. Calculate the site Hazard Quotient (HQ) associated with each individual chemical that has a noncancer rbc: For given chemical *i*: $$Resident \, Soil \, Site \, HQ_i = \frac{Site \, Concentration \, _i(\frac{mg}{kg})}{rbc_{i-nc}(\frac{mg}{kg})} * \, Target \, HQ_{rbc-nc}$$ #### a. Benzene $$Resident \, Soil \, Site \, HQ_{Benzene} = \frac{Site \, Concentration \, _{Benzene}(\frac{mg}{kg})}{Resident \, Soil \, rbc_{benzene-nc}(\frac{mg}{kg})} * \, Target \, HQ_{rbc-nc}$$ $$Resident \, Soil \, Site \, HQ_{Benzene} = \frac{4.00 E^{-01} \frac{mg}{kg}}{1.11 E^{+02} \frac{mg}{kg}} * \, 1.0$$ Site $HQ_{Benzene} = 3.60E^{-02}$ ### b. Ethylbenzene $$Resident \ Soil \ Site \ HQ_{Ethylbenzene} = \frac{Site \ Concentration \ _{Ethylbenzene}(\frac{mg}{kg})}{Resident \ Soil \ rbc_{ethylbenzene-nc}(\frac{mg}{kg})} * Target \ HQ_{rbc-nc}$$ $$Resident \ Soil \ Site \ HQ_{Ethylbenzene} = \frac{6.00E^{+00} \frac{mg}{kg}}{4.45E^{+02} \frac{mg}{kg}} * 1.0$$ $$Resident \ Soil \ Site \ HQ_{Ethylbenzene} = 1.35E^{-02}$$ 6. Calculate the noncancer Hazard Index (HI) across all the chemicals with a noncancer rbc. **Do not** segregate chemicals by critical effect.: For a given number of chemicals (*n*), where *i* is the first chemical: $$Resident \ Soil \ Site \ Hazard \ Index = \sum\nolimits_{i=1}^{n} Resident \ Soil \ Hazard \ Quotient_i$$ $$Resident \ Soil \ Site \ HI = HQ_{Benzene} + HQ_{Ethylbenzene}$$ $$Resident \ Soil \ Site \ HI = (3.60E^{-02}) + (1.35E^{-02})$$ $$Resident \ Soil \ Site \ HI = 4.95E^{-01}$$ 7. It may be helpful to consolidate all this information into a table such as the following: | | | | Resident - So | <u>oil</u> | | |----------------|---|-----------------------------------|---|--|--| | | | CANCER | | NONCAN | ICER | | <u>Analyte</u> | Site Exposure Point Concentration (mg/kg) | arbc _{cancer}
(mg/kg) | <u>Site</u>
<u>ILCR</u>
<u>(unitless)</u> | ^b rbc _{noncancer}
(mg/kg) | <u>Site</u>
<u>HQ</u>
(unitless) | | <u>Benzene</u> | <u>4.00E-01</u> | <u>6.98E-01</u> | <u>5.73E-07</u> | <u>1.11E+02</u> | 3.60E-02 | | Ethylbenzen | 2.00E+00 | 3.68E+00 | 1.63E-06 | 4.45E+02 | <u>1.35E-02</u> | | | | Site Cumulative ILCR = | 2.20E-06 | Site Hazard Index = | 4.95E-01 | a. Cancer rbcs are based on a target Risk of 1E-06 8. The Cumulative ILCR and HI can now be compared to the target ILCR and target HI to determine whether further action is warranted: a. Is the Cumulative Site ILCR > the target cancer risk? Is $2.20E^{-06} > 1E^{-06}$? Yes b. Is the HI > the target Site HI? <u>Is 4.95E⁻⁰¹>1</u> No Because the Cumulative Site ILCR is greater than the target cancer risk for the site, further attention is warranted. b. Noncancer rbcs are based on a target Hazard Quotient of 1.0 Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 Investigation and Remediation of Contaminated Properties Rule FINAL ADOPTED RULE July 27, 2017 ### APPENDIX F. TOXICITY EQUIVALENCE FACTORS #### §35-APX-F1 Toxicity Equivalence Factors and Relative Potency Factors Some chemicals are members of the same family or group and have been shown to exhibit similar toxicological properties; however, each chemical may differ in the degree of toxicity (EPA, 2019). In some such instances, a toxicity (sometimes referred to as toxic) equivalency factor (TEF) or relative potency factor (RPF) must be applied to convert the reported concentration of each member of the group to a toxicity (sometimes referred to as toxic) equivalent concentration (TEQ) or to toxic equivalents (TE) relative to the toxicity of the index chemical for the group. The index chemical is assigned a TEF or RPF of 1. Total TEQ or TE can be compared to risk-based values derived for the index chemical or assessed using as any other single chemical in a quantitative risk assessment. #### Dioxins, Furans and dioxin-like Polychlorinated Biphenyls (PCBs) The index chemical for this group is 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). As of this writing, Health recommends that the 2005 World Health Organization Toxic Equivalency Factors (Van den Berg et al., 2006) be employed in the evaluation of dioxins, furans and dioxin-like PCBs. These values are also presented in the May 2013 U.S. EPA fact sheet, "Use of Dioxin TEFs in Calculating Dioxin TEQs at CERCLA and RCRA Sites" which references the 2010 U.S. EPA report, "Recommended Toxicity Equivalency Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds" (EPA, 2019). TEFs for Di-ortho PCBs may be obtained from Ahlborg, U.G. et al., 1994 (EPA, 2019). TEFs may be applied to the ingestion, dermal (see EPA, 2004) or inhalation routes of exposure and adjusted values may be used in the assessment of both cancer and noncarcinogenic effects (EPA, 2013). The sum of adjusted
concentrations is often referred to as 2,3,7,8-TCDD TEQ. #### Dioxin Toxicity Equivalence Factors (EPA, 2019) | CAS Registry Number | <u>Compound</u> | 2,3,7,8-TCDD Toxicity Equivalence Factor | |-------------------------|--------------------------|---| | Chlorinated dibenzo-p-d | <u>ioxins</u> | | | <u>1746-01-6</u> | <u>2,3,7,8-TCDD</u> | 1 | | 40321-76-4 | <u>1,2,3,7,8-PeCDD</u> | 1 | | <u>39227-28-6</u> | <u>1,2,3,4,7,8-HxCDD</u> | 0.1 | | 72918-21-9 | <u>1,2,3,6,7,8-HxCDD</u> | 0.1 | | 57653-85-7 | <u>1,2,3,7,8,9-HxCDD</u> | 0.1 | | <u>35822-46-9</u> | <u>1,2,3,4,6,7,8-HpCDD</u> | 0.01 | |-------------------------|----------------------------|--------| | 3268-87-9 | OCDD | 0.0003 | | Chlorinated dibenzofura | <u>ns</u> | | | <u>51207-31-9</u> | 2,3,7,8-TCDF | 0.1 | | 57117-41-6 | <u>1,2,3,7,8-PeCDF</u> | 0.03 | | 57117-31-4 | <u>2,3,4,7,8-PeCDF</u> | 0.3 | | 70648-26-9 | <u>1,2,3,4,7,8-HxCDF</u> | 0.1 | | 57117-44-9 | <u>1,2,3,6,7,8-HxCDF</u> | 0.1 | | 72918-21-9 | <u>1,2,3,7,8,9-HxCDF</u> | 0.1 | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 0.1 | | <u>35822-46-9</u> | <u>1,2,3,4,6,7,8-HpCDF</u> | 0.01 | | 55673-89-7 | <u>1,2,3,4,7,8,9-HpCDF</u> | 0.01 | | 39001-02-0 | OCDF | 0.0003 | | PCBs | | | | |-------------------|------------|-------------------------|------------| | - | IUPAC No. | <u>Structure</u> | - | | Non-ortho | | | | | <u>32598-13-3</u> | <u>77</u> | 3,3',4,4'-TetraCB | 0.0001 | | 70362-50-4 | <u>81</u> | <u>3,4,4',5-TetraCB</u> | 0.0003 | | <u>57465-28-8</u> | 126 | 3,3',4,4',5-PeCB | <u>0.1</u> | | <u>32774-16-6</u> | 169 | 3,3',4,4',5,5'-HxCB | 0.03 | | Mono-ortho | | | | | <u>32598-14-4</u> | 105 | 2,3,3',4,4'-PeCB | 0.00003 | | <u>74472-37-0</u> | 114 | 2,3,4,4',5-PeCB | 0.00003 | | <u>31508-00-6</u> | 118 | 2,3',4,4',5-PeCB | 0.00003 | | 65510-44-3 | 123 | 2',3,4,4',5-PeCB | 0.00003 | | 38380-08-4 | <u>156</u> | 2,3,3',4,4',5-HxCB | 0.00003 | | <u>69782-90-7</u> | <u>157</u> | 2,3,3',4,4',5'-HxCB | 0.00003 | |-------------------|------------|-----------------------|---------| | <u>52663-72-6</u> | <u>167</u> | 2,3',4,4',5,5'-HxCB | 0.00003 | | 39635-31-9 | 189 | 2,3,3',4,4',5,5'-HpCB | 0.00003 | | <u>Di-ortho*</u> | | | | | | | | | | <u>35065-30-6</u> | 170 | 2,2',3,3',4,4',5-HpCB | 0.0001 | ^{*}Di-ortho values come from Ahlborg, U.g., et al (1994), which are the WHO 1994 values from Toxic equivalency factors for dioxin-like PCBs: Report on WHO-ECEH and IPCS consultation. December 1993. Chemosphere Volume 28, Issue 6. March 1994. Pages 1049-1067. # Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAH) Benzo(a)pyrene (B(a)P) is the index chemical for this group of compounds. As of this writing, Health recommends that the following RPFs (EPA, 1993) be employed in the evaluation of cPAH only with respect to carcinogenicity. The sum of adjusted concentrations is referred to as Benzo(a)pyrene toxic equivalents i.e., B(a)P-TE and may be used in the assessment of ingestion, dermal (see EPA, 2004) or inhalation exposure. # Relative Potency Factors for Carcinogenic Polycyclic Aromatic Hydrocarbons | | | Benzo(a)pyrene | |---------------------|------------------------|-------------------------| | | | Relative Potency Factor | | CAS Registry Number | Compound | | | | | | | 50-32-8 | Benzo(a)pyrene | 1 | | <u>56-55-3</u> | Benzo(a)anthracene | 0.1 | | 205-99-2 | Benzo(b)fluoranthene | 0.1 | | 207-08-9 | Benzo(k)fluoranthene | 0.01 | | 218-01-9 | Chrysene | 0.001 | | 53-70-3 | Dibenzo(a,h)anthracene | 1 | | <u>193-39-5</u> | Indeno(1,2,3cd)pyrene | 0.1 | #### References EPA, 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. U.S. Environmental Protection Agency. Research Triangle Park, N.C. EPA/600/R-93/089, July 1993. EPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP.July 2004. EPA, 2013. Use of Dioxin TEFs in Calculating Dioxin TEQs at CERCLA and RCRA Sites. United States Environmental Protection Agency. May 2013. EPA, 2019. United States Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. User's Guide. November 2018 edition. (accessed February 27, 2019). Van den Berg et al., 2006. The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223-241. AGENCY OF NATURAL RESOURCES State of Vermont Department of Environmental Conservation Waste Management & Prevention Division 1 National Life Drive – Davis 1 Montpelier, VT 05620-3704 matt.moran@vermont.gov June 4, 2019 Charlene Dindo, Committee Assistant Legislative Committee on Administrative Rules c/o Legislative Council 115 State Street Montpelier, VT 05633-5301 RE: Changes made to the proposed Investigation and Remediation of Contaminated Properties Rule #### To Whom It May Concern: The Sites Management Section (SMS) is pleased to provide this summary of changes that were made to the proposed rule documents following receipt and review of public comment. The following changes were made: - 1.) §35-306 (b)(13) Site Investigation Report Added language to this section on site-specific risk assessments, which maintains consistency on allowable health risk for cancer and non-cancer endpoints. - 2.) §35-502 (c) Initial Release Investigation Clarified that soil sampling utilize discrete samples. - 3.) §35-803 (c)(2)(B)(i) Non-Hazardous Waste Contaminated Soil, Thin-spreading Clarified that soil sampling utilize discrete samples. - 4.) With concurrence from the Vermont Department of Health, the soil standards have been rounded to show two significant digits at a minimum. - 5.) The Agency has researched laboratory method detection limits. Though we did find many laboratories that can detect mercury concentrations below the mercury indoor air standard, we agreed with the need to adjust the resident and non-resident naphthalene indoor air values upward to $0.262 \, \mu g/m^3$ from 0.03 and $0.24 \, \mu g/m^3$ respectively in order to meet the laboratory method detection limits. - 6.) In several locations minor edits/corrections were made as detailed in the responsiveness summary. Please feel free to contact me if you have any questions. Sincerely, Matt Moran, Environmental Program Manager Site Management Section AGENCY OF NATURAL RESOURCES State of Vermont Department of Environmental Conservation Waste Management & Prevention Division 1 National Life Drive – Davis 1 Montpelier, VT 05620-3704 # Investigation and Remediation of Contaminated Properties Rule (I-Rule) Responsiveness Summary June 4, 2019 The public comment period for the proposed Investigation and Remediation of Contaminated Properties Rule began on April 26, 2019 and ended on May 27, 2019. During that period, the Agency of Natural Resources held two public meetings, one in Montpelier on May 17, 2019 and one in Berlin on May 20, 2019 to take comments on the proposed Rule. Comments were received in both meetings, and written comments were also received via email. The Agency's responses are provided below. #### **SUBCHAPTER 1. GENERAL PROVISIONS** 1. **Comment Received:** §35-107. Does the fill need to be sampled to confirm results meet the "historical fill" definition? If some analytes exceed standards, there are still no corrective action requirements? Will there be restrictions on where you can take the historical fill? This also implies the soils would be unregulated if you get the exemption. We recommend adding a statement that soils need to be managed under a Soil Management Plan if that's how they should be managed. We also assume there must be no vapor or GW issues, if solvents are historic then no remediation required? **Agency Response:** If a determination of historical fill is granted by the Secretary, the material is only exempt from the Site Investigation and Corrective action requirements of the Rule. See the definition of historic fill, the exemption provided in this section, and §35-804 (Soil Management Plans) for additional details on the management of historical fill. 2. **Comment Received:** §35-107. The Rule text states that the Secretary "may" make a determination in writing. **Agency Response:** The Rule language has been modified as follows: "The Secretary **shall** make a determination in writing..." - 3. **Comment Received:** §35-107. Do you need to test to identify if the material is contaminated? **Agency Response:** The secretary does not require testing unless there is evidence of a release of a hazardous material. If testing has been completed and the material meets the definition of historical fill, then no additional testing will be required by the Secretary. - 4. **Comment Received:** §35-107. It is going to be difficult to identify actual soils placed before 1985 and proving the date of emplacement will provide challenge. Suggest striking the 1985 reference from the historical fill definition. Also, concern over the need to delineate the historical fill to be able to be exempt from the SI/CAP route for remediation. **Agency Response:** 10 VSA 6615 was promulgated in 1985; that is the selected date for determining "historical". Adequate information must be provided by the Environmental Professional which demonstrates that the material meets the definition for historical fill. #### **SUBCHAPTER 2. 35-201. DEFINITIONS** 5. **Comment received:** Background. I hope you will consider adding a phrase to *Background* that captures the intent to include more than just *naturally occurring constituents* and could include a definition structured similar to *Background Air Quality* as an example. I would like DEC to consider adding the phraseand /or non-specific anthropogenic source..... constituents after naturally. **Agency response:** The Agency has already established background concentrations for PAHs, arsenic, and lead,
and Appendix B grants a provision for establishing site-specific background concentrations. No change to the definition is warranted. 6. **Comment received:** Development soil. Given the suggestion regarding *Background* above it may be prudent to add a fifth characteristic under *Development Soils*. Which would mean adding something like (*F*) exceeds relevant background concentrations. **Agency response:** No change to the definition is required. Part (A) of the development soils definition states "exceed the relevant Vermont Soil Standards". These standards include established background concentrations. - 7. **Comment received:** Development soil. Why was "residential" removed from the definition under (A)? **Agency response:** The appropriate standard to use for development soils is either the risk-based residential standard, OR the Vermont background standard, depending on the location of the property in question (urban or rural). Removing "residential" from the definition further clarifies that the residential standard is not always the appropriate standard to use. The urban background standard is applicable when evaluating development soils in designated urban areas. - 8. **Comment received:** Development soil. The background value of lead is well below the residential standard rendering background irrelevant so lead should be treated as any other contaminant outside the purview of development soil. **Agency response:** No change is necessary as the Agency is not requiring the cleanup of materials that are below the residential standard. - 9. **Comment received:** Historical fill. Comment received requesting further clarification that historical fill is related to demolition-in-place of a former building or structure. And one question received asking if further guidance will be developed on obtaining a historical fill exemption. **Agency response:** Historical fill is not strictly related to the demolition-in-place of buildings; therefore, no clarification is warranted. See the definition for "historical fill". The Agency is developing guidance that will be used to determine historical fill status. 