Brewery Water/Wastewater Conservation

November 25, 2019

Presented By:

Scott R. Shirley, Michael A. Smith, PE and Shane M. Mullen, PE CPESC to the

Vermont Green Brewery Cohort

Presenters

Scott Shirley – Head Brewer

Michael Smith, PE – Team Leader

Shane Mullen, PE CPESC – Senior Project Engineer

Why is Brewery Water Conservation Important?

Why is Brewery Water Conservation Important?

Impacts Environment

Impacts Community

Why is Brewery Water Conservation Important?

Brewery Water Issues

Cost of water capacity

Brewery water needs conditioning (\$)

More water use is more wastewater generated

Environmental impacts

Brewery Wastewater Issues

- Management of wastewater and residuals
- Trouble finding capacity
- Cost of capacity

Taking focus away from brewing

Community Wastewater Issues

- Environmental Management
 - Organic Load from brewing
 - Nutrient Load from brewing
- Capacity limitations
- Regulatory restrictions
- Conflicts with growth goals
- Inconsistent Approach

What's In the Wastewater

- Organics/Solids:
 - Spent Grains
 - ☐ Yeast

- ✓ Best Management Practices 2,500 to 3,000 mg/L
- ✓ Poor 10,000 to 15,000 mg/L
- ☐ Total Suspended Solids (TSS):
 - ✓ Best Management Practices 500 to 1,000 mg/L
 - ✓ Poor 8,000 to 15,000 mg/L
- □ pH
 - ✓ Typically in the range of 5 6 S.U.

What's in the Wastewater

- Municipal Wastewater Treatment Facilities
 - ✓ BOD_5 250 to 350 mg/L
 - ✓ TSS 250 to 350 mg/L
 - ✓ pH 7 to 8.5 S.U.

A little brewery wastewater = A LOT OF CAPACITY

Best Management Approach

- Side Streaming:
 - ✓ Spent Grains
 - √ Yeast
 - ✓ Trub

- First Rinse Management:
 - ✓ Collect additional solids and yeast
- Pre-treatment:
 - ✓ Conditioning
 - ✓ Aerobic Treatment
 - ✓ Anaerobic Treatment

Lawson's Finest Liquids

- Water Conservation:
 - √ Canning Can Rinse
 - ✓ Cooling Water
 - ✓ CIP System:
 - Lauter Tun
 - ❖ Bright Beer Tanks

Lawson's Finest Liquids

- Minimize Wastewater Generation:
 - ✓ Side Streaming
 - **❖**Trub
 - **❖** Tank Bottoms
 - ❖ First Rinse
 - √ Keg Returns
 - ✓ Waste Beer from Taproom

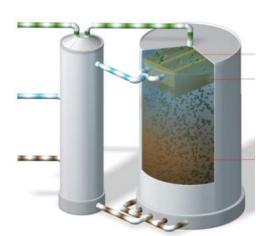
Wastewater Pre-Treatment

- Conditioning
- Aerobic
- Anaerobic

Conditioning

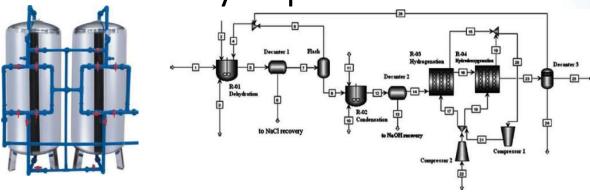
- Typically for Municipal Connections
- Settling and Buffering
- pH Adjustment
- Disolved Oxygen (D.O.)
- Effluent Monitoring:
 - □ Flow
 - □ DO
 - □ pH

Aerobic Pre-Treatment


- For Municipal Connections and In-ground
- Settling and Buffering
- pH Adjustment
- Aerobic Treatment
- Solids Separation
- Effluent Monitoring:
 - □ Flow
 - □ DO
 - □ pH
 - □ BOD
 - □ TSS

Anaerobic Pre-Treatment*

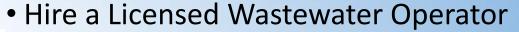
- For Municipal Connections
- Settling and Buffering
- pH Adjustment
- Anaerobic Treatment
- Solids Separation
- Effluent Monitoring:
 - □ Flow
 - □ DO
 - □ pH
 - □ BOD
 - □ TSS


*for larger breweries

When is Pre-treatment Required

- Any Subsurface Disposal
- Municipal Connections:
 - □ Organic Loading is > 5% of Municipal Capacity
 - ☐ Hydraulic Loading is > 5% of Municipal Capacity
 - ☐ If community requires it in their ordinance

What Brewers May Need to Do


- Request Treatment Capacity from Community
 - Negotiate High-strength WW Agreement
 - Permitting
 - Design Review by Municipality and State
 - Residuals (spent materials) Management
 - Effluent Sample/Monitor/Report

