Wetland Hydrology Criteria and Field Indicators

Criteria for Wetland Hydrology

Corps Manual:

Area is inundated or saturated to the surface for at least 5% of the growing season in most years

Criteria for Wetland Hydrology

National Food Security Act Manual:

- Area is inundated for at least 7 consecutive days during the growing season in most years, or
- Saturated at or near the surface for at least 14 consecutive days during the growing season in most years. Soils may be considered saturated if the water table is within:
 - 0.5 ft of the surface for sands
 - 1.0 ft of the surface for all other soils

Growing Season

The portion of the year when soil temperature (measured 20 inches below the surface) is above biological zero (41 °F or 5 °C).

Growing Season

May be approximated by:

- Period when air temperatures are above 28 °F at a frequency of 5 years in 10
- Data sources:
 - Soil survey reports
 - WETS tables

Kinds of Hydrologic Data

Tide and stream gages

Kinds of Hydrologic Data

Groundwater wells

Kinds of Hydrologic Data

Repeated aerial imagery

Sources of Hydrologic Data

- Corps District offices
- U.S. Geological Survey
- National Oceanic and Atmospheric Administration
- Natural Resources Conservation Service
- State, county, and local agencies
- Developers and consultants

Evaluating Wetland Hydrology

Because hydrologic data are often unavailable for project sites, most wetland hydrology decisions are based on indicators

Hydrology Field Indicators

Primary Indicators

- Observation of inundation
- Observation of soil saturation
- Water marks
- Drift lines
- Sediment deposits
- Drainage patterns in wetlands

Primary Indicators

Direct observation of inundation

Primary Indicators – Soil Saturation

COE Manual -

Condition in which all easily drained pores between soil particles are temporarily or permanently filled with water.

Saturation

• Saturation

- Water content definition when all pores are filled with water, except those that contain entrapped air
 - · Measured indirectly by tensiometers or on a weight basis
 - · Field observation not reliable nor scientific
 - Is the basis of the word "saturation" in the COE 87 Manual
 - The only way the capillary fringe could ever be "saturated"
- Water pressure definition when its water has a pressure that is equal to or greater than atmospheric pressure
 - Field observation of the water table

Water Table

The upper surface of groundwater, or the level at which water stands in an unlined borehole.

Water is at atmospheric pressure or greater

Capillary Fringe

A zone immediately above the water table in which water is drawn upward by capillary action.

Water is at less than atmospheric pressure.

Capillary Fringe

- "the soil is saturated to the surface at some time during the growing season of the prevalent vegetation." (Paragraph 26.b.3), and
- "the depth to saturated soils will always be nearer to the surface due to the capillary fringe." (Paragraph 49.b.2).
- Estimates of capillary fringe are based on soil texture alone*

Hypothetical Capillary Fringe

Capillary Fringe - Reality

- Thickness of the cap. Fringe depends on:
 - Size of the largest pores
 - Texture, structure, OM
 - Whether water table is rising, falling, or static
 - Whether plants are extracting water from the soil

Figure 1. Soll water characteristics for the surface horizon (0-25 cm) for eight hydric solls in the North Carolina Coastal Plain

Primary Indicators

Water marks

Primary Indicators - Drift Lines

Primary Indicators

Sediment deposits

Primary Indicators

Drainage patterns in wetlands

Hydrology Field Indicators

Secondary Indicators (2 or more required)

- Oxidized root channels
- Water-stained leaves
- Local soil survey data
- FAC-neutral test*
 * Not used by New England COE

Oxidized root channels (rhizospheres)

Water-stained leaves

Local soil survey data

FAC-neutral test (OBL + FACW) > (FACU + UPL)

Other

- Fe discharge
- Spagnum moss
- Biological
- ???

Meteorological Considerations

To interpret hydrologic data or field observations, one must consider antecedent precipitation

- Did it rain immediately before the site visit?
- Has long-term precipitation been "normal"?

Evaluating Normal Rainfall

Grand Island, NE

How representative of normal conditions are hydrologic data collected in:

• May 1991?

• August 1991?

Normal Precip, Keene, NH April – October 2003

Evaluating Normal Rainfall

WETS tables

- USDA National Water and Climate Center
- Analyze monthly precipitation data from >8,000 National Weather Service stations
- Based on a standard 30 years of rainfall data
- Provide monthly and annual thresholds for:
 - Below normal rainfall (lowest 3 years in 10)
 - Above normal rainfall (highest 3 years in 10)

EVALUATION OF ANTECEDENT PRECIPITATION FROM 30-DAY ROLLING TOTALS

Prior 30- day Block Site Visit: 4/30/04	Dates of Block (30,60,90 days prior)	Recency Weighting Factor	Block "Normality" above normal, below normal, or normal	Precip. Level weighting factor	Rating Value Product of c. 3 * c. 5
1 st 30 days prior	April 04	3	above	3	9
2 nd 30 days prior	March 04	2	below	1	2
3 rd 30 days prior	Feb. 04	1	below	1	1
Sum of c. 5					12

If sum is 6 - 9, then prior period has been drier than normal. If sum is 10 - 14, then prior period has been normal. If sum is 15 - 18, then prior period has been wetter than normal

Further Information

- "Accessing and Using Meteorological Data to Evaluate Wetland Hydrology"
- "Guidelines for Conducting and Reporting Hydrologic Assessments of Potential Wetland Sites"
- "Installing Monitoring Wells/Piezometers in Wetlands"
 - http://www.wes.army.mil/el/wrap/techtran.html#reports

Data Sources on the Web

- WETS tables
 - http://www.wcc.nrcs.usda.gov/water/wetlands.html
- USGS Real-Time Water Data
 - http://water.usgs.gov/realtime.html
- USGS Historical Stream Flow Data
 - http://h2o-nwisw.er.usgs.gov/nwis-w/US/