

What's Going On at Lake Carmi? Update on **Vermont's Lake** in Crisis

Oliver Pierson

Vermont Department of Environmental Conservation

Thursday April 13, 2023

Presentation Overview

- I. Lake Carmi Context
- II. TMDL & Crisis Response Plan
- III. Funding & Partners
- IV. Watershed Interventions (external loading)
- V. Aeration System (internal loading)
- VI. Water Quality Monitoring ResultsVII. Alum Treatment Feasibility StudyVIII.Conclusions & Next Steps

Lake Carmi Context

- Large, shallow lake in NW Vermont
- Lake Champlain Basin (Missisquoi)
- High TP Concentrations = blooms, low clarity, heavy aquatic plant growth
- 40% of watershed in agricultural use, rest is wooded or developed lakeshore
- Lake is impaired for phosphorus, watershed highly disturbed, high TP
- Water Quality negatively impacts recreation, property values, habitat
- Cyanobacteria blooms = health risk
- Trends mixed, recent TP increase

WQ Standards: Impaired

Impervious Surface Forest Water/Wetland Agriculture

Phosphorus Total Maximum Daily Load (TMDL)

for

Lake Carmi Waterbody VT05-02L01

October 2008

-Approved by EPA Region 1 on April 8, 2009-

Prepared by the Vermont Agency of Natural Resources 103 South Main St. Waterbury, VT 05671-0408

with guidance from:

Franklin Watershed Committee Lake Carmi Campers Association Natural Resources Conservation Service Missisquoi River Basin Association

Lake Carmi TMDL

- Science: Establishes a loading target
- Policy: Sets up implementation plan

Lake Carmi TMDL

- Sources of loading estimated
 - 85% of external load from ag
 - Internal Loading 6% of overall load
- 2008: TMDL development & approval
 - Reduce P loading by 611 kg/yr from 1535 kg/yr to 924 kg/yr
 - In lake P Target of 22 ug/l
- 2009: TMDL Implementation Plan launched, watershed P loading reduction projects underway

Table 1. Total phosphorus export, by land use, from the Lake Carmi watersned.					
		Export		Corrected	
		coefficient	Initial load	load	Loading
Land Use	Acres	kg/ha/yr	(kg/yr)	kg/yr	%
Agriculture	2,748	1.78	1979	1188	85%
Urban - lakeshore	100	2.52	102	61	5%
Urban - low density	62	2.32	63	38	2%
Forest	2,090	0.04	34	20	1%
Wetlands ¹	722	0.15	44	26	2%
Other water ²	586	0	0	0	0%
Lake Surface ¹	1,402		88	88	5%
Total	7,710		2,310	1,421	100%
100 100 C 10 C 10 C	22 A A			11 11 AT	1 1 4

Total phoephonic opport, by land use, from the Lake Correl watershed

Table 4. Estimated annual phosphorus loads to Lake Carmi by source category.

Value used to calculate this
TMDL (kg/yr)
1,421
15
97
2
1,535

TMDL Component	kg/yr	
Current load	1,535	
Wasteload allocation	0	4
Load allocation	924	
Margin of safety	103	
Total loading capacity	1,027	-
Load reduction required	611	40%

Crisis Designation & Response

- WQ Problems: 50-day bloom in 2017
 - Exacerbated by climate change?
- Significant advocacy from residents
- 2018 Lake in Crisis statute passed
- SOV Crisis Response Plan Developed
 - Identified Critical Path Projects to improve water quality in 5 sectors
 - Reinforced loose coalition of organizations working in watershed
 - State Leg & CWIP allocate funding
- Critical Path section updated twice
- Roadmap for future implementation

LAKE CARMI CRISIS RESPONSE PLAN

Version 3.0 Issued June 1, 2022

ENCY OF NATURAL RESOURCES ENCY OF AGRICULTURE, FOOD & MARKETS ENCY OF TRANSPORTATION

Funding & Partners

- Vermont Housing & Conservation Board SOV: Over \$2.5M invested since 2017
- Federal: Over \$500K via USDA-NRCS matching funds & LCBP project

Lake Champlain Basin Pr... 3% —

16%

Clean Water Investments in Lake Carmi Watershed

VERMONT

Funding & Partners

- State of Vermont led effort
 - ANR, AAFM, AOT
 - Planning, Executing, Implementing
 - Quarterly Coordination Meeting
 - Actively maintained <u>website</u>
- Local Organizations (CCA, FWC)
- Farmers, Town of Franklin
- Service Providers
 - NRCD, NRPC, UVM, Everblue
- Funding Organizations: LCBP, CWIP
- Federal Partners: EPA, USDA-NRCS