Planning Considerations

- Work with a qualified engineering consultant
- Detailed Wastewater Quality Analysis
- Evaluate Packaged and Component Systems
- Pilot Packaged Equipment

- Consider Long-term O&M
- Consider Long-term Goals for Growth

Trapp Brewery – Stowe, VT

Background:

- 50,000 bbl/year New Brewery
- Industrial capacity at Stowe WWTF
- pH adjustment
- Flow, pH and DO monitoring

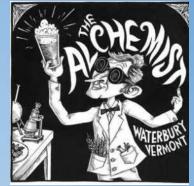
Project:

- Conditioning (pH)
- No BOD removal
- Cost: \$300,000

Trapp Brewery – Stowe, VT

Trapp Brewery – Stowe, VT

First Rinse Management


Alchemist Brewery – Stowe, VT

Background:

- 9,000 bbl/year New Brewery
- Need capacity at Stowe WWTF
- pH adjustment
- BOD Removal
- Flow, pH and DO monitoring

Project:

- Settling
- Conditioning (pH)
- BOD removal (MBBR)
- Cost: \$750,000
- \$4,000 per lb. BOD rem./day

Alchemist Brewery – Stowe, VT

Pilot Testing

Alchemist Brewery – Stowe, VT

Alchemist Brewery – Stowe, VT

Woodstock Inn Station & Brewery

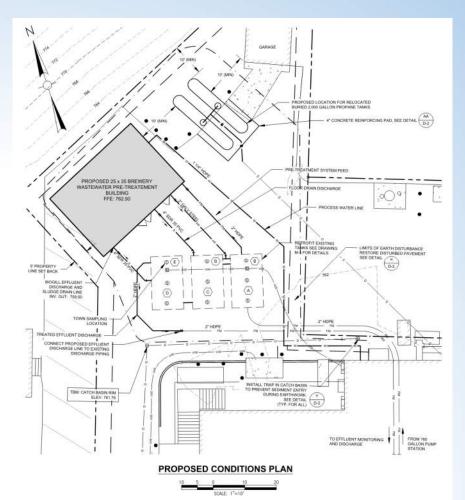
Woodstock, NH

Background:

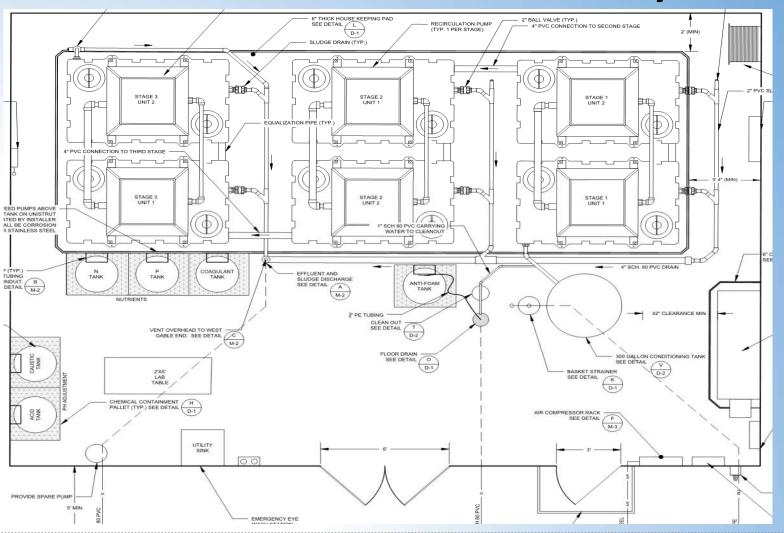
- 10,000 bbl/year Existing Brewery
- Heavy BOD load to Municipal WWTF
- pH adjustment
- BOD Removal Failed System
- Flow, pH and DO monitoring

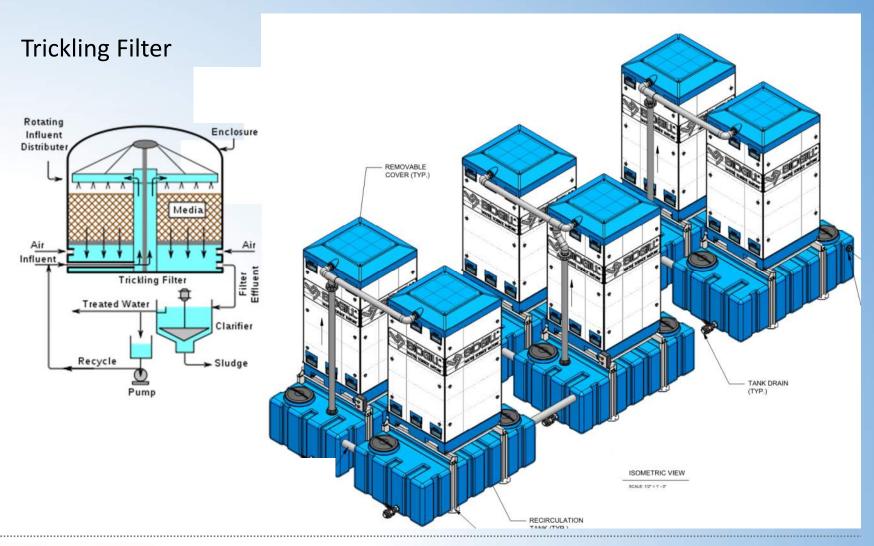
Project:

