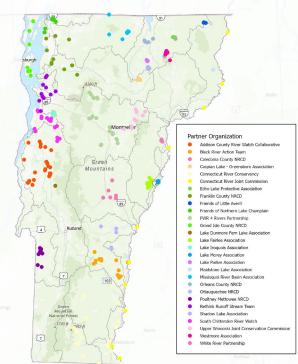

ANNUAL PARTNER TRAINING 2023

LAROSA PARTNERSHIP PROGRAM

AGENDA


9:00 - 9:109:10 - 9:309:30 - 9:45 9:45 - 10:1510:15 - 10:2510:25 - 10:5510:55 - 11:0511:05 - 11:1011:10 - 11:1511:15 - 11:3011:30 - 12:00

Welcome & Introductions LPP Communications & Updates LPP Sample Plan Overview Sampling Procedures Break Flow Observations & Survey123 Sample Storage & Preservation Safety in the Field Break Accessing Data & Power BI **Ouestions/Discussion**

INTRODUCTIONS

LaRosa Partnership Program Monitoring Sites 2022

VCGI, Esri Canada, Esri, HERE, Garmin, FAO, NOAA, USGS, EPA, NPS

LPP's 20th anniversary

20th anniversary facts:

- 53 total partners:
- ✤ ACRWC, CRC since `03, MRBA, SCRW, PMNRCD since `04/'05
- BRAT, FWR, LIA, ORG, OttNRCD, OrNRCD, RRST, WRP over a decade
- 16 new partners in last 3 years
- 113,581 samples collected
- 1,585 sampling sites
- \sim ~550 water bodies monitored in every major watershed in VT

- Thinking of doing some social media posts will ask for your help!
- Would love to spotlight your data/projects
 conducted through LPP

Site preapproval process – feedback?

LPP communication/resources – what is the best way to share LPP information & updates, and which resources are the most useful?

https://dec.vermont.gov/watershed/map/monitor/larosa

PROGRAM ANNOUNCEMENTS

- Interactive map of all 2022 LPP water quality monitoring sites
- Interested in participating in LPP? Check out our <u>FAQ Document</u> for some general information about our program.
- For a detailed description of LPP sampling procedures, flow observations, and quality assurance, please review the 2022 <u>LPP Partner Guide</u>.
- To review any incoming 2022 flow data, please view the LPP Flow Data dashboard.
- View LPP's new visual presentation of historic water chemistry data, flow observations, and land use using Power BI.

GET INVOLVED

PROGRAM MODEL

TRAINING & EDUCATION

LaRosa Partnership Program Monitoring Sites 2022 Partner Organization Addison County River Watch Collaborative Black River Action Team Caledonia County NRCD Greek Caspian Lake - Greensboro Associati Mountains Connecticut River Conservancy Connecticut River Joint Commissio Echo Lake Protective Association Franklin County NRCD Priends of Little Averili Friends of Northern Lake Champlain PMR 4 Rivers Partnerston Grand Isla County NRCD Lake Durmore Feth Lake Association Lake Fairlee Associatio Lake Inquoix Association Lake Means Association Lake Ration Association Naichtone Lake Association Missiszuni River Resin Association Orleant County NRCD Ottaixasechee MRCD Poultney Nettonee NRCD Rethink Runoff Stream Team hadow Lake Association South Chittenden River Watch Upper Wincoski Joint Conservation Corren Westmore Association White River Partnership VCGL Esri Canada, Esri, HERE, Garmin, RAO, NOAA, USGS, EPA, NPS

DATA & REPORTS

NEWSLETTERS

VAEL

Which LPP resources do you find helpful/useful?

Poll

menti.com 8879 5657

Which LPP resources do you find helpful/useful?

- Site visits
- No separate high flow sample events - 8 total sampling events including 2 high flow (replaces base flow sample for that sample period)

No lab TP duplicate samples

Sample Plan

 Eight total biweekly samples, one sample event per biweekly sample period
 Typically sample on the same day each sample period (groups with multiple teams of volunteers may sample on multiple days)

- Collect first sample after April 17th
- Collect last sample before August 8th/10th

HIGH FLOW

- Goal to capture the range of nutrient and Cl concentrations impacting the stream under different flow conditions
- Aim for two targeted high flow samples; can collect any day during any biweekly sample period throughout season
- Replaces regularly scheduled sample event only collect one sample per sample period
- Do your best we understand this may be difficult to coordinate

When do I collect high flow samples?

 \Rightarrow Will likely need to adjust sample day (if possible) Typically need about 0.5 to 1 inch of rain Sample during peak flow toward end of rain event ✤ High flow events more common during spring don't wait until end of sampling season If in doubt, sample during any predicted rain event,

you can try again if flows aren't high enough

Reminders

If high flows occur during your regularly scheduled biweekly sampling, it counts as one of your 8 biweekly samples AND as one of the two high flow samples.

If rain is predicted outside of your regularly scheduled sample day, do your best to adjust your sampling schedule to capture the high flow event. **It replaces your regular sampling event.**

Reminders

If you already collected samples for a sampling period and a rain event occurs, **no need to collect more samples that sample period.**

Collect all samples even if only some experience high flows – don't skip samples

Safety is a number 1 priority! **Do not sample if** dangerous

ANY QUESTIONS?

SAMPLING SCHEDULE

Dates	Event				
Week of April 10 th	LPP staff deliver supplies to partners				
Monday, April 17 th	Sampling season begins				
Week of May 1 st – Week of August 7 th	 Biweekly sample pickups: Tuesday, May 2nd and Thursday, May 4th Tuesday, May 16th and Thursday, May 18th Tuesday, May 30th and Thursday, June 1st Tuesday, June 13th and Thursday, June 15th Tuesday, June 27th and Thursday, June 29th Tuesday, July 11th and Thursday, July 13th Tuesday, July 25th and Thursday, July 27th Tuesday, August 8th and Thursday, August 10th 				

SAMPLE PICK UP ROUTES

TUESDAYS - North

St. Alban's (FCNRCD, FNLC) East Berkshire (MRBA) Newport (ELPA) Norton (Little Averill, CRJC) Location TBD (Maidstone) Westmore (Willoughby) West Glover/Glover (Orleans County NRCD, Parker, Shadow, Caspian) St Johnsbury (CNRCD, CRJC) Woodsville (Halls?, CRJC)

THURSDAYS - South

Salisbury (Dunmore) Poultney (PMNRCD) Bennington (HooRWA, Big Pond?) Brattleboro (CRC, CRJC) Springfield (BRAT, CJRC) VINS (Ottauquechee NRCD)

SAMPLE PICK UP ALTERNATIVES

VAEL DROP OFF/OTHER/TBD

Addison County River Watch - Heather South Chittenden River Watch - Heather Fairlee/Morey - TBD Friends of the Winooski River - TBD Upper Winooski Joint CC - TBD Rethink Runoff - TBD Grand Isle County NRCD - Kelsey White River Partnership – VAEL

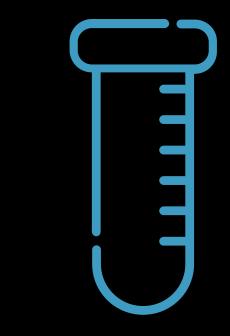
PICK UP WITH LAY MONITORING?

