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Executive Summary 
 
 The purpose of this project is to advance the state of landslide mapping and landslide 
hazard assessment in Vermont by developing and testing a protocol to map potential hazard 
areas.  The results of this project will be incorporated into the State Hazard Mitigation Plan, 
which will be updated in 2013.   
 
 This project was divided into three parts.  Part 1 involved set up of the project, creation of 
a landslide database, and selection of test sites.  Part 2 involved development of the protocol.  
Part 3 involved preparation of the protocol for incorporation in the State Hazard Mitigation Plan. 
 
 Seven site areas were selected in an attempt to represent conditions throughout Vermont. 
As a bare-earth lidar digital elevation model (DEM) was envisioned as being a key part of any 
resulting protocol (and the distribution of lidar data in Vermont was more limited when this 
study was conceived) the study sites are mostly within Chittenden County. Other considerations 
in site area selection included map coverage, geology, elevation, types of terrain, urban 
disturbance, and types of landslides expected.  The site areas range in size from 1.28 to 12.58 
km2 for a total of 41.3 km2.  Site areas include parts of Alder Brook in Essex, Bartlett Brook in 
South Burlington, Clay Point in Colchester, Indian Brook in Colchester, Joiner Brook in Bolton, 
La Platte River and McCabe’s Brook in Shelburne, and Smugglers Notch in Cambridge. 
 
 Data collection included a literature review, photo interpretation, and field 
reconnaissance.  Landslide characteristics were collected using a field data sheet developed as 
part of this project.  Data were input into an ArcGIS project for each site area. 
 
 Fourteen potential parameters were considered as to their effect on landslide hazard.  
These included location with respect to the marine limit of the Champlain Sea, aspect, distance 
to stream, elevation, hydrologic group, NDVI, profile curvature, roughness, slope angle, slope 
height, soil type, stream power index, surficial geology, and topographic wetness index.    
 
 A frequency ratio model was used to analyze the site areas and the landslides identified 
there.  At most site areas, the most important parameters were determined to be slope angle and 
roughness, although soil type and topographic wetness index are also important at some site 
areas.  Slope angle and distance to stream/lake were found to be the most important parameters 
along Lake Champlain shoreline.  The important parameters were then combined to produce a 
landslide susceptibility map.  These results were verified with field checking. 
 
 A heuristic method was used to complete the delineation of areas sensitive to landslide 
hazard.  This included consideration of the frequency ratio maps, surficial geology, slope angle, 
profile curvature, topographic contours, outcrops, and mass failure sites identified by the DEC 
River Management Program during their Stream Geomorphic Assessments. 
 
 A protocol was written for analyzing susceptibility to landslide hazards at other sites 
using this method.  This process was found to work best for the high-angle landslides, which in 
these sites were predominantly translational slides.  Based on the results of the frequency ratio 
analysis, the most important parameters for identifying these high-angle translational landslides 
are slope angle and roughness, although soil type and topographic wetness index are also 
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important at some site areas.  Slope angle and proximity to the shoreline were found to be the 
most important parameters along Lake Champlain. 
 
 Low-angle rotational landslides were difficult to identify using the terrain analysis phase 
of the protocol.  Frequency ratio analysis suggests that the most important parameters for the 
low-angle rotational slumps are likely to be soil type and topographic wetness index, although 
surficial geology will likely prove to be important too. However, as there were not many of this 
type of landslide available in the study sites, these conclusions are preliminary. 
 
 Debris flows and associated features in the Smugglers Notch area can be accurately 
mapped by a combination of field work and photointerpretation, but lidar data was not available 
to test whether or not terrain analysis could successfully identify the features. 
 

Our trials indicate that an accurate bare-earth lidar digital elevation model is extremely 
helpful. Indeed, it is probably an essential prerequisite for successful terrain analysis using the 
frequency ratio method described in the protocol. That does not mean that hazard mapping 
cannot be undertaken without lidar terrain data. Frequency ratio analysis can be tried, and if field 
review indicates that it is inadequate, then the areas of high hazard potential can be identified by 
careful stereoscopic photointerpretation and field work. However, the work will proceed far 
more efficiently if an accurate bare-earth lidar DEM is available. 
 