- Settling
- Conditioning (pH)
- BOD removal (Trickling Filter)
- Cost: \$500,000
- \$2,300 per lb. BOD rem./day



Pilot Project





Vermont Green Brewery Cohort Woodstock Inn Station & Brewery

Biomass Growth

Vermont Green Brewery Cohort Woodstock Inn Station & Brewery

Biomass Growth

Vermont Green Brewery Cohort Woodstock Inn Station & Brewery

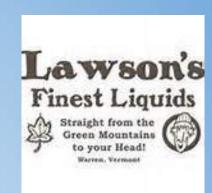
Key Design Considerations:

- Re-used much of the existing process equipment to save cost
- "calamity" storage to protect Pre-treatment System
- Primary Settling
- Equalization for biological process
- Flow metering (recording)
- Composite sampling capabilities
- PLC controls

Results:

- Domestic Strength Wastewater Discharged
- Solids accumulation at the Municipal WWTF back to normal

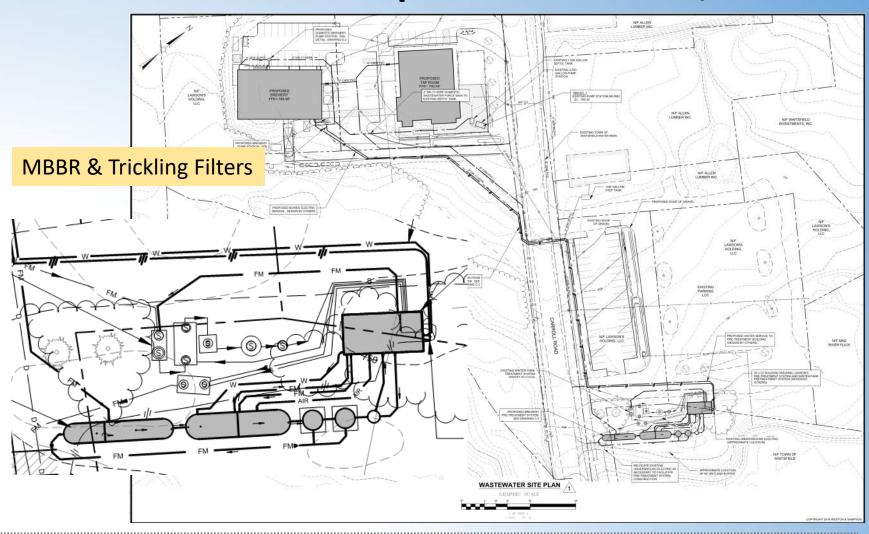
Lawson's Finest Liquids - Waitsfield, VT


Background:

- 14,000 bbl/year New Brewery
- Subsurface Disposal
- pH adjustment
- BOD Removal
- Flow, pH and DO monitoring

Project:

- Settling
- Conditioning
- BOD removal
- Cost: \$700,000
- \$4,500 per lb. BOD rem./day



Lawson's Finest Liquids – Waitsfield, VT

Lawson's Finest Liquids – Waitsfield, VT

Lawson's Finest Liquids – Waitsfield, VT

Finished Construction

Others In Progress

- Brewster River Brewing Jeffersonville, VT Planning
- Tree House Brewing Charlton, MA Piloting
- Nobletown Brewing Hillsdale, NY Construction

Past Projects

- Alchemist Brewing Waterbury, VT Metering & Sampling
- Fiddlehead Brewing Shelburne, VT Capacity Allocation
- Lawson's Finest Liquids Warren, VT Permitting
- Collaborative Brewing Waitsfield, VT Design & Permitting
- Fat Orange Cat Brewing East Hampton, CT Design
- Great Marsh Brewery Essex, MA Design

Key Wastewater Planning Considerations

- Every application is different
- Brewery wastewater is nutrient deficient
- Characterize your wastewater before doing anything else
- Use "Wastewater Process Engineer" with brewery experience
- There are no "black box" solutions
- Evaluate Costs (20-year life cycle)
- Evaluate Expandability of the WW System
- Pilot new equipment before design
- Involve community (WWTF) and State (Permitting) early
- Best management practices reduce treatment costs
- Design/Build approach can reduce construction cost

Lawson's Finest Liquids
State of Vermont
Vermont DEC
Our Brewery Clients and Team Members

Questions & Discussion

Thank You for Your Time