10. **Comment received:** Historical fill. Please clarify what evidence would serve as proof that fill was brought to the Site and/or contaminated before emplacement prior to 1985. Is it required to sample all soil for all possible contamination and then judge its age? **Agency response:** Please see the Secretary response to comments 3 and 4 above. 11. **Comment received:** Long term monitoring. This implies no LTM until after CAP. Some sites have LTM with no CAP completed. **Agency response:** §35-703(a) provides clarification on which sites are exempt from needing a CAP to perform long term monitoring: "Monitoring shall be conducted in accordance with an approved CAP, or as approved by the Secretary prior to July 27, 2017 if the site investigation has demonstrated that all requirements presented in § 35-304(b) are met. Any change to the plan shall be approved by the Secretary in writing." #### § 35-306. Site Investigation Report 12. **Comment received:** §35-306(b)(7). Regarding the reference to available Phase I ESA information being included, often these are not performed by the RP (potential buyer) and would likely be expired. Depending on the reliance, the reproduction of Sanborn Maps would violate copyrights. **Agency response**: No change is necessary. The language in this section states: "A list of all recognized environmental conditions should be provided **if** an ASTM Phase I or Phase II Environmental Site Assessment has been completed." - 13. **Comment received:** §35-306(b)(13) states that the site-specific risk assessment should follow standard US EPA risk assessment methodology. Can you update the language to include the cancer risk as stated in §35-401(d)(3)? **Agency response:** The section language has been changed to include reference to a one in a million incremental lifetime cancer risk. - 14. **Comment received:** §35-307(a). Insert within # days that the PRP should expect review and written notification of the SI report. **Agency response:** The Agency understands that the SMS' review time of deliverables is a key component of the successful implementation of site investigations and cleanup work. However, we are unable to include specific review timeframes in the I-Rule due to limited resources. The Agency requests that if a project schedule is dependent on a specific review timeframe by the SMS, that the consultant or RP let the SMS know as soon as this project schedule has been determined. #### **SUBCHAPTER 4. DATA EVALUATIONS** - 15. **Comment received:** §35-401(c). Concerns about zoning definitions not being universal for each town (vs current property use designation). Some zoning might be characterized as "mixed" (i.e. "mixed residential and commercial") and may not be as clearly defined as "non-residential". Often in Vermont, industrial areas are scattered among residential/rural areas making a non-residential zoning area difficult to assign. - **Agency response:** The Agency cannot address the different zoning references by town within this Rule. In general, for any zoning district that allows for residential use, the residential environmental media standards shall apply. Residential standards are the remediation goals if zoning for the property cannot be changed to only commercial/industrial at the town level, or other institutional controls can be placed on the property. Ultimately, the Institutional Control plan of the Corrective Action Plan must address any land use restrictions proposed for the property. - 16. **Comment received:** §35-401(d)(2)(A). Please clarify this is in context of assumptions made above (1)(C) if MDL is above standard? (1)(C) could kick you into Method 2, but would this exempt you? - **Agency response:** Under Method 1 Soil Screening [(1)(C)], a non-detect result is compared to the applicable soil standard. If the MDL for the non-detect result exceeds the standard, then one would not be required to conduct Method 2 Soil Screening [(2)(A)]. 17. **Comment received:** §35-401(d)(2)(B). The Rule should discuss how to handle background PAH concentrations in when calculating cumulative risk. **Agency response:** Any PAH results should be presented as the Toxic Equivalency Quotient (TEQ) for benzo(a)pyrene. When Method 2 is applicable, the TEQ result should be used in the cumulative risk assessment calculations. This approach to evaluating risk from PAH-contaminated soils is presented in $\S35-401(d)(2)$ and $\S35-401(l)(2)(B)$. 18. **Comment received:** §35-401(f). Please note not all towns use this language "non-residential use" which creates gray area. **Agency response:** The Agency cannot address the different zoning references by town within this Rule. In general, for any zoning district that allows for residential use, the residential environmental media standards shall apply. See definition of "residential" and "non-residential". 19. **Comment received:** §35-401(I)(2)(B)(ii). Please clarify the use of MDL above ½ MDL here. **Agency response:** Use ½ MDL as required by the section. #### SUBCHAPTER 5. RESPONSE ACTIONS; RELEASES OF HEATING FUELS 20. Comment received: §35-502(a)(3). Does this correspond with the prior 80 CY limit? **Agency response:** The volume of soil that will be approved for excavation will be determined by the Secretary. The approved volume will be based on conditions reported to the Secretary during response actions. The historic preapproved 80 cubic yard limit is related to soil removals **only** during UST removal projects where soil excavation is required to accommodate tank replacement and is only related to reimbursement eligibility from the Vermont Petroleum Cleanup Fund. 21. **Comment received:** §35-502(c). Is there a specific number and location of post excavation samples that are required (e.g., from each sidewall and base of excavation)? What specific laboratory analysis is required? Do samples need to be discrete or composite samples? Please include more details. **Agency response:** When performing response actions under Subchapter 5, it is the responsibility of the RP's EP to propose a representative number of samples in an approved work plan, or the actions will be undertaken under emergency provisions and the Secretary will be providing direction to the RP/consultant. Specificities such as lab analysis methods are purposefully omitted from the Rule given the propensity for changes in Method references. The Agency has provided guidance that references appropriate laboratory analysis methods for environmental media samples. The Agency will amend the section to state: "Soil analysis. Discrete post excavation soil samples shall be collected for laboratory analysis to..." *In addition, the following change will be made to* §35-502(c)(1): "Collect and analyze a <u>discrete</u> sample of soil remaining in place..." - 22. **Comment received:** §35-502(f). Please specify what lab test methods should be used for heating fuel? **Agency response:** Specificities such as lab analysis methods are purposefully omitted from the Rule given the propensity for changes in Method references. The Agency has provided a "Sampling and Analysis" guidance that references appropriate laboratory analysis methods for environmental media samples. - 23. **Comment received:** §35-503. Is this report different than the UST "Site Assessment" report required in the UST closure guidance document? Will this format be the new UST Closure report layout? **Agency response:** Yes, this is a separate report from the required UST Site Assessment report. This Rule is applicable to releases from USTs, and this subchapter is **only** applicable to releases of heating fuels. The UST Program requires a Site Assessment report for UST closures regardless of the product stored. However, for the purposes of reporting the UST Site Assessment activities **strictly