 Based on the results of this study, it is suggested that in most parts of Vermont, areas of 
at least 25 to 50 sq. km. will probably yield enough landslides for a robust analysis. 
Alternatively, if the site of interest is smaller, the best results occurred when the following 
criteria were met: There is, on average, a minimum of one landslide per square kilometer in the 
site area; the average size of the landslides is at least 400 square meters; and at least 30% of the 
landslides are greater than 400 square meters. 
 

If the landslides are small in area, then it becomes critical to use a mapping-grade GPS 
with sub-meter accuracy. Otherwise, mislocation of landslides may cause pixels to be mis-
assigned during the terrain analysis, leading to a smearing out or reduction of the landslide 
terrain signature. 
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 Introduction 
 
 The purpose of this project is to advance the state of landslide mapping and landslide 
hazard assessment in Vermont by developing and testing a protocol to map potential hazard 
areas.  The results of this project will be incorporated into the State Hazard Mitigation Plan 
(SHMP), which will be updated in 2013.  The protocol will provide regional and municipal 
planning agencies with a methodology to assess landslide hazard in their respective areas.   
 
 This project was undertaken by the Vermont Geological Survey (VGS) with planning 
assistance from the Chittenden County Regional Planning Commission (CCRPC).  The CCRPC 
provided land ownership information, guidance for meeting with the town officials of each 
project site, and offered suggestions to incorporate the protocol in the SHMP as well as make the 
protocol and maps useful as tools for planning in Vermont.  The CCRPC also detailed how the 
protocol would be incorporated into its planned 2016 update of the Chittenden County Multi-
Jurisdictional All-Hazards Mitigation Plan. 
 
 This report describes a protocol for mapping landslides in natural materials and for 
identifying areas in natural materials that are sensitive to slope failure or landsliding.  It is not 
intended to quantify the risks posed to people or property that may result from landslides, nor is 
it intended to identify slope failures that may occur in artificial fill or other human constructions. 
Any inventories undertaken using the protocol are for planning purposes only and such 
inventories would not constitute site-specific geotechnical analyses.  
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General Information about Landslides 
 
 The term "landslide" describes a wide variety of processes that result in the downward 
and outward movement of slope-forming materials including rock, soil, artificial fill, or a 
combination of these.  The materials may move by falling, toppling, sliding, spreading, or 
flowing. For a general introduction to landslides, Highland and Bobrowsky (2008) provide a 
good introduction to classification, causes, and associated hazards.  Turner and Schuster (1996) 
and Sidle and Ochiai (2006) provide very complete overviews of landslide analysis, including 
detailed summaries of landslide types, field investigation methods, and strength and stability 
analysis.  Table 1 shows a classification of slope movement types, with the common landslide 
types in Vermont emphasized. 
 

Table 1 - Simplified classification of slope movement types  
Modified from Varnes (1978).  Types common in Vermont are in bold. 

  
Type of 

Movement 
Type of Material 

Bedrock Engineering Soils 
 Predominantly coarse Predominantly fine 

Falls Rock fall Debris fall Earth fall 
Topples Rock topple Debris topple Earth topple 
Slides* Rock slide Debris slide Earth slide or slump 
Spreads Rock spread Debris spread Earth spread 
Flows  Debris flow Earth flow 
Complex Combinations of two or more types of movement 
Creep Several types 

*Slides may be subdivided into rotational and translational types. Rotational slides in relatively homogeneous materials are 
commonly called “slumps”. The term “rotational slump”, although somewhat redundant, will be used here to emphasize the 
distinction from translational slides. 
 
 
 Figure 1 shows the two most common types of landslides in Vermont: Rotational slumps 
and translational slides. Figure 2 is a graphic illustration of a landslide, with the commonly 
accepted terminology describing its features. 
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    a.   Rotational slump                     b.  Translational slide 
          and flow                       and flow 
         
 
 

Figure 1 - Two Common Types of Landslides in Vermont. a) rotational slump and flow, b) 
translational slide and flow. From Highland and Bobrowsky (2008).  
 

 
 

 
 

 
Figure 2 - Generalized Complex Rotational Slump/Flow Showing Principal Features. Landslides 
with this overall form are common on clayey to sandy lacustrine deposits throughout Vermont. 
In many cases the displaced material has been at least partially eroded away by stream flow. 
Length (L) refers to the total slope length from crown to the tip of the toe. Width (W) refers to 
the width of the feature measured across the slope at the location of greatest width. Depth (D) is 
measured in a vertical plane and perpendicular to the original slope. Height (Ht) refers to the 
vertical height from the toe up to the top of the slide. Modified from Cruden and Varnes (1996, 
Figure 3-3). 
 