AGENCY OF AGRICULTURE, FOOD & MARKETS AGENCY OF COMMERCE & COMMUNITY DEVELOPMENT AGENCY OF NATURAL RESOURCES AGENCY OF TRANSPORTATION

Watershed Interventions

- Stressors: channel erosion, land erosion & nutrient loading
- 6 categories of interventions
 - Agriculture: SOV Required Ag Practices & BMPS, including manure injection
 - Roads: Upgrades to reduce erosion, runoff
 - Lakeshore: Lake Wise Program -> BMPs
 - Wastewater: Zero discharge wastewater system at State Park, Septic Socials
 - Natural Resources: Buffers, wetland restoration, reforestation
 - Groundwater: Assessing contribution of groundwater to lake's P budget

Marsh Brook Case Study

- DEC-supported volunteer water quality sampling -> hot spot, high P
- Marsh Brook is largest sub-watershed
- Targeted for projects in all 5 sectors
 - Stream geomorphic assessment
 - Floodplain restoration planning
 - Woody Riparian Planting
 - Snowmobile Crossing improved
 - Rt 136 Crossing improved; new culverts
 - State Park Beach Parking Lot improved
 - Ag BMP Implementation
- Reductions in Total Phosphorus since 2019, but Dissolved Phosphorus remains high

BMP Identification Contract

- DEC awarded a Lake Carmi BMP Assessment & Design Contract to Franklin NRCD using Lakes in Crisis Funds
- Work will identify and design BMPs that can reduce external phosphorus loading to Lake and tee them up for Act 76 Funding from CWSP

Summer 2022 Progress

- Project kickoff meeting at Franklin Homestead
- Boat tour around Lake Carmi
- 14 Lake Wise evaluations
- Stream walks on 7 lake tributaries
- Prioritization matrix
- BMP Project Inventory
 - 28 Potential, 16 Completed or In Progress

Next Steps

- Identify potential agricultural stream and wetland projects
- Additional Lake Wise evaluations in early summer 2023
- Finalize BMP project database
- Prioritize identified natural resources, agriculture, and shoreline projects
- 30% designs

Aeration System

- System installed to
 - prevent oxygen depletion in hypolimnion during summer stratification
 - decrease release of legacy phosphorus from sediments
 - create physical conditions that hinder cyanobacteria blooms.
- System w/ 2 compressors and 80 diffusers installed in early June 2019
- **Targets**: Maintain water temp within 2.5 C, minimum dissolved oxygen level of 2.5 mg/l
- \$12K annual electricity costs
- \$1M?: Was system effective in preventing O2 depletion, reducing internal loading & blooms?

Aeration System

2016-2019 Lake Carmi Station #1 Dissolved Phosphorus Vertical Profiles

Aeration System

- DEC & UVM monitor system to assess its performance and lake's response
- System struggled in 2020-2021 with technical problems (outages) but worked in 2022
- Outages can lead to period of anoxia at depth and internal loading of phosphorus
- System reduces internal loading when operational, BUT doesn't eliminate it
- System makes lake prone to wind mixing
- Turning system back after outages or winddriven lake mixing can lead to P fluxes
- 2023: Reconfigure system, final attempt
- <u>http://epscor.uvm.edu/LakeCarmi/</u>

The lower the number, the less wind energy needed to mix the system

Water Quality Monitoring Results

- Regional Climate Data
- Modeled P Loading Results in Watershed
- Tributary TP and DP Concentration Data
- Groundwater Data
- Cyanobacteria Data
- In-Lake Data

Regional Climate Data

- Regionally, temperature and precipitation are both increasing in Northern VT
- 2020 and 2021 saw below average precipitation at Lake Carmi; precipitation just below average in 2022
- 2020 2022 have all had above average temperatures

Modeled Results in Watershed to reduce P loading

Estimated Phosphorus Reductions by Investment Source

 In 2021, estimated P reductions in watershed exceeded TMDL goal of 611 kg, reducing P loading below the TMDL load allocation of 924 kg/year