for heating fuel USTs** it is acceptable to submit one report to the Secretary that meets the requirements of both the UST Rule and this Rule. The report must contain the current UST closure form. If an RP so elects, two separate reports (UST SA and Initial Response Investigation) may be submitted independently to the appropriate regulatory entity. #### **SUBCHAPTER 6. CORRECTIVE ACTION** - 24. **Comment received:** §35-604(e)(2). This indicates that the ECAA WPCE should include pilot testing of applicable remedial options, which requires a pre-screening of technologies prior to submitting ECAA WPCE. Is this the intent? **Agency response:** This section refers to the ECAA report, not the work plan, and only requires that pilot test results be submitted as part of an ECAA report. The section does not require that pilot testing be performed as part of an ECAA. §35-604(a) states, "If pilot testing or additional data collection is necessary as part of the evaluation, a work plan shall be submitted for approval by the Secretary." - 25. **Comment received:** §35-606(b)(6)(C). Is a Vermont licensed P.E. stamp required for the corrective action remedial design or for the Corrective Action Plan as a whole? - **Agency response:** The P.E. stamp is only required when certifying that the remedial design will operate effectively as designed. No P.E. stamp is required if no engineered design is required as part of corrective action. - 26. **Comment received:** §35-606(b)(18). What is required if the list of sub-contractors is not available at the time of CAP preparation? - **Agency response:** The Agency can provide some discretion on this requirement as it is understood that some corrective action measures will be bid upon once the CAP is approved. A minor CAP addendum should be submitted once the final sub-contractor selection or bid award has been completed. - 27. **Comment received:** §35-611(C)(2). Does this apply to PCB remediation-generated waste? Commenter proposes to strike item #2 in the last sentence. - **Agency response:** This section is specific to PCB investigative derived waste, not PCB remediation waste. However, the Agency will make the following substitution of "may" for "shall" to provide clarification: "If PCBs are present at concentrations below 50 ppm, the waste <u>may</u> also be subject to management under TSCA." #### **SUBCHAPTER 8. CONTAMINATED SOIL** 28. **Comment Received:** §35-803(c)(2)(A)(i). Please clarify if the 1 ppmv requirement is applicable for non-thinspreading scenarios, i.e. characterizing soils that may be impacted by petroleum, i.e. common development scenarios where soils are characterized for COCs that may be more than just petroleum, to determine if the soils are regulated or not? We suggest adding the 1 ppmv criteria to the petroleum contaminated soils definition to cover all scenarios. **Agency Response:** The Agency does not find this to be necessary. The purpose of the 1 ppmv threshold is to provide evidence that soils that were once contaminated with petroleum have been successfully treated to the point where they are "clean" and suitable for thinspreading. The Agency relies on reported exceedances of promulgated environmental media standards to determine if a release of petroleum has occurred unless field screening results can be directly correlated to a petroleum source, e.g. an underground storage tank. 29. **Comment Received:** §35-803(c)(2)(A)(i). Specify discrete samples from various depths (vs composite sampling). **Agency Response:** The comment is related to an overarching rule statement. As such, the Agency will provide clarification by amending the more appropriate section §35-803(c)(2)(B)(i) as follows: "Vapor levels are less than 1.0 ppmv in <u>discrete</u> soil samples when measured with a VOC field screening instrument;" - 30. **Comment Received:** §35-803(c)(2)(B)(iv). Change "residential soil standards" to "Vermont Residential Soil Standards". **Agency Response:** This change has been made in the document. - 31. **Comment Received:** §35-803(c)(4). We suggest removing this requirement as it is generally not feasible for typical development scenarios. As long as all criteria A through E are met, this should be acceptable. [Note: phone call with Urch on 5/29 to clarify, ATC is requesting that we remove the language requiring that the non-hazardous soil <u>must</u> be capped within the area where the release occurred (AOC). Their point is that if you can demonstrate A through E are met (which includes no risk to groundwater) then the soils should be able to be exhumed and moved to another location on the site (say to accommodate locating a building) and then capped.] - Agency Response: The referenced section refers to non-hazardous waste contaminated soil and allows for capping the soils on the site where the release occurred. To clarify, this section allows for the placement and capping of non-hazardous waste contaminated soil outside of the area where the release actually occurred so long as the waste is capped within boundaries of the contamination. The Agency did amend the text to clarify that the capping can only occur at the property where the release occurred, and that (A) through (E) include evaluating risk to all receptors, e.g., indoor air, and not simply groundwater. - 32. **Comment Received:** §35-803(c)(4)(C). Is this considered an engineering control that requires annual inspections? TSCA uses language that cap should be maintained in perpetuity hence the "divide" comments to denote failure. Would cap maintenance requirements be outlined in the institutional control plan (E) and enforced by the VT DEC? **Agency Response:** The requirement to perform annual inspection depends on cap construction details (per 35-803(c)(4)(C)(i) and (ii)). If the prescribed cap thicknesses are met, then annual inspections will not be required. If an alternate cap thickness is proposed and approved by the Secretary, then institutional controls will be required and can be enforced by the Agency. Requirements for annual monitoring should be part of the IC plan in the approved corrective action plan. - 33. **Comment Received:** §35-803(d)(2). Does this rule allow offsite removal of soils that exceed residential SSVs but are below industrial SSVs for unrestricted use at another industrial site? Will a provision be added to allow certain reuse of soils that exceed SSVs for public works projects, such as roadbed material, assuming the materials are determined to be geotechnically suitable for the reuse scenario? Offsite reuse and disposal options which are common issues for development projects should be expanded to include more scenarios. - Agency Response: This Rule does not allow for unrestricted use of soils which exceed residential SSVs but are below industrial SSVs. However, if soils contain PAHs at concentrations that are below the urban background standard, but above the residential SSV, soils can be reused at other locations within a designated urban area. Reuse of roadbed material is allowable through the Solid Waste Program and is covered under solid waste regulations (e.g. IWMEA). Approval must be granted from the Solid Waste Program for this activity. The Agency is currently working with a stakeholder group to expanding existing public works project guidance to address the issue of reusing soils that exceed SSVs. - 34. **Comment Received:** §35-803(d)(2)(C). Does this rule allow offsite removal of soils at a rural site that exceed residential SSVs but are below urban background for unrestricted reuse within an urban soils background area? **Agency Response:** Yes. - 35. **Comment Received:** §35-804(c)(1). The SI elements referenced here would be more significant work than is typically done on a road construction project or public works project or site with historical fill. Is that the intention? **Agency Response:** As written, this section requires characterization of the degree and extent of contamination only within the area of a project that requires excavation. This section does not require complete delineation of the degree and extent of contamination in order to manage soils under a Soil Management Plan. The Soil Management Plan provides a mechanism for a construction project to continue prior to the completion of a full site investigation and corrective action plan. The Agency does not require soil characterization where a release has not been identified. - 36. **Comment Received:** §35-805(a). Change "standards" to "Vermont Residential