

European Low-emissions High-efficiency Biomass-fired Technologies

NESCAUM Directors Meeting Boston, MA June 26, 2008

Raymond J. Albrecht, P.E.
New York State
Energy Research and Development
Authority
Albany, New York

Lisa Rector Senior Policy Analyst NESCAUM Boston, MA

Biomass Combustion

Take Home Message

Low emissions

Possibly

Energy efficiency

Possibly

Economic benefits

Yes

The Concern Swiss Research - Chemical Composition of PM from Wood Combustion

Poor combustion - PM carbon-based

Clean combustion - PM inorganic salt-based

Feinstaub aus der Verbrennung von naturbelassenem Holz in automatischen Holzfeuerungen ist großteils anorganisch und besteht aus Salzen. Dieser Feinstaub weist eine mindestens rund fünffach geringere Zelltoxizität auf als der untersuchte Dieselruß.

Partikel aus automatischer Holzfeuerung

Comparison of PM filters from diesel and clean wood combustion

Quelle: Feinstaub in Holzfeuerungen und Gesundheitsrelevanz von Holzstaub im Vergleich zum Dieselruß – Dr. Norbert Klippel u. Dr. Thomas Nussbaumer, ETH-Zürich, 20.10.2006

Swiss Study of Relative Toxicity of Wood Smoke vs. Diesel Soot

Comparison between Diesel and wood particle toxicity

Are European Boilers Cleaner???

Comparative Emissions

Commercial boilers	Energy Efficiency (%)	Fine particle emissions (lb/MMBtu)
US Conventional wood chip	70-75	0.2
European high efficiency and low emission chip or pellet (residential and commercial)	85-90	0.01-0.07
European high efficiency and low emission chip or pellet w/ ESP or baghouse	85-90	0.00202
No. 2 oil (2500 ppm S)	80-85	0.005
No. 2 oil (500 ppm S)	80-85	0.001
NO. 2 oil (15 ppm S)	85-93	0.00002-0.00004
Natural Gas	80-90	0.00002

Improved Energy and Environmental Performance

Of Wood and Biomass-fired Heating Systems

Decreasing emissions

Increasing efficiency

Total Annual Emissions from Small Wood and Biomass Combustion

in Lower Austria

labr	Jahr	СО	NO _x	orgC	Staub
	Jann	Tonnen pro Jahr			
	1980	97.666	1.404	11.878	2.148
	1995	86.610	1.756	9.598	1.753
	2000	82.226	1.866	9.344	1.918
	2005	73.842	1.818	8.099	1.725

Tabelle 3: Gesamtemissionen aus Biomassekleinfeuerungen in Niederösterreich

Abblidung 1.2: Gewichtete, zeitlich kurzulierte Staubernisplanzwerte von Zeotral-Beitrugzunlagen betrieben mit Halt, jeweilt gemittelt von Beujahr 19tor bis 1997

Note: Average PM values have continued to decrease with time

Potential Markets for Wood and Biomass-fired Systems

Schools

Businesses

District Heating

Bundesanstalt für Landtechnik

Federal Institute of Agricultural Engineering

Postfach 43 Rottenhauser Straße 1 A - 3250 Wieselburg Austria / Österreich Tel.: +43-7416-52175-0 Fax: +43-7416-52175-45 Internet: http://www.bit.bmif.gv.at E-Mail: direktion@blt.bmlf.gv.at

Firewood and wood pellets account for 25 percent of heating energy in Austria

BLT is the leading independent certification lab in Europe for biomass-fired heating systems

Austrian Bio-Energy Centre works with industry on R&D challenges

Low Emissions Wood Combustion Technology

Gasification and Staged Combustion - separate paths for primary and secondary combustion air. About 40 or 50 percent primary air.

Maintain about 1200 deg F in gasification chamber. Lower temperature gasification helps to reduce soot formation by reducing fuel rich, high temperature zones in flame. Also reduces ash-based particle formation.

Technology Requirements for Low Emissions Wood Combustion

- Pre-heated combustion air
- •Insulated secondary combustion chamber
- •Residence time in secondary combustion chamber
- Oxygen sensor to automatically control Air/Fuel Ratio
- •Forced combustion air supply to control firing rate
- Computer aided analysis to optimize firebox design

European Woodstove Manufacturers

- RIKA
- The Eco-plus
 - Modulated air flow
 - CFD air flow models

Specht – Twinfire

Swiss Woodstove Emissions Research

Field Emissions	Type 1 Pre – NSPS g/hr	Type 2 ceramic. g/hr	Type 3 Staged Comb. g/hr
Filterable PM	24.8	0.7	0.3
TOC	37.0	2.7	<0.02
Secondary filter	8.6	0.6	<.005
Total condensables	45.6	3.3	<0.03
Total PM	69.9	4.0	0.40

Ofen Typ 1: Einfacher Metallofen mit oberem Abbrand, kleinem Feuerraum und kaum ausgeprägter Nachbrennkammer (typisch für Billigöfen, ohne Qualitätssiegel).

