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monthly fuel price reports image from GeodVA (nttp://www.geodva.vt.edu/A2/A2 htm#A2sect): in unconsolidated materials (4 or 5). In an open loop system (6) water may be discharged.back Figure 6. Standing column well; open loop system. the second heat exchanger to water, which is then circulated either under a
Virginia Tech, VA Dept. of Mines, Minerals, & Energy and VA State Energy Office into the borehole or elsewhere. Figures 4-7 from: Luce, Ben, 2011, Heating Your Home or Business in Vermont with a radiant floor or into an air handler

ivonhn g Geothermal System, Northeast Vermont Development Association.
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BEDROCK, WATER WELL TEMPERATURES AND WELL LOG DATA
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