Soil Standards". *Agency Response:* This change has been made in the document. - 37. **Comment Received:** §35-805(b)(2). Since Development Soils can be characterized via ISM sampling, can the SPLP sample analysis be completed on the ISM sample(s) as well? As it is written, you would still have to collect SPLP samples at a 1/200 ton density for an ISM sampling plan. This poses many problems for an ISM sampling plan. Most notably, the SPLP discrete sample wouldn't have a parent sample to compare to as there would be no discrete samples taken within the decision unit. Finally, ISM sampling is a statistical sampling technique that provides the most representative soil concentration for a given exposure scenario as compared with traditional grab samples. SPLP analysis of the ISM replicates within each decision unit would provide a more representative assessment of the potential impacts to groundwater. **Agency Response:** The Agency will accept for review any proposals for development soils characterization that includes ISM so long as there is a provision for meeting the SPLP requirement if the intended disposal site is an approved receiving site. The Rule has been changed to provide clarification that SPLP analysis is only required when development soils are to be disposed of at a receiving site: "If soil is proposed to be disposed of in accordance with §35-805(d), the number and location of soil samples that will be
analyzed using Synthetic Precipitation Leaching Procedure..." 38. **Comment Received:** §35-805(b)(2). I suggest striking the phrase "...and there shall be a minimum one sample for every 200 tons of soils..." and include a phrase such as "...and there shall be a sufficient number of samples to meet the acceptance criteria of the selected disposal facility." My point is that the liability associated with disposal is between the generator and the disposal facility as well as undermines the increased acceptability of techniques such as incremental sampling methodology. **Agency Response:** SPLP analysis is only required if the designated disposal facility is an approved receiving site. This section will be modified to allow for other approved sampling methods, by including the following language: "The number of locations shall be based on the volume of soils planned for management and there shall be minimum one sample for every 200 tons of soil, or as approved by the Secretary." 39. **Comment Received:** §35-805(c)(1). Are there any facilities permitted for this? Has DEC received any applications? *Agency Response:* No, and no. 40. **Comment Received:** §35-805(c)(2). Concern expressed that the statement "Upon approval by the Secretary" in §35-805(c) leads landfills to view the soils as needing to be approved by the Secretary, in writing, prior to them being able to accept these soils for ADC. **Agency Response:** Agency approval has been in practice since the initial Rule adoption in July 2017. Upon request to the Secretary, the solid waste program issues an approval letter that can then be supplied to the disposal facility. 41. **Comment Received:** §35-805(d)(4). Change "residential soil standards" to "Vermont Residential Soil Standards". *Agency Response:* The section cited does not exist in the Rule. #### **SUBCHAPTER 10. SITE CLOSURE** 42. **Comment received:** §35-1001(d)(1). PRPs currently wait several months to over a year to receive a SMAC letter. Please clarify that the PRP has 10 days to provide proof of recording to the VT DEC once received by the Town. The time to record the notice is not in the control of the PRP or consultant; therefore, a 10-day total TAT is not always achievable. Please consider a more reasonable deadline. **Agency response:** The Agency will not change the deadline for submission of a copy of the recorded SMAC letter. It is noted that certain Towns cannot comply with the imposed schedule for a host of reasons. It is acceptable for the PRP/consultant to provide notice to the Secretary of a revised deadline based on Town recordation schedules. #### **APPENDICES** 43. **Comment received:** Appendix A – Environmental Media Standards, Soil. Suggestion to round to the nearest significant figure based on the assumptions used to determine the standard. **Agency response:** With concurrence from the Vermont Department of Health, the soil standards have been rounded to show two significant digits at a minimum. 44. **Comment received:** Appendix A – Environmental Media Standards, Vapor Intrusion. The mercury standard is well below the NIOSH detection limit for the method. The naphthalene standard is currently below the laboratory detection limits. **Agency response:** The Agency has researched laboratory method detection limits and has found many laboratories that can detect mercury concentrations below the mercury indoor air standard. The resident and non-resident naphthalene indoor air values have been adjusted upward to 0.262 μ g/m³ from 0.03 and 0.24 μ g/m³ respectively in order to meet the laboratory method detection limits. 45. **Comment received:** Appendix E – Cumulative Risk Assessments. The noncancer HQ column entry for PFHpA is "remove". **Agency response:** Table 2 updated to reflect correct noncancer HQ for PFHpA. From: Coppolino, Patricia To: Vose, Sarah Cc: Moran, Matt Subject: Re: two questions on the IRULEf Date: Wednesday, May 15, 2019 1:32:21 PM Can do #### Get Outlook for iOS From: Vose, Sarah **Sent:** Monday, May 13, 2019 5:57:18 PM **To:** Coppolino, Patricia **Subject:** two questions on the IRULEf On page 19, bullet (13) says the site specific risk assessment should follow standard US EPA risk assessment methodology. Can you update the language to what it says on page 24, bullet (3)? The standard EPA methodology will allow a greater cancer risk for a site.... Up to one in a hundred thousand. On page 97 (no page number on it though...) in the noncancer HQ column it says "remove" for PFHpA. Sarah Vose, Ph.D. (she/her) State Toxicologist Vermont Department of Health 108 Cherry Street Burlington, VT 05401 802-863-7598 sarah.vose@vermont.gov # IRule Hearing 5/17/2019 Montpelier Meeting Room, National Life Building, Montpelier, Vermont | NAME: | COMPANY: | EMAIL: | |------------------|-----------|-----------------------------| | marlie Farmer | VHR | of charner & vhb. com | | Toe Hayes | ATC | icsephinanese atcasicam | | 200 Farles | ANR | rob. for le Quantinont. gou | | Eph Vich | ATC | exile vala otession | | DEN VOISIN | Stone Env | d voisine STONE-ENV. COM | | DAVID ABRAHAMSON | STONE | dabrahamson@ stone -env.co | | Steven Hubbs | VT BG.S | 5+aven. hubbs@vermont.g | #### **IRule Hearing 5/17/2019** #### Montpelier Meeting Room, National Life Campus, Davis One Building, Montpelier, Vermont Meeting Minutes: Trish called meeting to order at 10:34am Opening comments (TC), Round of Introductions (see sign-in sheet) Ready for comments to memo of key changes, some attendees were not aware of the memo. Questions regarding consultant contributions/comments from Road Show, etc. Consultants from short list were asked to provide comments. Trish pulled up the summary of changes on the screen for all to review. Trish scrolled through revisions and provided a summary each one. Chuck acknowledged collaboration of VDH and SMS. Cumulative risk for surficial soil is 0-18" Indoor air is all cumulative risk. DV provided comments under 35-107 historic fill exemption....Secretary "may" make a determination in wtiring. TC indicated that an exemption form will be listed on the ANR webpage. EU asked about definition of historic fill (C)...do you need to test to identify if the material is contaminated...Trish said if it's not contaminated we don't regulate. CF chimed in. Recent BGS example was put forth for discussion. Definition of "historic fill" was taken from Mass. If you get the exemption you don't have to go through the SI or CAP. You need to dispose properly and address through IC. Subchapter 8 still applies. (DV) question related to managing indoor air standards and the concept of a release. If indoor air is related to the off gassing of a building material (as opposed to the release of a hazardous material to the environment – as defined) then