Ofen Typ 2: Typischer heutiger Zimmerofen der gehobenen Klasse mit grossem schamottiertem Feuerraum und oberem Abbrand. Sekundärluft und Ausbrandzone sind zwar vorhanden, jedoch keine räumlich klare Trennung zwischen den Zonen und eine Sekundärluftzuführung direkt im Feuerraum, nicht in einer verjüngten Zone (typisch für heutigen guten Ofen, erfüllt heutiges Qualitätssiegel)

Ofen Typ 3: Zimmerofen mit zweistufiger Verbrennung in Anlehnung an einen unteren Abbrand sowie mit Sekundärluftzufuhr in einer verjüngten Zone und einer schamottierten Nachbrennkammer. Der Ofen ist derzeit als Sonderbauform in Kleinserie verfügbar, wird aber mangels Marktvorteil gegenüber konventionellen Öfen (welche das Qualitätssiegel in der Laborprüfung bereits erfüllen) nicht mehr produziert.

0.40 g/hr = 0.13 lb/mmBtu

Residential furnaces

• KWB

- wood boiler systems from 10 – 300kW
- Standard features include automatic ignition, automatic boiler cleaning and automatic ash and soot extraction
- Other industry leaders include Kohlbach and Urbas

Typical Emissions from European Wood-fired Boilers up to 1 or 2 MMBtu/hr

	European Wood	American Oil-fired	
NOx	0.08	0.10	lb/MMBtu
СО	10 to 60	10 - 30	ppm
PM	0.01 - 0.07	0.005	lb/MMBtu

Commercial Units

- Stricter emission standards in Europe
 - In Switzerland, new units over 1.8mmBtu required to have ESP now . By 2012 existing units must have ESP or equivalent controls
 - Before controls (ESP or baghouse), total PM emissions range from 0.01 to 0.07 lb/mmBtu
 - Most units are equipped with multi-cyclone and baghouse or ESP
- European systems capable of meeting standards, US <u>units</u> would not

Comparison of European and US Wood Emission Standards lb/mmBtu

- Industry leaders in Europe include:
 - Schmidhttp://www.holzfeuerung.ch
 - Kohlbachhttp://www.kohlbach.at
 - Bertschhttp://www.bertsch.at
 - Standard

Post - Combustion Treatment

In Europe use of advanced controls is commonplace!!

- •Cyclones used as first stage of control to eliminate coarse particles but not viewed as adequate control
- •Baghouses used but expensive and require maintenance
- •ESPs commonly used and effective with fine particles but are vulnerable to fouling under heavy load conditions

ZUMIK®ON Partikelabscheider für Kleinholzfeuerungen

Electrostatic Particle Filter for Clean Wood Combustion Systems

Ruegg-Cheminee AG in Switzerland

So what else is happening in Europe???

Pellet Heating Systems In Austria

New emissions standards implemented in early 1990's led to development of ultra-clean pellet combustion

Bulk delivery and storage of pellets

Pellet heating system sales have skyrocketed In Austria and several other European countries

Sales of pellet-fired systems now equal or exceed oil-fired heating systems in several regions of Europe

Fuel standards for pellets – size, makeup, binders, etc

Micro CHP

Integration with Solar Thermal Energy

Agricultural-based Fuels

Dept. of Crop & Soil Sciences http://www.GrassBioenergy.org J.H. Cherney

J.H. Cherney E.V. Baker Professor of Agriculture JHC5@cornell.edu

Crop-based Pellet Fuels Ash and Sulfur Content

August-cut switchgrass left in field to leach

Crop-based solid biofuels show interesting potential but high (3 - 5 %) ash contents can cause operating challenges

Some crop-based pellets have 0.1 % sulfur content (equivalent to high sulfur heating oil)

SO2 emissions not thoroughly tested yet

Oeko Therm - manufacturer of biomass boilers for fuels with high ash content

Located in southern Germany

Sales of Wood and Biomass Boilers

Abbildung 13: Installierte Leistung an Biomassefeuerungen bis 100 kW in Niederösterreich [Furtner et Haneder, 2005]

Questions???