762

2022 Tributary TP and DP

Concentration Data

Iotal Phosphorus	Min	Mean	Max
LC1 - Sandy Bay	34.9	70.3	137.0
LC5 - Dickys	31.3	48.5	73.9
LC6 - Dewing	24.2	53.4	96.1
LC8 - Marsh	29.6	127.4	281.0
LC9 - Marsh	33.9	104.9	240.0
LC10 - Marsh	32.2	68.1	149.0
LC11 - Alder	18.4	24.6	40.0
LC12 - Kanes	39.4	63.5	123.0
LC17 Hammond	16	44.5	116.0
LC20 Marsh Tile	30.7	81.0	204.0
Prouty Brook	47.7	62.5	85.9
Dissolved Phosphorus	Min	Mean	Max
Dissolved Phosphorus LC1 - Sandy Bay	Min 30.6	Mean 52.0	Max 64.8
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys	Min 30.6 17.1	Mean 52.0 28.2	Max 64.8 38.7
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing	Min 30.6 17.1 21	Mean 52.0 28.2 35.1	Max 64.8 38.7 58.6
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing LC8 - Marsh	Min 30.6 17.1 21 22.8	Mean 52.0 28.2 35.1 83.2	Max 64.8 38.7 58.6 122.0
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing LC8 - Marsh LC9 - Marsh	Min 30.6 17.1 21 22.8 29.5	Mean 52.0 28.2 35.1 83.2 79.1	Max 64.8 38.7 58.6 122.0 136.0
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing LC8 - Marsh LC9 - Marsh LC10 - Marsh	Min 30.6 17.1 21 22.8 29.5 30.3	Mean 52.0 28.2 35.1 83.2 79.1 52.8	Max 64.8 38.7 58.6 122.0 136.0 77.5
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing LC8 - Marsh LC9 - Marsh LC10 - Marsh LC11 - Alder	Min 30.6 17.1 21 22.8 29.5 30.3 14.1	Mean 52.0 28.2 35.1 83.2 79.1 52.8 17.9	Max 64.8 38.7 58.6 122.0 136.0 77.5 28.2
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing LC8 - Marsh LC9 - Marsh LC10 - Marsh LC11 - Alder LC12 - Kanes	Min 30.6 17.1 21 22.8 29.5 30.3 14.1 36.3	Mean 52.0 28.2 35.1 83.2 79.1 52.8 17.9 49.1	Max 64.8 38.7 58.6 122.0 136.0 77.5 28.2 64.8
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing LC8 - Marsh LC9 - Marsh LC10 - Marsh LC11 - Alder LC12 - Kanes LC17 Hammond	Min 30.6 17.1 21 22.8 29.5 30.3 14.1 36.3 12.5	Mean 52.0 28.2 35.1 83.2 79.1 52.8 17.9 49.1 21.9	Max 64.8 38.7 58.6 122.0 136.0 77.5 28.2 64.8 66.3
Dissolved Phosphorus LC1 - Sandy Bay LC5 - Dickys LC6 - Dewing LC8 - Marsh LC9 - Marsh LC10 - Marsh LC11 - Alder LC12 - Kanes LC17 Hammond LC20 Marsh Tile	Min 30.6 17.1 21 22.8 29.5 30.3 14.1 36.3 12.5 17.7	Mean 52.0 28.2 35.1 83.2 79.1 52.8 17.9 49.1 21.9 28.6	Max 64.8 38.7 58.6 122.0 136.0 77.5 28.2 64.8 66.3 46.0

2022 Tributary TP and DP Concentration Data

2022 Tributary TP and DP Concentration Data

2022 DP as a Percentage of TP Value

- Marsh Brook TP and DP concentrations highest, Sandy Bay & Kanes are next
- DP remains persistently high percentage of TP in Marsh Brook (70% to 80%)

Tributary TP and DP Concentration Data

 Sandy Bay Brook decreases over time, Dickys and Dewing relatively constant, and Marsh Brook has fluctuated

Groundwater Data

Kg of TP in Lake Carmi (late spring to late summer 2022)					
Lake area	1402 ac	5.67E+06 m ²	5.67E+02		
Depth avg	13 ft	3.96 m			
Lake Volume		2.25E+10L			
TP (June)	<mark>25</mark> ug/L	562 kg			
TP (Aug)	<mark>50</mark> ug/L	1124 kg			

- In other words, between mid-June and mid-August, P in lake water increases by 562 kg over 2 months = 281 kg / month.
- This increase occurs when surface water is delivering little P and groundwater trickling into the lake appears to deliver on the order of 1 to 10 kg P per month
- Or, groundwater is not a major P contributor to Lake (same as TMDL)

2013-2021 Cyanobacteria Monitoring

- Blooms are highly variable
- Surface & subsurface accumulations moved by wind, waves & currents
- Summer 2022 marked by below average precipitation and above average temperatures (new normal?), conducive to bloom formation
- 2022: First Bloom at Carmi Recorded on June 24, steady blooms from mid July to October
- Data doesn't show significant increase in high alert (Category 3) Blooms between 2013-22, but 2022 had a high number of reports