SMS does not regulate. If it's a public building than DOH will regulate and if it's a state-owned building BGS will take leadership role. Soil Gas is listed as an environmental media. If MDL is above our standard we consider that a release. (DV) requested to receive a list of those labs. MDL used for cumulative risk but $\frac{1}{2}$ MDL for TEQ. Trish qualified that we are only looking at detected compounds. (DV) commented about definition of remedial construction plan 35-606 (6). PE stamps required for corrective action design vs. CAP as a whole? (TC) clarified that the PE stamp is only demonstrating that the remedial design will operate effectively as designed. No PE stamp required if no engineered design is required, this is a change from historic protocol that PE stamp is required for all CAPs. Soil Management Plan vs. Corrective Action Plan - Data evaluation section 35-401 – PFAS is not referenced in text. Deemed not necessary to call out a summary of the 5 PFAS compounds. (CF) development soil comment – ISM vs. SPLP discrete sampling. (TC) acknowledged that we did not discuss that, suggested that it be provided as a comment. "as approved by the Secretary" captures this. Might be helpful to have some future rules or guidance around data sets that have....? 35-611 (C)(2) PCBs in site generated waste. Does this also apply to remedial generated waste? Under item #2 last sentence....(DV) proposes to strike the last sentence or modify. (JH) question on heating oil 35-502. Tank removal waste vs. PCS on HO site. Requirements for soil management plans are coordinated with the site manager. Post excavation soil samples are required but the number is site specific, discretion of the PM. Details will be fleshed out in the UST Rule/guidance revisions. Does Joe have a comment? Questioned the requirement to collect groundwater sample from excavation? (JH) 35-503 Initial Release Investigation Report – same as UST investigation/assessment report? Not the same, HO release is separate from the ISI scope. UST program requirements are still applicable. (JH) question on land record notice -10 day requirement to get that record back to DEC. Provide a comment and we will consider adjusting that time frame. Discussion regarding Cumulative Risk and various media, there is a shift in process based on our pilot studies. Will we update the guidance documents that accompanied the original IRule? Yes. (TC) asked if there are other documents that would be helpful to publish. (DA) asked about requirements for CAP, specifically the list of sub-contractors. If not known at the time of CAP preparation, what then? Discretion allowed but within reason. Meeting adjourned @ 11:36. # Irule Hearing 5/20/2019 # Annex Conference Room, Montpelier, Vermont | NAME | COMPANY | EMAIL | |---------------------------------|----------|---------------------| | Kurt Muller | VHR | KMUIREROVHB.COM | | NAME Kurt Muller Steve Hilfiker | VHB | shilfiker who com | - E | | | | 8 | a l | | | | | | | | <u> </u> | | | | | | | | | * | | | | Land
Harmon Landson | E Z #### **IRule Hearing 5/20/2019** #### Annex Conference Room, Berlin, Vermont Meeting Minutes: Matt Moran called the meeting to order at 5:31pm Opening comments (MM), Round of introductions (sign-in sheet under separate cover) Present are: Matt Moran (SMS), Michael Nahmias (SMS), Sarah Vose (VDH), Kurt Muller (VHB), Steve Hilfiker (VHB) KM questioning implementibility of the risk calculator. KM discussing urban soils and PAHs. SV says PAHs would not go into risk calculator. MM discussing how PAHs can be put into risk calculator if there are other compounds present. KM asks if below background soils for PAHs that also have lead detections, do they need to be put into the calculator? SV answered no. KM states comment that IRule should discuss how to handle background PAH concentrations in the cumulative risk calculator. KM asking regarding historical fill section and difficulty to identify actual soils placed before 1985 and that proving that is going to be a challenge. KM concerned about the need to delineate the historical fill to be able to be exempt from SI/CAP route for remediation. MM discussing how extent and delineation would be done as part of the improvement that is being completed for example the area where excavation is occurring. KM's comment is regarding the requirement to determine degree and extent to draft Soil Management Plan which contradicts the exemption from performing an SI, which requires determining the degree and extent. MM explains how there are many more requirements to an SI than just determining the degree and extent. KM asks about 1985 and why 1985. KM comment is that the 1985 should be stricken from the rule because of the difficulty in proving 1985. MM discusses further. Comingling of soils is a concern of KM and how a project here and a project there may have moved soils around to different parts of the site. KM asks if that date has to be in the IRule. KM makes one more point, asking if a site was developed before 1985 is that evidence enough that fill was brought in. SH inquiring about isolation barrier requirement for historical fill. KM asking about the development soil SPLP quantity. KM states the one sample per every 200 tons (p.50, item 2) should be stricken. KM explains that this conflicts with ISM methodology. KM comment is a sample requirement to be determined by the Secretary rather than one per 200 tons. Alternative methodology represented by KM could be analyzing the "worst of the worst" sample collected at the site for SPLP. KM's next comment c. disposal of development soils in same section. These soils may be disposed at (2) a solid waste facility for use as alternative daily cover. KM's concern is the preempting comment that states, "Upon approval by the Secretary..." and that landfills see this as the soils need to be approved, in writing, prior to them being able to accept these soils for ADC. KM next concern is the requirement that when a detection limit is higher than the regulatory value, a non-detect is considered an exceedance. MM discusses how to rectify this with the lab and how confidence is needed from lab results. No real comment here. Just a discussion. MM discusses how non-detect results are not included in Method 2 CRA's. MM Discusses the potential dates for the rule to go into effect. MN reminds attendees that they have until May 27th to comment on the rule and the comments can be submitted via email to Matt Moran. KM would like there to be a training session on the cumulative risk calculator following the issuance of the rule. Adjourn meeting at 6:33pm. 1 Elm Street, Suite 3 Waterbury, VT 05676 Telephone 802-241-4131 Fax 802-244-6894 www.atcgroupservices.com May 24, 2019 Mr. Matt Moran Waste Management Prevention Division Vermont Department of Environmental Conservation One National Life Drive Davis One Montpelier, VT 05620-3704 RE: ATC Comments Proposed Rule Changes Investigation and Remediation of Contaminated Properties Rule #### Dear Matt: ATC Group Services, LLC (ATC) presents the following comments responding to proposed rule changes for the Investigation and Remediation of Contaminated Properties Rule (IRULE) that have been accepted by the Interagency Committee on Administrative Rules (ICAR). - § 35-107. Does the fill need to be sampled to confirm results meet the "historical fill" definition? If some analytes exceed standards, there are still no corrective action requirements? Will there be restrictions on where you can take the historical fill? This also implies the soils would be unregulated if you get the exemption. We recommend adding a statement that soils need to be managed under a Soil Management Plan if that's how they should be managed. We also assume there must be no vapor or GW issues, if solvents are historic then no remediation required? - § 35-201(13). The background value of lead is well below the residential standard rendering background irrelevant so lead should be treated as any other contaminant outside the purview of development soil. - § 35-201(25). Will the Secretary require sampling to verify historical fill definition? We recommend DEC provide a guidance document on how this