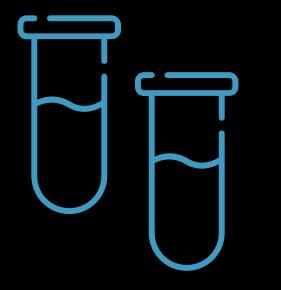
Caspian Dunmore Fairlee Little Averill Morey

Parker Maidstone Shadow Willoughby

ANY QUESTIONS?

QAQC

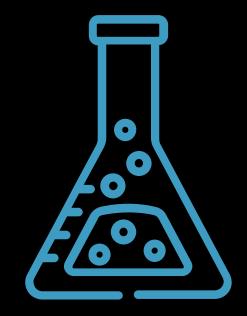

- ***** Field Duplicates
- * Site Visits



FIELD BLANKS

Same as last year, not doing regular field blanks

- Sample filled with deionized water using same sampling protocol
- Will collect blanks during site visits
- Tests for contamination



FIELD DUPLICATES

- Used to identify issues with sample collection, including contamination
- ✤ For all parameters: TP, TN, and Cl
- 10% of total number of samples collected throughout season
- Sample immediately after regular samples using the same sampling procedure
- Labeled with "-D-" and highlighted on field sheets

LABORATORY DUPLICATES

- Used to determine laboratory precision of results
- Not doing this year

SITE VISITS

LPP staff will meet with as many partners as possible to:

- Review sampling protocol, field sheet data recording, flow observations, and sample preservation
- Get to know partners and their sites
- Provide or receive any assistance or feedback if needed
- Take additional samples to provide additional data or quality assurance

Wastewater Treatment Facility Sampling

Characterizes upstream conditions of wastewater discharge receiving waters

- \checkmark Used to calculate (along with effluent data) downstream conditions
- Determines if WWTF is meeting water quality standards

Very useful for informed WWTF permitting

Will collect additional parameters during site visits

ANY QUESTIONS?

FIELD SAMPLING

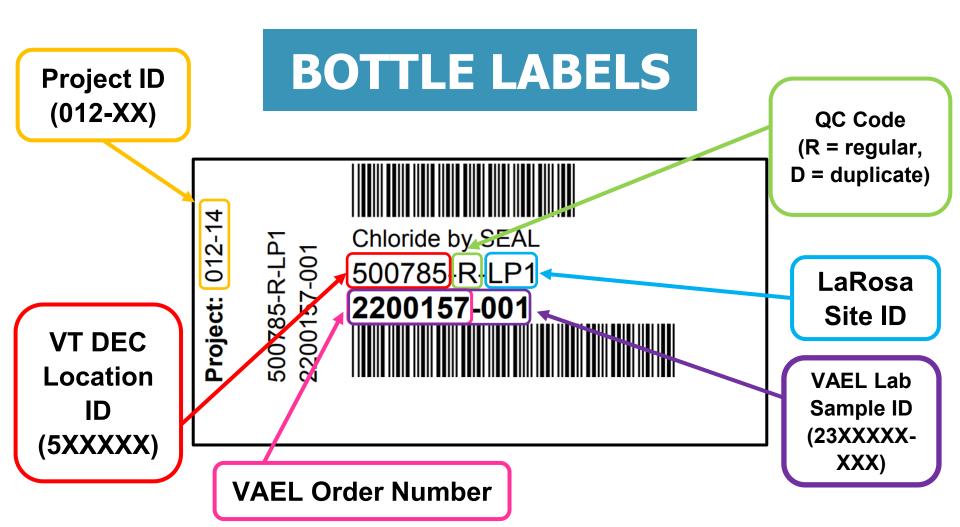
Partner Guide Sampling Procedures Duplicates Flow Observations

BOTTLES & PRE-PRINTED LABELS

SAMPLE RACKS

VAEL FIELD SHEETS

TN ACIDIFICATION KITS


SAMPLING CHECKLIST

RIVER DIPPERS

SAMPLE BOTTLES

HOW TO - LABEL BOTTLES

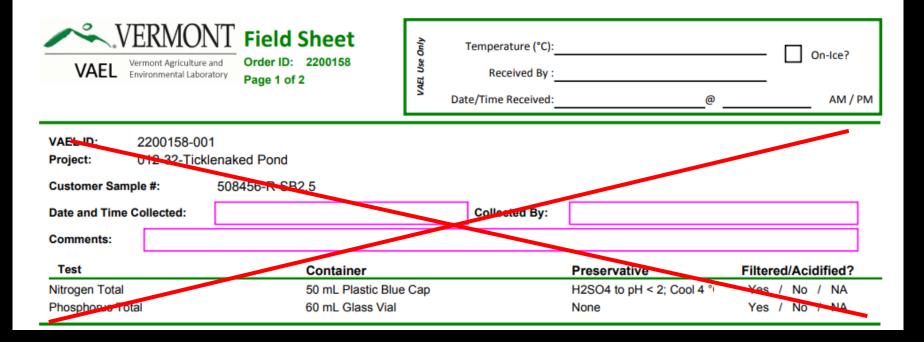
Apply all labels before you go out in the field!

Ensure bottles are **dry** before applying.

Place labels **vertically**.

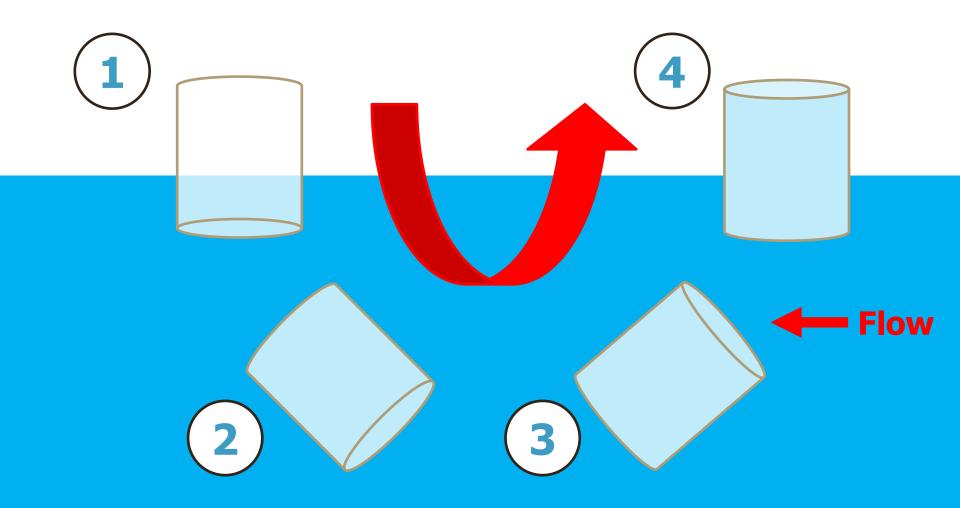
Place TP labels **below black line**.

VAEL FIELD SHEETS


VAEL Vermont Agriculture Environmental Labor		VAEL Use O	Temperature (°C): Received By : te/Time Received:	@	On-Ice? AM / PM		
VAEL ID: 2200158-001 Project: 012-32-Ticklenaked Pond Customer Sample #: 508456-R-SB2.5							
Date and Time Collected:	4/16/22 12:35pm		Collected By:	Meaghan Hickey			
Comments: TP bot	tle accidentally rinsed						
Test	Container			Preservative	Filtered/Acidified?		
Nitrogen Total	50 mL Plastic Blue	e Cap		H2SO4 to pH < 2; Cool 4 °	Yes No / NA		
Phosphorus Total	60 mL Glass Vial			None	Yes / No . NA		

Always fill out date and time!