Ht 
L 

W 

D 
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 Landslides can be triggered by one or a combination of factors, including fluvial (stream) 
erosion, soil saturation from snowmelt or heavy rains, human modification of a slope by 
excavation of the toe or increasing of the load on top of the slope, and several others. Fluvial 
erosion leads to landslides by removal of material at the toe of a slope (resulting in steepening), 
or by lowering of the stream bed (effectively increasing the height of the slope).  
 
 Fluvial erosion is considered the most important contributing factor to landslides. In the 
past, unless the area was identified as hazardous through a fluvial geomorphic assessment and a 
river corridor plan, areas susceptible to landslides were sometimes not identified as hazardous if 
they were located well above the elevation that would be designated as hazardous under Federal 
Emergency Management Agency flood hazard area maps. This landside mapping protocol is 
intended to address this shortcoming. 
 
Landslides Types Common in Vermont 
 
 The most common types of landslides in Vermont are slides, which take two general 
forms; rotational slumps and translational slides. The translational slides occur on a wide variety 
of unstable slopes underlain by weathered, dense till, as well as slopes underlain by sandy to 
clayey lacustrine deposits, whereas the rotational slumps are more common on unstable slopes 
underlain by sandy to clayey lacustrine deposits. Both rotational and translational failures imply 
that the material has internal cohesion; otherwise the material would disintegrate into some sort 
of flow. They are described in more detail in the following paragraphs and in Appendix A.  
 
Rotational Slumps 
 Rotational slumps are common in the stratified deposits that are widespread in the larger 
stream valleys of Vermont, especially the cohesive glaciolacustrine silts, silty clays, and clays, 
although they may also occur in glacial till following especially severe episodes of stream 
erosion. The characteristic form of the rotational slump has a curving fracture or shear surface 
that intersects the ground either on the bank or behind the top of the bank. It is then seen to curve 
down to a bed or lamination either within the bank or at the base. The shear may extend all the 
way out to the free face or, more commonly, curve upward to take a path of least resistance to 
the free surface. Slump material often undergoes considerable deformation during failure and as 
the displaced material moves downward, the lower parts of this must, if they stay at least partly 
together, ride up over the lower end of the rupture surface (where the rupture broke up toward 
the old ground surface). It is also common for pieces of the displaced material to stack up on top 
of or push over earlier blocks or masses of displaced material.  Seen in plan view from above, 
such rotational shear surfaces are commonly arcuate and concave out toward the stream. Earth 
flows in the lower portions of rotational slump/flows are in some places so extensive that they 
mask the original brittle nature of the slope failure. 
 
 A special type of rotational slump was encountered in the La Platte River site area. 
Besides a number of translational slides, three areas of low-angle rotational slumps were 
discovered. In these low-angle slumps, the overall slide angle is less than about 10°. This 
contrasts with the normal rotational slumps which usually have overall slide angles of 25° or 
more. All three low-angle slumps are within the elevation range of the late-glacial Champlain 
Sea and have fine-grained silt-clay deposits at depth. This type of landslide was not encountered 
in the other site areas and appears to be relatively uncommon. However, because these landslides 
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are quite large, it is important that the possibility of occurrence of these low-angle slumps is 
considered in landslide inventory efforts. 
 
Translational Slides 
 Unstable slopes that are underlain by the dense till that is common throughout Vermont 
commonly fail through relatively shallow landslides. These slides are also common in stratified 
lacustrine and marine sands, silts, and clays. On wooded slopes that have not experienced 
landsliding for a considerable time, the upper several feet is typically some combination of 
surficial material that has weathered in place and/or colluvial material derived from the surficial 
deposits. In both cases the material retains the wide range in grain sizes of the parent material 
and is significantly weaker than the underlying unweathered deposit. This upper material is often 
relatively impermeable and thus slow to drain. If the toe of such a slope is eroded by a stream, 
the contrast in strength between the weathered surficial material above and the dense, relatively 
unweathered material below results in the slope having a tendency to fail along the boundary. 
Thus, although the slides can extend great distances up and down the slopes and along the slopes, 
the slides rarely "bite" into the hillside deeper than 3 meters (10 feet) or so at a time. 
 