Cyanobacteria Remote Sensing

- Work by Ashton Kirol, UVM using NOAA satellite images
- Cyanobacteria Index is calculated based on reflectance of wavelengths of light off blue-green algae

Results:

- Pre-Aeration: 2017 quiet, 2018 severe
- Bloom in 2020 began almost a month earlier than 3 years prior
- 2021 typical, slightly better
- 2022 early blooms and more severe
- Platform & Satellite show same timing and relative severity of blooms

Carmi Satellite Cyanobacteria Index

Summer 2022 Temperature Data shows good mixing, within targets

Date

Lake Carmi Water Temperature

2022 Dissolved Oxygen Data: Mostly above 2.5 mg/L target at 8.5 m but not 100%

2022 TP Data: Substantial evidence that internal loading is the dominant source of summer water column P enrichment observed under aeration

2022 Manganese Data: Elevated concentrations of mangenese can be indicative of a phosphorus source in low oxygen conditions at the sediment water interface

Aeration System

- 2022 Operations: No outages, system stayed on entire summer
- 2020-2021 Operational Challenges, In-Lake P Concentrations increases

Summer Mean TP Concentration increased significantly since start of aeration

Chlorophyll A

- Chlorophyll A is a pigment present in plants and cyanos, used as a proxy for the amount of algae in the water
- 2022 mean value of 31.6 ug/L was among the five highest values
- Last three years have had higher chlorophyll A values than the ten previous years, suggesting a possible correlation with aeration
- Carmi has by far the highest mean chlorophyll a in Vermont

Alum Treatment Feasibility Study

- Alum has been used twice in Vermont to limit internal recycling of phosphorus
 - Morey (1986) & Ticklenaked (2014)
 - Treatments deemed "successful"
- Considered for Carmi in 2018 but external loading was too high -> aeration
- Today, aeration is likely not solution, and external loading reduced, creating conditions more favorable for alum
- Dec 2022: DEC advertised RFI, got three responses, one providing input on alum

Restoring Balance. Enhancing Beauty

Lake Carmi In-Lake Phosphorus & Cyanobacteria Treatment Feasibility Study Input

Response to Request for Information

PREPARED BY:

SOLitude Lake Management 590 Lake Street Shrewsbury, MA 01545 john.holz@solitudelake.com

and

Water Resource Services 144 Crane Hill Road Wilbraham, MA 011095 kjwagner@charter.net

PREPARED FOR:

Vermont Department of Environmental Conservation December 23, 2022

Alum Treatment Feasibility Study

- Strategy to manage internal & external loads is to first conduct a high dose alum application that will control the existing internal load.
- Once the sediment inactivation application is complete, conduct low dose alum applications every 2-4 years to inactivate / strip P in the water column from external loading.
- Low dose applications would decrease in dose and frequency as external loading decreases, internal load is controlled
- Cost of a higher dose treatment on the full 850-acre area at the central station to 10 cm, the cost would be \$2-\$4 million and could be done over multiple years
- More study needed!

Restoring Balance. Enhancing Beauty

Lake Carmi In-Lake Phosphorus & Cyanobacteria Treatment Feasibility Study Input

Response to Request for Information

PREPARED BY:

SOLitude Lake Management 590 Lake Street Shrewsbury, MA 01545 john.holz@solitudelake.com

and

Water Resource Services 144 Crane Hill Road Wilbraham, MA 011095 kjwagner@charter.net

PREPARED FOR:

Vermont Department of Environmental Conservation December 23, 2022

Conclusions and Next Steps

External P Loading

- Drought conditions in 2020-21, very limited surface water flow into the lake, helped reduce external load
- Modeled Results show BMPs leading to decreases in external P loading
- Groundwater not a major TP source
- No related in-lake signal
- Legacy Phosphorus and Lag Time Concept: lakes are slow to recover after high external loading is reduced

Conclusions and Next Steps

Internal P Loading

- 2008 TMDL Calculation underestimated internal P loading contribution
- UVM analysis show importance of internal P loading for fueling blooms in hot, dry conditions
- Aeration System 100% Operational in 2022, exacerbated internal P loading
- Significant Blooms on Lake in 2020-22
- "Crisis" situation persists

Conclusions and Next Steps

Plans for Summer 2023:

- Continue BMP Identification, Design, Implementation in watershed
 - Please work with us Lake Wise, Agricultural BMPs, Roads
- Maintain UVM Monitoring Platform
- Reconfiguration of Aeration System to pump more O2 to deepest part of lake where internal loading occurs
- Use SFY24 CWIP Funds for Alum Feasibility Study (Alternatives, EIA)
- If favorable, secure permits & funding

Thanks for your attention! Questions?