IF A SITE IS NOT SAMPLED


INDIVIDUAL SAMPLE NOT TAKEN?

VAEL Vermont A	griculture and Ord	der ID: 2200158 ge 1 of 2	VAEL Use Only	Temperature (°C): Received By : ate/Time Received:	@	On-Ice? AM / PM
VAEL ID: 2200158-001						
Project: 012-32-Ticklenaked Pond						
Customer Sample #:	508456	6-R-SB2.5				
Date and Time Collecte	ed:			Collected By:		
Comments:	TP bottle broken/leaked					
Test		Container			Preservative	Filtered/Acidified?
Nitrogen Total	50 mL Plastic Blue Cap				H2SO4 to pH < 2; Cool 4 °	Yes / No / NA
Phosphorus Total		00 mL Olass Vid	al .		None	Yes / No / NA

INSTREAM BOTTLE GRAB

- 1. Wade into the center of the stream's flow.
- 2. **Do not disturb** bottom sediment (if sediment is disturbed, wait for it to flow downstream)
- 3. Always face upstream.
- 4. Rinse TN and DCl plastic bottles with stream water **3 times**.
- 5. Do not rinse TP glass bottle.
- Dip bottles midway between the surface and the bottom in a U-shaped motion.

Do NOT sample if:

- Water is stagnant puddle (no flow)
- So low you can't sample without disturbing sediment – need 3-4 inches

Flows are too swift and/or deep to sample safely (unless you have a river dipper)

Rinse TN and Cl bottles **Rinse 3 times each**

DO NOT RINSE TP bottles.

RIVER DIPPER

Store in plastic bag when not in use to avoid contamination

- Rinse the river dipper bottle
 3x with river water
- Use the pole to reach out into the center of the stream flow and dip the bottle or cup in the **upstream** direction using the same **U-shaped motion** as grab samples

RIVER DIPPER

- Use the river water in the river dipper container to rinse out the sample bottle and cap (if rinsing is required) three times
 - a. Remember, **do not rinse** the TP bottle.
 - b. Can refill river dipper container as needed
- Pour water from the river dipper bottle into the sample bottle to the designated fill line

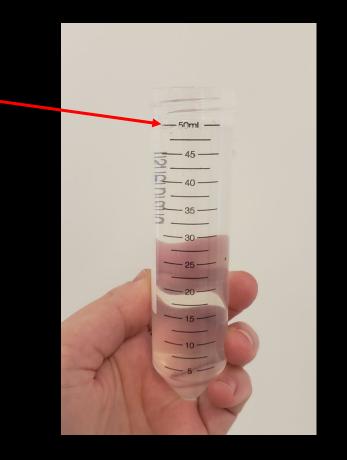
RIVER DIPPER

Only fill a sample bottle if there is enough water remaining in the river dipper container to completely fill the sample bottle to the fill line.

Do not fill part way.

Instead, empty the bottle and collect more water to **completely fill the sample with one river dipper water collection.**

Multiple sample bottles can be rinsed and filled from a single river dipper collection provided there is enough water to completely fill each sample bottle.



- Pour off samples to the required volume before capping.
 - Indicated by the black line on TP bottles
- If you fill a sample above the line, carefully flick bottle to remove small amounts of water at a time.
- If you pour off a TP sample below the fill line, do not redo the whole sample!
 - Fill the cap with sample water to pour into the bottle
 - Can redo for TN/Cl

Fill TN and Cl to 50mL line

 This allows space for addition of acid for TN and for laboratory equipment to insert pipette to withdraw sample without spilling.

ANY QUESTIONS?

REVIEW - TRUE OR FALSE

1. All parameters can be sampled using the same bottles.

2. Always face upstream when sampling.

3. Total phosphorus bottles must be rinsed three times.

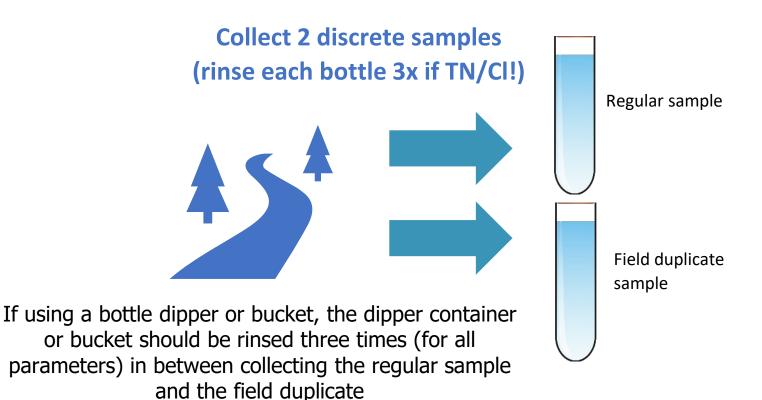
TRUE

REVIEW - TRUE OR FALSE

1. Bottle dippers or buckets must be rinsed three times before sampling.

2. If you pour off a TP sample below the fill line, you must redo the whole sample.

3. If you only have a bit of water left in your bottle dipper or bucket, you should still fill a sample partway. TRUE

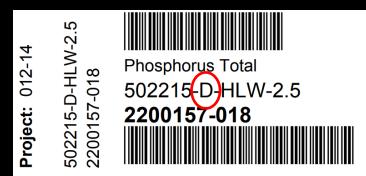

FALSE

FALSE

FIELD DUPLICATES

10% of all samples throughout season Randomly preassigned to sites by LPP staff Cannot be skipped Must be taken at the assigned sites Collect using the same protocols as regular samples – just do it twice, one after the other

FIELD DUPLICATES


FIELD DUPLICATES

For all three parameters:

TP, TN, and Cl

Separate sample taken immediately after regular sample, using the same sampling protocol (including rinsing) as regular samples

Labeled with "D" instead of "R"

DUPLICATES AND SAMPLE NUMBERS

Project: 012-02

6

507891-R-Site

Project: 012-02

507891-D-Site 9 2200160-012

FIELD DUPLICATE

2300000 - 002

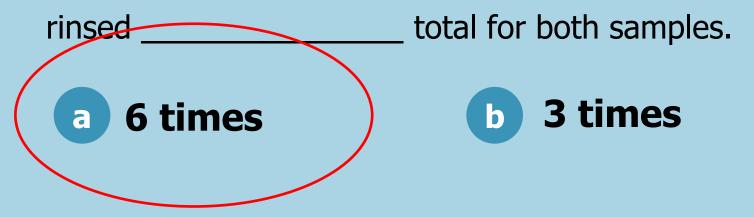
Similar to corresponding regular sample but unique final three digits

REGULAR SAMPLE

2300000 - 001

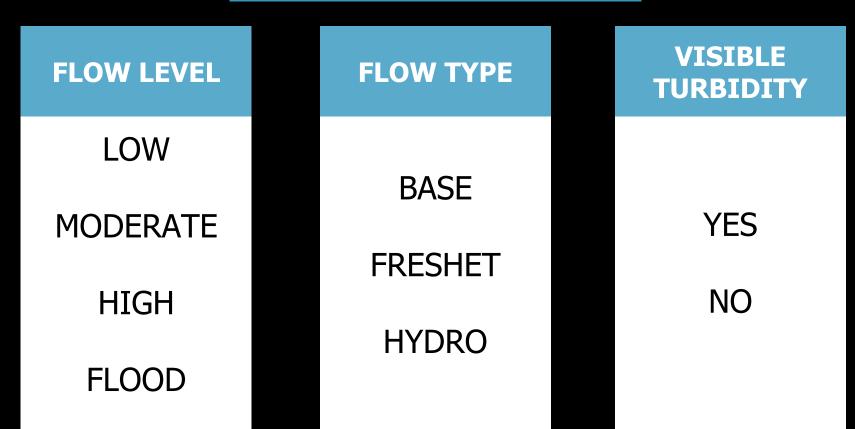
ANY QUESTIONS?