Age of Landslide Activity 
 
 An active landslide is one that has moved within the last year.  The sides and upper 
margin of such a landslide are generally sharp and any exposed slide surfaces are bare of 
vegetation or have only the beginnings of pioneer vegetation on them.  
 
 An inactive landslide has not moved within the last year, but it is in a setting in which it 
could be reactivated (Cruden and Varnes, 1996). One that has been inactive for several years 
may be largely revegetated, at least with pioneer vegetation. Inactive landslides are common near 
actively migrating stream meander bends where the site of landslide activity has shifted 
downstream as the stream meander has shifted downstream. The inactive slides may very well be 
reactivated if another meander bend migrates down from upstream.  
 
 We define a relict slide as one where there is no evidence of movement for many years 
and the likely causative agent is no longer present. An example would be a former stream cut 
bank formed by stream erosion in early Holocene time. If the stream has since cut down 
vertically and moved away in such a fashion that it is now trapped by bedrock and would be 
unable to move back to the old cut bank, that cut bank could be considered relict. Such a feature 
is generally completely revegetated and the edges have been softened by erosion.  
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Description of Project 
 
 The project was divided into three phases.  Part 1 involved set up of the project, creation 
of a landslide database, and selection of test sites.  Part 2 involved development of the protocol.  
Part 3 involved preparation of the protocol for incorporation in the State Hazard Mitigation Plan. 
 
Part 1 –Set Up  
 
A.  Obtain equipment, maps, photos 
 Set up of the project included obtaining equipment, maps, and aerial photographs.  The 
following table explains what equipment was purchased and its use. 
 

Item Use 
Computer w/ Microsoft Office & Monitor An updated computer was necessary to perform the 

photogrammetric analyses for this project. 
Mikrotek Scanmaker 1000 XL to do high quality 
scanning of large aerial photos 

The scanner was used to do high quality scans of paper aerial 
photographs from the 1940’s, 1960’s, and 1970’s. 

Software - Renewal of ERDAS-Imagine license 
and addition of Stereo Analyst Extension to digitize 
landslide polygons and other features directly into 
GIS. 

ERDAS-Imagine was used to analyze the historical aerial 
photographs in stereo, identify landslides, and digitize their outlines 
for input into ArcGIS.  Because of the complexity of rectifying 
adjacent photos, this process was found to be time-consuming and 
was only performed on the historical photos in the La Platte River 
site. 

 
 The maps and GIS layers necessary for this project were available primarily from the 
Vermont Geological Survey (VGS), the Vermont Center for Geographic Information (VCGI), 
the Vermont Mapping Program (part of the Vermont Department of Taxes), State GIS servers, 
Natural Resources Conservation Service of the Department of Agriculture (NRCS), and the U.S. 
Geological Survey (USGS) website.   
 
 Recent orthophotos were available from the sources listed above.  Older aerial 
photographs were available at the VGS and borrowed from the Agency of Natural Resources, 
Water Resources Division and the Department of Forests, Parks & Recreation.   
 
 
 
B.   Landslide database  
 A landslide database was created on ArcGIS.  The format of the database is similar to a 
field data sheet for landslides, which was also created.  The data sheet and instructions for its 
completion are included as Appendix A.  Details of the fields in the database are included as 
Appendix B.  Briefly, the fields in the database include the following:  
 

Location information 
Observers 
Date of data collection 
Style of slope failure (landslide, gully, etc) 
Type of landslide and material 
Activity (active, inactive, relict) 
Geometry (length, width, depth, height, slope angle, aspect) 
Surficial materials 
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Presence of bedrock, seeps, piping, toe erosion, etc. 
Comments (including extent of damage, if any) 

 
C.  Literature Review 
 A review of literature pertaining to landslides in general, methods for assessing landslide 
susceptibility, and particularly landslides in Vermont was conducted.  The results of this 
literature review are incorporated in this report.  
 
 Highland and Bobrowsky (2008) provide a good introduction to classification, causes, 
and hazards associated with landslides. Turner and Schuster (1996) and Sidle and Ochiai (2006) 
provide very complete overviews of landslide analysis, including detailed summaries of landslide 
types, field investigation methods, and strength and stability analysis. 
 