exemption works. - § 35-201(25)(C). Please clarify what evidence would serve as proof that fill was brought to the Site and/or contaminated before emplacement prior to 1985. Is it required to sample all soil for all possible contamination and then judge its age? - § 35-201(32). This implies no LTM until after CAP. Some sites have LTM with no CAP completed yet. - § 35-306(b)(7). Regarding the reference to available Phase I ESA information being included, often these are not performed by the RP (potential buyer) and would likely be expired. Depending on the reliance, the reproduction of Sanborn Maps would violate copyright. - § 35-307(a). Insert within # days that the PRP should expect review and written notification of the SI report. - § 35-401(C). Concerns about zoning definitions not being universal for each town (vs current property use designation). Some zoning might be characterized as "mixed" (i.e. "mixed residential and commercial") and may not be as clearly defined as "non-residential". Often in Vermont, industrial areas are scattered among residential/rural areas – making a non-residential zoning area difficult to assign. - § 35-401(d)(2)(A). Please clarify this in the context of assumptions made above (1)(C) if MCL is above standard? (1)(C) could kick you into Method 2, but this would exempt you? - § 35-401(f). Please note not all towns use this language "non-residential use" which creates gray area. - § 35-401(I)(2)(B)(ii). Please clarify the use of MDL above and ½ MDL here. - § 35-502(a)(3). Does this correspond with the prior 80 CY limit? - § 35-502(c). Is there a specific number and location of post excavation samples that are required (e.g., from each sidewall and base of excavation)? What specific laboratory analysis is required? Do samples need to be discrete or composite samples? Please include more details. - § 35-502(c)(2). Sampling groundwater in the bottom of an excavation is not good sampling procedure and does not make for a representative sample for a variety of reasons. We would suggest installing a temporary monitoring well in the backfill for collection of a better GW sample or waiting for GW data obtained during SI. - § 35-502(f). Please specify what lab test method should be used for heating fuel. - § 35-503. Is this report different than the UST "Site Assessment" report required in the UST Closure guidance document? Will this format be the new UST Closure report layout? - § 35-504(a). Insert within # days. - § 35-505(b)(1)(B). Please clarify if this sampling should continue to the water table to confirm no contamination is present in a smear zone deeper than 5 fbgs? - § 35-507(b). Insert within # days. - § 35-604(e)(2). This indicates that the ECAA WPCE should include pilot testing of applicable remedial options, which requires a pre-screening of technologies prior to submitting ECAA WPCE. Is this the intent? - § 35-803(c)(2)(A)(i). Please clarify if the 1 ppmv requirement is applicable for non-thinspreading scenarios, i.e. characterizing soils that may be impacted by petroleum, i.e. common development scenarios where soils are characterized for COCs that may be more than just petroleum, to determine if the soils are regulated or not? We suggest adding the 1 ppmv criteria to the petroleum contaminated soils definition to cover all scenarios. - § 35-803(c)(2)(A)(i). Specify discrete samples from various depths (vs composite sampling). - § 35-803(c)(4). We suggest removing this requirement as it is generally not feasible for typical development scenarios. As long as all criteria A thru E are met, this should be acceptable. - § 35-803(c)(4)(C). Is this considered an engineering control that requires annual inspections? TSCA uses language that cap should be maintained in perpetuity hence the "divide" comments to denote failure. Would cap maintenance requirements be outlined in the institutional control plan (E) and enforced by the VT DEC. - § 35-803(d)(2). Does this rule allow offsite removal of soils that exceed residential SSVs but are below industrial SSVs for unrestricted reuse at another industrial site? Will a provision be added to allow certain reuse of soils that exceed SSVs for public works projects, such as roadbed material, assuming the materials are determined to be geotechnically suitable for the reuse scenario? Offsite reuse and disposal options which are common issues for development projects should be expanded to include more scenarios. - § 35-803(d)(2)(C). Does the rule allow offsite removal of soils at a rural site that exceed residential SSVs but are below urban background for unrestricted reuse within an urban soils background area? - § 35-804(c)(1). The SI elements referenced here would be more significant
work than is typically done on a road construction project or public works project or site with historical fill. Is that the intention? - § 35-805(c)(1). Are there any facilities permitted for this? Has DEC received any applications? - § 35-1001(d)(1). PRPs currently wait several months to over a year to receive a SMAC letter. Please clarify that the PRP has 10 days to provide proof of recording to the VT DEC once received by the Town. The time to record the notice is not in the control of the PRP or consultant; therefore, a 10 day total TAT is not always achievable. Please consider a more reasonable deadline. - Appendix A Soil Standards: Suggestion to round to the nearest significant figure based on the assumptions used to determine the standard. - Appendix A Vapor Intrusion Standards: The mercury standard is well below the NIOSH detection limit for the method. The naphthalene standard is below current laboratory detection limits. We appreciate the opportunity to comment on the proposed rule changes and look forward to the Responsiveness Summary that will be developed before filing with the Legislative Committee on Administrative Rules (LCAR). Sincerely, ATC GROUP SERVICES, LLC Lauper Efazer Joseph Hayes, CPG, PG Branch Manager From: <u>Farmer, Charlie</u> To: <u>Moran, Matt</u> Subject: Comments on Proposed IRule Updates Date: Friday, May 24, 2019 10:38:51 AM Attachments: image001.png Hello Matt, I tried to catch you after the hearing on Friday, but we didn't get to connect. You may not remember, but we met years ago when I was renting your father's apartment out there on Colchester point. Such a beautiful spot. I've regretted moving many times, but the commute to The Johnson Company in Montpelier was just too much. I hope Bill and Carol are both well. Please pass on my best regards. Such good, caring people. I understand that Kurt and Steve made comments at Monday's hearing on behalf of VHB that were recorded. I recognize it may be duplicative, but I wanted to follow-up on one of my comments at Friday's meeting. My comment was on Section 35-512(a)(2) with respect to SPLP sampling density when using ISM sampling methodology. Specifically, since Development Soils can be characterized via ISM sampling, can the SPLP sample analysis be completed on the ISM sample(s) as well? As it is written, you would still have to collect SPLP samples at a 1/200 ton density for an ISM sampling plan. This poses many problems for an ISM sampling plan. Most notably, the SPLP discrete sample wouldn't have a parent sample to compare to as there would be no discrete samples taken within the decision unit. Finally, ISM sampling is a statistical sampling technique that provides the most representative soil concentration for a given exposure scenario as compared with traditional grab samples. SPLP analysis of the ISM replicates within each decision unit would provide a more representative assessment of the potential impacts to groundwater. One option may be to remove the minimum sample density and replace with "as approved by the Secretary", which would be in-line with Gerold's response to my comment in the hearing. Section 35-512(a)(1)(C) has an "Other soil characterization methods, as approved by the Secretary" provision, but this seemingly doesn't apply to the separate section on SPLP sampling density. Please feel free to write or call if you have any questions. All the best, # **Charlie Farmer, P.E.