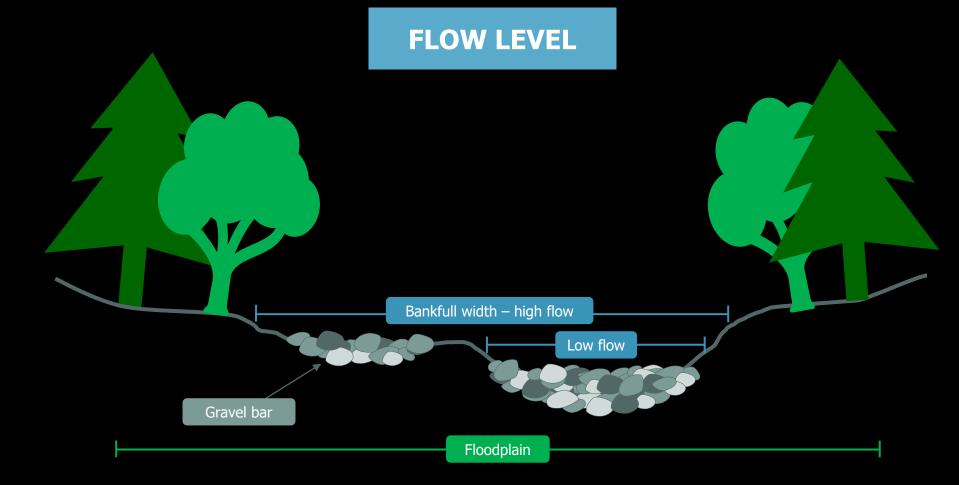
1. Field duplicate bottles should be collected regular samples.


At the same time as

a

2. When sampling field duplicates with a river dipper, the dipper collection container should be


3. Field duplicates can be taken at any site.



BREAK

FLOW OBSERVATIONS

FLOW LEVEL - LOW

Low - conditions are low relative to the entire range of flows experienced at site

- Generally occur during late winter and summer
- Streambed is typically partially dry with gravel bars exposed.
- It may be possible to walk along the dry edge of the streambed.

FLOW LEVEL - MODERATE

Moderate - at a mid-level or average streamflow conditions; most typical flows experienced in the stream

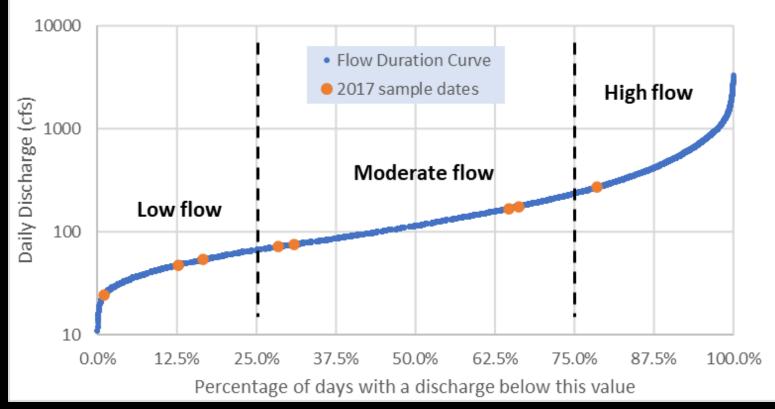
- Can occur at any time of year
- Majority of the stream bed is under water, but not up to the sharp incline of the stream bank

FLOW LEVEL - HIGH

High - Stream is well above an average level of flow

- Generally occur during spring and fall, but can occur due to rainfall any time of year
- Stream is full from bank to bank but not spilling onto floodplain.

FLOW LEVEL - FLOOD


Flood – Stream exceeds bankfull width and accesses the floodplain

- Generally occur less than 5% of time
- Also indicated by submergence or active transport of terrestrial and woody vegetation

Do not sample during flood conditions due to safety concerns

Black River Flow Duration Curve 1952-2016 water years

ANY QUESTIONS?

LOW, MODERATE, HIGH, OR FLOOD?

MODERATE

LOW, MODERATE, HIGH, OR FLOOD?

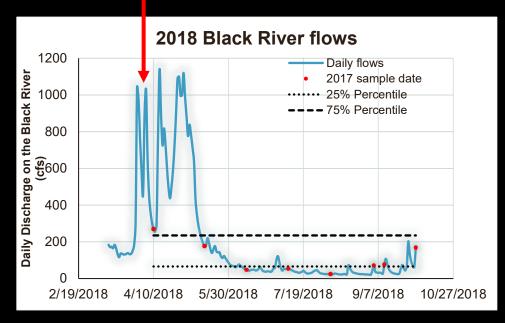
HIGH

LOW, MODERATE, HIGH, OR FLOOD?



FLOOD

MODERATE


FLOW TYPE – BASE FLOW

- Water level is relatively constant and not rising or falling.
- Subsurface flows account for almost all water reaching streams
- Can exist under both low and moderate flow levels, but not under high or flood levels

FLOW TYPE - FRESHET

- Water level is actively rising or falling in response to a rain event or snowmelt
- Water can be turbid under these conditions due to stormwater runoff and resuspension of stream bed sediments
- Can occur with all flow levels

FLOW TYPE - HYDRO

- Water level is rapidly rising or falling solely due to the release of water from an upstream dam
- Indicated by a rise in streamflow with no recent precipitation or snow melt and no similar rises on local stream gauges
- Check the watershed protection layer on the ANR atlas to identify dams and when they are operated for electricity generation

FLOW TYPE – NO FLOW

- Indicates that stream is completely dry or flow levels are so low it is more of a stagnant, mud puddle
- Do not collect sample high likelihood of contamination from sediment
- Fill out Survey123 form for site and select "no flow" option for flow type/level
- Only use "no flow" if did not sample, not to describe slow flow

ANY QUESTIONS?

1. During a freshet, the water level can rise in response to ______.

a rain eventb snowmelt

both a and b

REVIEW

2. You collect your first sample on April 17th. A rain event is predicted on April 30th (your next sample pick up is May 2nd). Should you go out and collect a sample?

a Yes! Capture that high flow event!