**Senior Environmental Engineer 40 IDX Drive Building 100, Suite 200 South Burlington, VT 05403-7771 P 802.391.5566 | F 802.495.5130 cfarmer@vhb.com # Engineers | Scientists | Planners | Designers www.vhb.com VHB Viewpoints. Explore trends with our thought leaders. Read | Watch | Connect This communication and any attachments to this are confidential and intended only for the recipient(s). Any other use, dissemination, copying, or disclosure of this communication is strictly prohibited. If you have received this communication in error, please notify us and destroy it immediately. Vanasse Hangen Brustlin, Inc. is not responsible for any undetectable alteration, virus, transmission error, conversion, media degradation, software error, or interference with this transmission or attachments to this transmission. Vanasse Hangen Brustlin, Inc. | info@vhb.com From: Shively, Andy To: Moran, Matt Cc: <u>Digiammarino, Craiq; Chapman, Matt; Boomhower, Michele; Wright, Andrea</u> Subject: IRule Public Comment **Date:** Monday, May 27, 2019 8:37:12 PM Evening Matt, I appreciate you meeting with me Friday afternoon to discuss the IRule. I'm finally getting around to writing up my notes and wanted to send a note to circle back to our conversation. I understand the Public comment period ends today so as usual I am getting my written comments to you just before the deadline lapses. You said before midnight, so..... As we discussed, some of my comments were organizational or structural in nature while others involved specifics. I will focus on the later. I find that definitions are important to focus on in that they establish the foundation from which the Rule is built. The details of these few definitions can have direct impact on the complexity and cost of public works projects as well as the considerations involved in designing, planning and implementing projects. I'd like to focus on the definitions for "Background", "Development Soils", "Historic Fill", and the "Linear Construction Project". <u>Development Soils.</u> Given the suggestion regarding *Background* above it may be prudent to add fifth characteristic under *Development Soils*. Which would mean adding something like (*F*) exceeds relevant background concentrations. I do not think that would open up the definition of development soils up to creative interpretation and I think it creates an logical cross reference to an augmented definition of *Background*. Again, I recognized this after grappling with *Background* and this seems to tie up any foreseen loose end by expanding it to include non-specific anthropogenic sources. Historic Fill. An important element of the Proposed IRule for VTrans will be 35-107 Historic Fill Exemption. The exemption allows entities to be excluded from the investigation and corrective action requirements under the IRule. I do not have an specific comments on the definition of Historic Fill at this juncture except that it highlights the intersection between, solid waste, development soil and contaminated media. During our discussion it became clear that WMPD hasn't fully vetted a determination criteria for Historic Fill. You indicated WMPD would need to develop and issue guidance to help folks better understand how the exemption applies to specific situations and how it can be used and under what conditions. I expressed interest in working with the WMPD to help develop a better understanding of the intersection between development soils, historic fill, solid waste and contaminated media. I hope my perspective as an interested stakeholder can help develop a determination criteria that is protective of the environment but also recognizes the need for a reasonable and predictable level of inquiry warranted in construction design and contracting. <u>Linear Construction Project.</u> I'd like to thank WMPD for including a definition of linear construction projects. I think its fair to say we all have struggled with how to define and manage liability associated with a single Site during a public works project but when there are multiple Sites within a larger Linear Construction project the complexity associated managing third party liabilities can lead to unreasonable exposure for the contractor and public entity. By identifying *Linear Construction Project* as a defined scenario WMPD recognizes the unique nature of linear projects and provides appreciated relief from portions of the IRule that can add to the complexity and cost of a project. The elements included in the proposed IRule signals WMPD willingness to work with State and Municipal transportation officials to effectively plan and efficiently implement infrastructure projects while recognizing the distinctly different nature of a linear construction setting. One example of this is Subchapter 8. The Contaminated Soil subchapter lays out a comprehensive and thoughtful strategy for managing contaminated material. It recognizes the range of different situations and materials that may be encountered without forcing the rigor of a corrective action plan (CAP). The range of instances allowing the implementation of Soil Management Plans will provide regulatory relief where distinct contaminated soil may not be the responsibility of the public entity beyond what needs to be addressed to implement project specifications or warrants further investigation (or CAP). While some of the specifics outlined in Subchapter 8 may cause chafing for public projects I appreciate WMPD chose to include allowances for Secretary approval of alternative proposals. This is welcome flexibility in the event alternative controls are necessary due to site or construction constraints. The last portion of the proposed IRule I'd like to provide comments on are the Development Soils section of Subchapter 8. The concept of Development Soils has a vexing challenge for designers, planner, contractors and consultants alike. The degree of uncertainty in the previous regulatory scheme impacted project predictable, incurred unwarranted cost and represented a unreasonable burden. The management and disposal strategy outlined in the proposed IRule includes reasonable and well defined options for managing development soils. The only comment I have regarding the Development Soils section is the requirement for a specified number of soil sample per volume when material is destined for disposal at a landfill. The point I made on Friday was that this is the liability of the generator and the receiving landfill. If the landfill accepts a certain number of samples
then it should be the generators discretion to decide the level of risk they are willing to endure to dispose of the material. If the landfill will accept the material with a limited number of samples then it is the up to the generator to determine the level of risk they are comfortable with. Under 35-805(b)(2) may I suggest striking the phrase ... and there shall be a minimum one sample for every 200 tons of soils...... and include a phrase such as .. .and there shall be a sufficient number of samples to meet the acceptance criteria of the selected disposal facility. My point is that the liability associated with disposal is between the generator and the disposal facility as well as undermines the increased acceptability of techniques such as incremental sampling methodology. Again, I appreciate you meeting with me on Friday. I think I captured the essence of my comments and I know you took notes as we spoke. I see this version of the IRule as a significant improvement over the previous version. I look forward to working with you and your folks at WMPD to flesh out the details of the Historic Fill exemption and other future guidance involving public works projects. Please let me know if you have any questions or if I can be of value developing guidance. Don't hesitate to reach out if you have any questions about my comments. I will be in the office tomorrow the 28th but will be on leave for a week starting the 29th. Have a great night and call in the morning if you feel its warranted. Andy Shively Hazardous Materials and Waste Coordinator II Vermont Agency of Transportation (VTrans) Highway Division – Support Services Bureau 2178 Airport Road, Barre, VT 05641 Mobile (802) 229-8740 Pager (802) 250-4666