- Yes, but only collect at the sites where flows are high
 - No, you already collected your samples for that sample period

REVIEW

3. Should you collect a sample if your site looks like this?

NO

b

4. Should you collect a sample if your site looks like this?

a

REVIEW

5. Should you collect a sample if your site looks like this?

a

REVIEW

6. Should you collect a sample if your site looks like this?

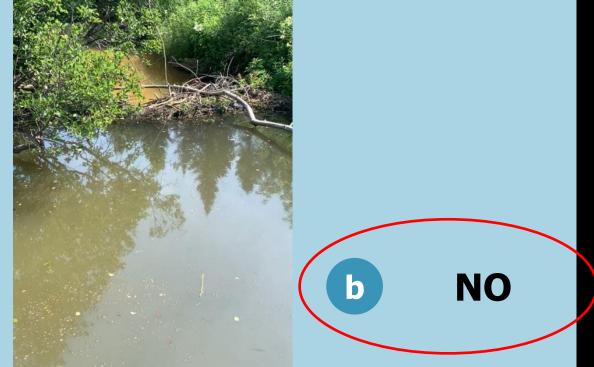
a

Hard to tell: if moving, yes. If stagnant puddle, then no. NO

7. Should you collect a sample if your site looks like this?

Hard to tell: if moving, yes.

a



REVIEW

8. Should you collect a sample if your site looks like this?

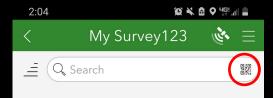
YES

a

9. Should you collect a sample if your site looks like this?

Do not sample or use extra caution during flood conditions

NO



HOW TO – INSTALL LPP SURVEY

- 1. Download/open Survey 123 app
- 2. Click **"Continue without** signing in"
- 3. Click the QR code symbol next to search bar
- 4. Align QR code with camera
- Click "Open in Survey123 field app"

SURVEY123 APP

https://arcg.is/1PXuTe0

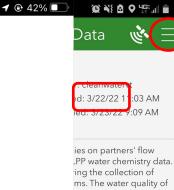
HOW TO – SUBMIT SURVEY

Open Survey

 123 app
 Click "Continue without signing in"

HOW TO -DELETE 2022 SURVEY

3. Click "LPP Flow Data"


4. Click Menu icon

III TFW 奈 3:31 PM My Su Delete Survey ΠĪ Q Search Offline Maps ζ_1 Show QR Code LAROSA PARTNERSHIP PROGRAM The LaRos Flow is an LPP Flow Data following a flow condit sending in

9:02

Ξ

Ш

tically during and on or snow melt event. It tration of a parameter at the time of sample your flow observations.

3. Click **"LPP** Flow Data"

4. Click "Collect"

9:02		
<	My Survey123	Le la
(Q, Search	
Car Piece		

LPP Flow Data

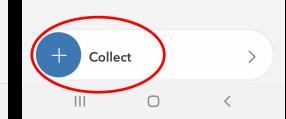
Ш

 \cap

LAROSA PARTNERSHIP PROGRAM

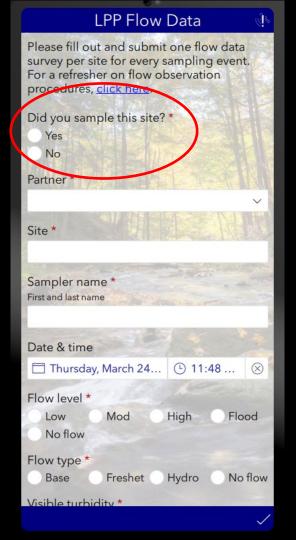
9:10

Ξ

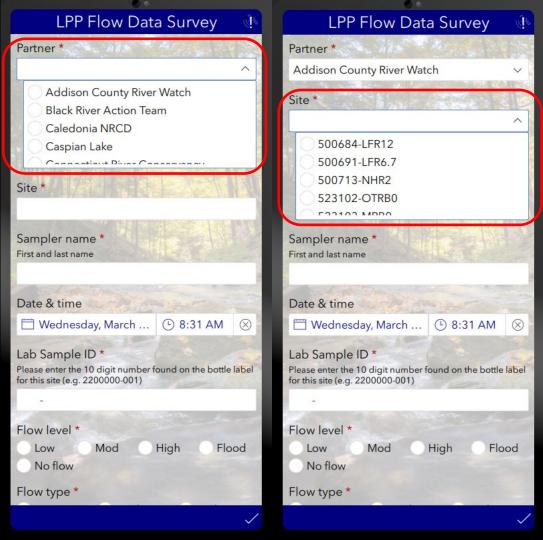

Owner: cleanwatervt Created: 3/22/22 11:03 AM Modified: 3/23/22 9:09 AM

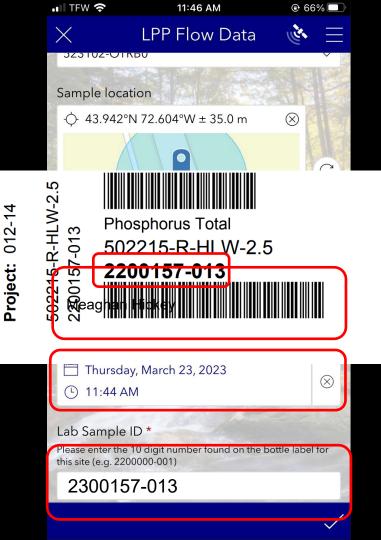
😥 📲 🖻 🗢 419 🗐 💼

اللأعم


The LaRosa Partnership Program relies on partners' flow observations to better understand LPP water chemistry data. Flow is an essential observation during the collection of water samples from rivers and streams. The water quality of a river or stream can change dramatically during and immediately following a precipitation or snow melt event. It is important to consider the concentration of a parameter and the duration of flow conditions at the time of sample collection. Thank you for sending in your flow observations.

LPP Flow Data


Please fill out the survey once per site for every sampling event, regardless of whether the site was sampled.


- 5. Choose partner name.
- 6. Choose site name.

Site names for your specific organization will be prepopulated based on the chosen partner name.

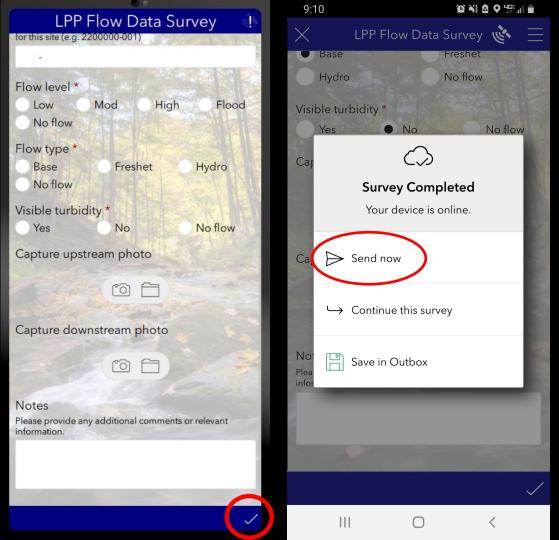
- 7. Type first and last name of sampler.
- 8. Date and time prepopulate automatically.
- Type Lab Sample ID (seven numbers – three numbers, 23XXXX-XXX).

10.Choose flow observations.

- 11. Take upstream photo.
- 12.Take downstream photo.
- 13.Note anything new or unusual.

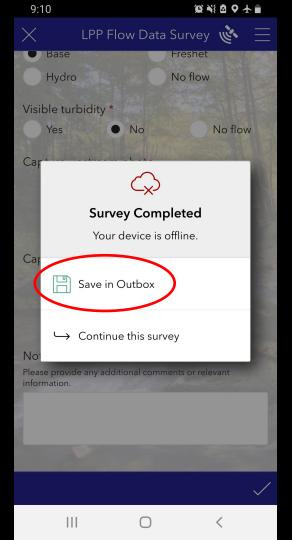
LPP Flow Data Survey						
Flow level * Low Mod High Flood No flow						
Flow type * Base Freshet Hydro No flow						
Visible turbidity * Yes No No flow						
Capture upstream photo						
Capture downstream photo						
Notes Please provide any additional comments or relevant information.						

SUBMIT FLOW SURVEY


Finished?

14. Click ✓ atbottom right

(Keyboard may hide 🗸


press "done" or "return")

15. If online, click"Send now"

16. If offline, click "Save in Outbox"

SUBMIT FLOW SURVEY

Always remember to check your outbox after returning from the field! 9:12

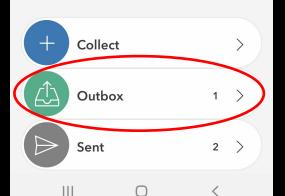
LPP Flow Data

 $> \equiv \mathscr{A}$

9:12

Ш

©318 🖻 ♀ 太言


My Survey123 🛛 🔖 📃

迎当日今十日

Owner: cleanwatervt Created: 3/22/22 11:03 AM Modified: 3/23/22 9:09 AM

The LaRosa Partnership Program relies on partners' flow observations to better understand LPP water chemistry data. Flow is an essential observation during the collection of water samples from rivers and streams. The water quality of a river or stream can change dramatically during and immediately following a precipitation or snow melt event. It is important to consider the concentration of a parameter and the duration of flow conditions at the time of sample collection. Thank you for sending in your flow observations.

EPP Elow Data

SUBMIT FLOW SURVEY

Click on Outbox.

Send remaining submissions.

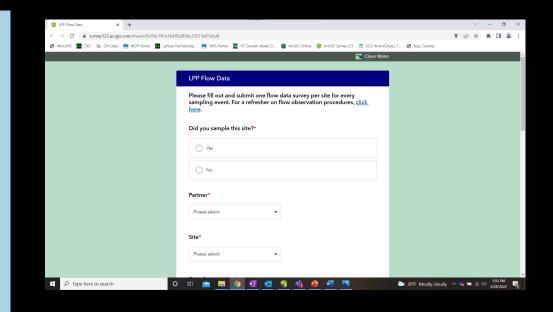
9:12	í í í	※四〇十〇	3:46 🖉	$\odot \oslash$	(Q) N	ă ♀ ५़ङ "∥ ∎
< LPP FI	ow Data	≡ می	<	Οι	utbox	لأنم
LAROSA PARTNERSHIP PROGRAM	Owner: cleanwat Created: 3/22/22 Modified: 3/23/2	2 11:03 AM		Search Site: 523545- Sample ID: 2: Modified 3/28/22		ARMAN
The LaRosa Partnership Prog observations to better under Flow is an essential observat water samples from rivers an a river or stream can change immediately following a prec is important to consider the and the duration of flow con collection. Thank you for sen	rstand LPP water c tion during the col ad streams. The wa dramatically durin cipitation or snow concentration of a ditions at the time	hemistry data. lection of ter quality of ng and melt event. It parameter of sample				
+ Collect		>				
Outbox		1 >>				\frown
Sent		2 >			ГД Мар	کی Send

111

 \bigcap

<

For coordinators and volunteers uncomfortable with using smartphones in the field, flow data can be submitted after sampling on a computer via the Survey123 webform.


Volunteers and/or project coordinators **must record flow observations in the field** using field sheets.

After returning from the field, follow the same directions in the previous slides.

Transfer flow observations from field sheets to Survey123 webform.

Always correct the date and time.

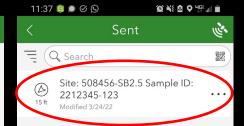
Upstream and downstream photos are **not required**.

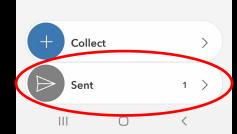
Oh no! I made a mistake but already submitted my survey...

HOW TO – EDIT SUBMISSIONS

- 1. Click on **"Sent"** folder.
- 2. Click on the submission you would like to edit.

11:37 🖻 🗩 🧭 🛇

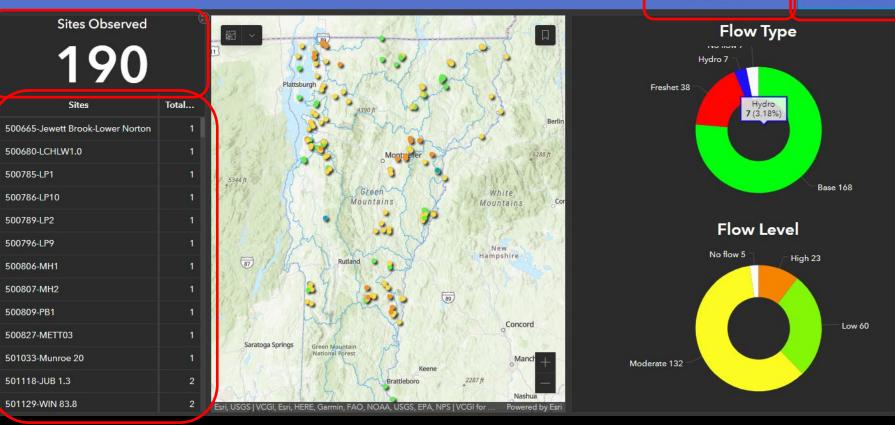

LPP Flow Data 🛛 💩 📃



LPP Flow Observation Submission Form Owner: cleanwatervt Created: 3/22/22 11:03 AM Modified: 3/24/22 11:31 AM

(c) X(🙆 🗢 45%) 🗎

The LaRosa Partnership Program relies on partners' flow observations to better understand LPP water chemistry data. Flow is an essential observation during the collection of water samples from rivers and streams. The water quality of a river or stream can change dramatically during and immediately following a precipitation or snow melt event. It is important to consider the concentration of a parameter and the duration of flow conditions at the time of sample collection. Thank you for sending in your flow observations.


HOW TO – EDIT SUBMISSIONS

- 3. Click on **"Edit** and resend".
- 4. Edit the survey and resubmit.

11:37 😰	7 🖻 🗩 🧭 😒 🤹 🎕		¥{ 🖄 ♀ 45ª,	Q ^u Gë _{al} i ∎		
<	(Sent		وللم		
	Search					
2	ite: 508456 212345-123 odified 3/24/22	-SB2.5 Sam 3	ple ID:	••••		
		\triangleright		H		
	Sen	t Survey				
S	Site: 508456	-SB2.5 Samp 2345-123	ole ID:			
● ViewF✓ Edit and resend						
List		۲ Map	الًا Empty			
	1	0	<			

LPP Flow Data

ŵ

LPP Flow Data Dashboard

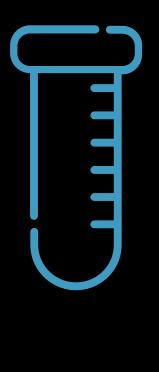
ANY QUESTIONS?

SAMPLE PRESERVATION

TOTAL NITROGEN

All samples have hold times of 28 days.

Store upright in a safe place.


- Store TN samples on ice or refrigerated after collecting
- Acidify TN samples within **24 hours**

Do not need to be kept cold or acidified

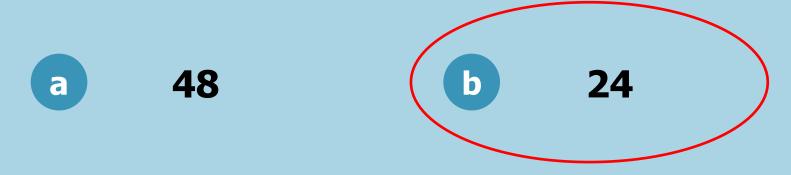
NITROGEN ACIDIFICATION


- Read Safety Data Sheet & sign safety agreement.
- Always wear provided disposable gloves and safety glasses when handling acid.
- Do NOT put gloved hands near eyes or mouth.
- DO NOT acidify in the field. Choose a safe location near sink.
- If you spill the acid, absorb with paper towel and dispose in plastic bag.
- If you spill acid on skin or clothes, rinse thoroughly with water.

Acidification should only be performed by project coordinators or volunteers that have been approved and trained by LPP staff.

ACIDIFICATION PROCEDURE

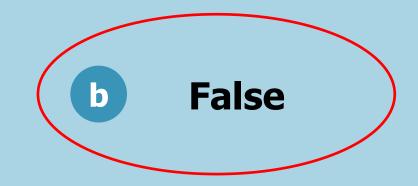
- 1. Put on safety goggles and gloves.
- 2. Choose a location near a sink.
- 3. Secure the sample in test tube rack to facilitate easy and safe dispensing of acid.
- 4. Dispense 2 drops of 98% sulfuric acid.
- 5. Immediately recap the acid dropper and replace in secondary container.
- 6. Cap the acidified samples and gently invert 5 times to mix.
- 7. Carefully remove gloves so as not to touch exterior side of glove with bare hands and dispose in a safe container.



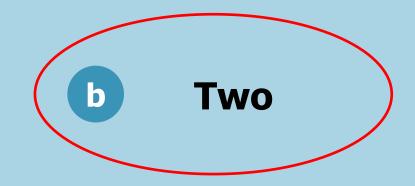
ANY QUESTIONS?

1. Nitrogen must be acidified within hours of sample collection.

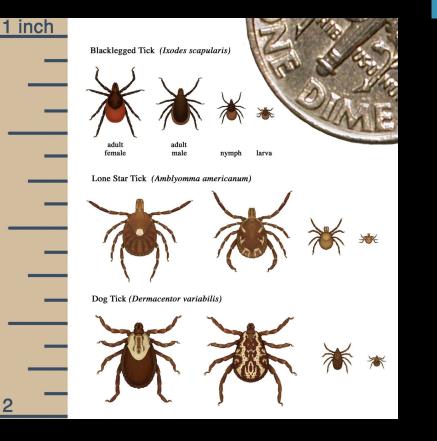
2. TP, TN, and Cl have hold times of



3. All volunteers can perform nitrogen acidification.



4. How many drops of sulfuric acid are required to acidify one nitrogen sample?


SAFETY IN THE FIELD

- Carry a cell phone, sample with a partner, and let someone know where you are, when you intend to return, and what to do if you do not return on time.
- Honor private property rights. Never cross a landowner's property without permission.
- Never wade in swift or high water. Do not wade if depth is greater than kneedeep. Do not monitor if the stream is at flood stage.
- If possible, have a first aid kit and medical form for each volunteer.
- ✤ Be aware of the nearest hospital and how to get there.
- Listen to weather reports. Never monitor if severe weather is predicted.
- Do not walk on unstable stream banks.
- Be aware of wildlife, insects, and skin irritating plants.

TICK SAFETY

POISON PARSNIP POISON IVY

BREAK

ACCESSING DATA

Partners will be emailed PDF copies of raw data from VAEL once samples have been analyzed. This data has not gone through the full QAQC process and should not be shared with the public.

All finalized and reviewed historic data is available via the **Water Chemistry Data Report** linked on the LPP website. Please use data directly from this report rather than the raw data from VAEL or the QC excel sheets.

2023 data will undergo review in Fall 2023. Our goal is to have data finalized by the end of winter.

MONITORING SITE DETAILS REPORT

.....

IWIS						
Partner ID Addison Cour	nty River Watch	~				View Report
I	▶I Fir	nd Next 🖳 -	٢		incom	
Partner ID	Location Name	Latitude	Longitude	Town	Location Description	Sampled Years
502217-HGB-1.7	Hogback Brook	44.22197	-73.07215	Starksboro	Parsonage Rd in Starksboro, fork right after bridge, Runcie residence. Wetland is behind house/pasture, through woods. Jim and Chris Runcie contact: (802) 453-4603 "stiet ID corrected 7/09 from 632	2013
508522-HK-0.8	High Knob Brook	44.21814	-73.05061	Starksboro	Above Freedom Access Road	2013, 2022
506486-HLB-0.8	Hillsboro Brook	44.21062	-73.02887	Starksboro	Rt 116 to Hillsboro Rd. Follow rd to end where bridge is washed out. Sampled DS of bridge, below confluence of 2 small streams.	2013, 2022
502215-HLW-2.5	Hollow Brook	44.29321	-73.05408	Hinesburg	Located on Hollow Rd. rotational probabilistic site, FW08VT042	2013, 2022
523105-LCC0.3	Lewis Creek Trib	44.27080	-73.06750	Starksboro	Drainage with beaver activity meeting main stem of Lewis Creek amid bracket monitoring project.	2021
523107-LCCM	Lewis Creek Trib	44.27100	-73.07120	Starksboro	Mouth of the tributary, below where the two above drainages come together, just before they enter Lewis Creek, between River Miles 14 and 15.	2021
523106-LCCS0.1	Lewis Creek Trib	44.27120	-73.07060	Starksboro	Drainage coming directly from the vicinity of a farm amid a bracket monitoring project.	2021
515954-LCHLW0.1	Hollow Brook	44.27550	-73.07660	Starksboro	Hollow Brook at Confl w/ Lewis	2017, 2018, 2019, 2021
500680-LCHLW1.0	Hollow Brook	44.28370	-73.07244	Hinesburg	Approximatly 50 m downstream from Tyler Rd bridge	2003, 2004, 2005, 2017, 2018, 2019, 2021, 2022
506209-LCR0.3	Lewis Creek	44.24847	-73.27436	Ferrisburgh	Boat Access upstream of Hawkins Bay; Capture drainage below VTDEC LTN station at Greenbush Rd	1 2018, 2019
500673-LCR14	Lewis Creek	44.27702	-73.08154		At Tyler Bridge Rd Crossing RM14	2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2021
521586-LCR14.3	Lewis Creek	44.27530	-73.07690	Starksboro	Just above confluence of Hollow Brook	2017, 2018, 2019, 2021
515955-LCR15	Lewis Creek	44.27080	-73.07150	Starksboro	Just above Clifford stabilized crossing	2017, 2018, 2019, 2021
500674-LCR15.6	Lewis Creek	44.26144	-73.06641	Starksboro	At Kelly farm RM 15.6	2003, 2004, 2005
515956-LCR16	Lewis Creek	44.25560	-73.07040	Starksboro	LaRue bridge crossing	2017, 2018, 2019, 2021
500675-LCR17.2	Lewis Creek	44.24430	-73.06409	Starksboro	At Ballpark rec field RM 17.2	2003, 2004, 2005, 2006, 2007, 2008, 2012, 2013, 2018
502598-LCR18.6	Lewis Creek	44.22900	-73.06180	Starksboro	At Lewis Creek Farm Footbridge below farm	2008, 2012, 2013
500676-LCR19.5	Lewis Creek	44.22380	-73.06332	Starksboro	At Parsonage Rd Bridge	2003, 2004, 2005, 2006, 2007, 2008, 2012, 2013
508500-LCR26.5	Lewis Creek	44.20256	-73.01862	Starksboro	Above Gorge	2013
507896-LCR27.8	Lewis Creek	44.19533	-73.05180	Starksboro	Hillsboro Road in Starksboro Valley	2012, 2013, 2022

IWIS

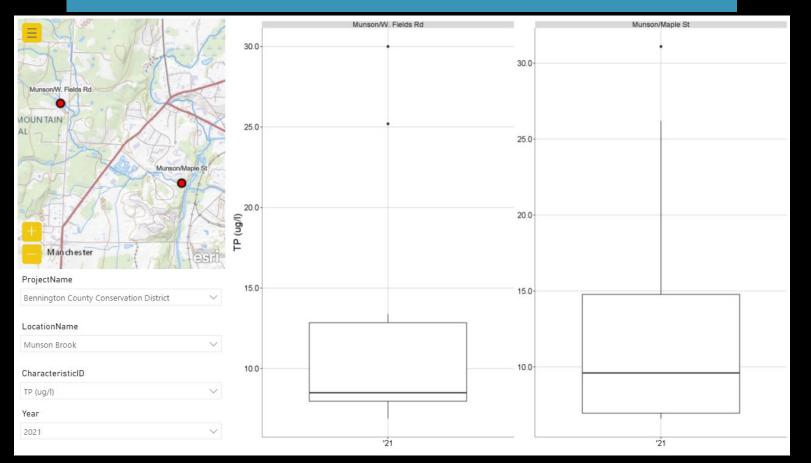
WATER
CHEMISTRY
DATA
REPORT

Start Date	1/	1/1965]	End Date	3/11/2022					View	Report
Characteris	tic Di	ssolved Phospho	rus, E. Coli Bacte	· •	Columns	Start Time,	Location ID, I	aRosa Site	~			
Partner Cod		ddison County Ri	ver Watch	~								
Partner Cot		suison county ki										
		of 2 ? 🕨 🔰		Find Next 🔍 🗸	•							
						Dissolved Phosphorus	E. Coll Bacteria	Total Nitrate/Nitrite Nitrogen	Total Nitrogen	Total Phosphorus	Total Suspended Solids	Turbidity
Visit ‡ Date	Start Time	Location ‡ ID	La Rosa 🛟 Site ID	Location Name ‡	Depth (m)	ug/l	#/100ml	mg/l	mg/l	ug/l	mg/l	NTU
6/25/2003		500681	LFB2.5	Beaver Branch	0.2		42.8			90		
6/25/2003		500680	LCHLW1.0	Hollow Brook	0.2		16					
6/25/2003		500682	LFR0	Lemonfair River	0.2		98.5			350		
6/25/2003		500683	LFR1.2	Lemonfair River	0.2		145			610		
6/25/2003		500684	LFR12	Lemonfair River	0.2		219			280		
6/25/2003		500685	LFR15.8	Lemonfair River	0.2		114			390		
6/25/2003		500686	LFR20.2	Lemonfair River	0.2		27.2					
6/25/2003		500687	LFR23.9	Lemonfair River	0.2		93.3			230		
6/25/2003		500689	LFR29.3	Lemonfair River	0.2		517			370		
6/25/2003		500690	LFR3.7	Lemonfair River	0.2		387			380		
6/25/2003		500691	LFR6.7	Lemonfair River	0.2		90.9			440		
6/25/2003		500673	LCR14	Lewis Creek	0.2		260			14		
6/25/2003			LCR15.6	Lewis Creek	0.2		153			13		
6/25/2003		500675	LCR17.2	Lewis Creek	0.2		137			9		
6/25/2003		500676	LCR19.5	Lewis Creek	0.2		74			8		

WATER CHEMISTRY DATA REPORT

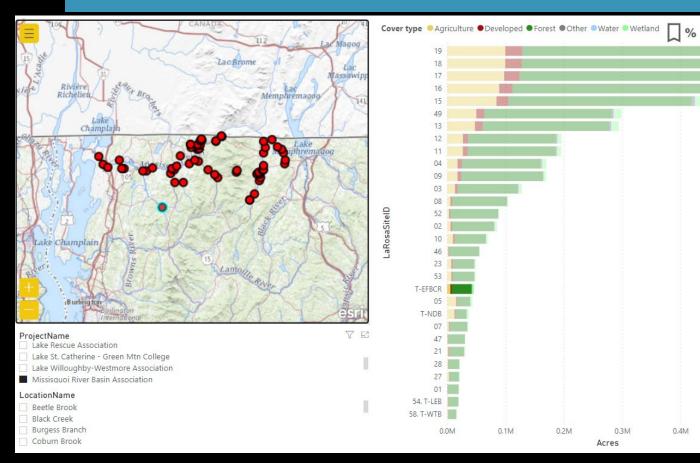
IWIS

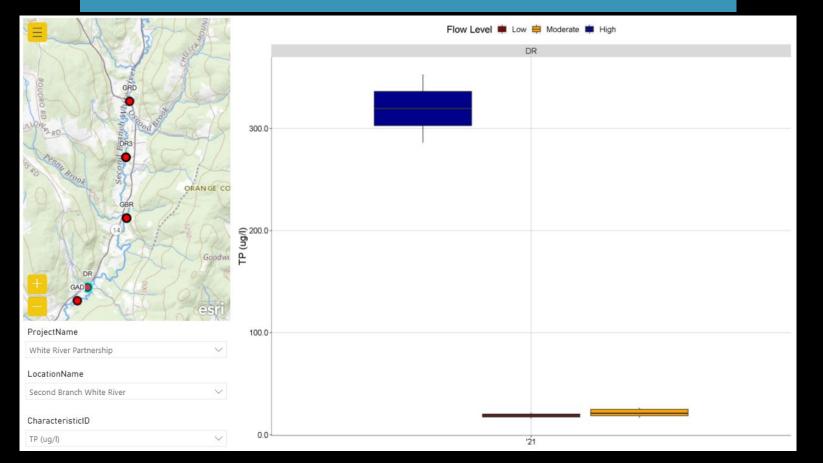
Start Date	1/1/1965		End Date	3/22/2022	View Report
Characteristic	Dissolved Phosphorus, E. Coli Bacter	~	Columns	Start Time, Location ID, LaRosa Site 💌	
Partner Code	C (Select All)	~			
	Alkalinity				
	Alkalinity measured using Grar Ash Free Dry Mass				
	Biological Oxygen Demand, 5 c				
	Bottom depth				
	۲				
IWIS					
Start Data	1/1/1065	1	End Data	2/22/2022	


Start Date	1/1/1965	End Date	3/22/2022		View Report
Characteristic	Dissolved Phosphorus, E. Coli Bacter 💌	Columns	Start Time, Location ID, LaRosa Site	•	
Partner Code	Addison County River Watch		□ (Select All) ▲ ✓ Start Time		
			Uvisit #		

nns	Start Time, Location ID, LaRosa S	ite	~		
	(Select All)				
	Start Time				
	🗆 Visit #				
	Location ID				
	✓ LaRosa Site ID				
	Combined LaRosa Site ID				
	Bio Site ID				
	C River Mile	•			

PAGE 1: WATER CHEMISTRY PLOTS


PAGE 2: WATER CHEMISTRY BOX PLOTS


PAGE 3: LAND USE BAR CHARTS

Acres

0.5M

PAGE 4: FLOW LEVEL BOX PLOTS

ANY QUESTIONS?

Discussion on diversity, equity, & environmental justice in water monitoring Ideas or thoughts on incorporating DEIJ principles in:

- Sampling site selection
- Outreach/education
- Data/information access
- Volunteer recruitment
- Building community partnerships