A USGS study of slope stability issues in Vermont, undertaken in cooperation with the 
Vermont Geological Survey, resulted in several publications that contain useful information on 
slope stability. Much of this work is summarized in Baskerville and others (1993) and 
Baskerville and Ohlmacher (2001). Of particular note is the cluster of at least four debris 
avalanches that occurred on Dorset Mountain on August 10, 1976. Such events, although 
comparatively rare in Vermont, have the power to cause tremendous damage. Where they have 
occurred in stream valleys, the signs may be discernible for many decades thereafter. Note that 
the Dorset slides extended up to 4.2 kilometers from their source areas. Similar debris avalanches 
or debris flows also swept down the valleys of Mill Brook in Fayston in 1827 and Slide Brook in 
Fayston in 1897 (Baskerville and others, 1993). 

 
Several studies of debris flows and/or debris avalanches in the mountainous terrain of 

Vermont and surrounding states have been undertaken in recent decades, including Flaccus 
(1958), Kull and Magilligan (1994), and Milender (2004) in New Hampshire, Bogucki (1977) in 
the Adirondacks, and Dethier and others (1992) on Mount Greylock in Massachusetts. 
Springston conducted a detailed analysis of rockfall and debris flow hazards in Smugglers Notch 
in northwestern Vermont (Springston, 2009). 

 
The close association between landslides and stream erosion has been investigated in a 

number of recent studies. Barg and Springston (2001), Springston and Barg (2001) and 
Springston and Barg (2002) studied the fluvial geomorphology and surficial geology of the Great 
Brook watershed in central Vermont. This work included mapping of over 20 large landslides. 
Springston and others (2004) conducted a detailed analysis of a large rotational slump in 
lacustrine sediments on the Mad River in Waitsfield. Since approximately 2000, extensive 
studies of fluvial geomorphology in Vermont watersheds have been undertaken by the River 
Management Program of the Vermont DEC. Some of the results of these studies are summarized 
in Kline and Cahoon (2010). These assessments include mapping locations of mass failures that 
can be seen walking along the stream and will be utilized extensively in this protocol. Springston 
(2010) summarized existing knowledge of bank stability issues in Vermont and included a 
literature review of previous landslide studies in the state. Landslide activity in the wake of 
Tropical Storm Irene (August 2011) is the subject of ongoing assessment. Preliminary work 
suggests that many pre-existing landslides were reactivated during the flooding (Springston and 
others, 2012).  
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D.   Site Area Selection 
 The optimum goal of this project was to select site areas to try to represent conditions 
throughout the state because the protocol will be applied throughout the state.  However, all the 
test site areas are in Chittenden County, because of the lidar coverage there.  The bare-earth lidar 
3.2m DEM is the best elevation data in the state, however it is only available in some parts of 
Vermont at this time.  Other DEMs, such as the USGS 10m DEM, are available throughout the 
state and should be used with the protocol if lidar is unavailable, but the results would not be 
expected to be as accurate as the results with lidar.   
 
 Other considerations in site area selection included map coverage, geology, elevation, 
types of terrain, urban disturbance, and types of landslides expected.  Because the existence of 
landslides was necessary to develop a protocol, sites were chosen where landslides had been 
previously identified, either by the USGS or in the Stream Geomorphic Assessments performed 
by the DEC River Management Program. 
 
The steps in selection of site areas were: 

1.   Collect and use the following GIS overlays to locate preliminary areas of interest.  
Suitable site areas were chosen to include a variety of terrain (urban, rural, and 
mountainous) and a variety of geologic materials (till, clay, and other materials).   

o Chittenden County Boundary 
o VT Political  
o Roads 
o Rivers and Lakes VHD Cartographic (1.5K) 
o Lake Champlain 
o Surficial geology layers for Burlington, Charlotte, Colchester, Hinesburg, 

Williston 
o Surficial geology statewide (1970) 
o USGS Landslide layers (recent, recent to prehistoric rockfalls, recent to old 

debris flows, recent to old slope failures) 
o Soils – Department of Agriculture, Natural Resources Conservation Service 

(NRCS) Soil Survey 
o Stream Geomorphic Assessment layers - DEC River Management Program 
o Shallow overburden outcrops 
o Lidar Bare Earth DEM (3.2 meter) 
o NAIP 1m Color orthophotography (2009) 
o NAIP 1m True and Color Infrared orthophotography (2008) 
o NAIP 1m Color orthophotography (2003) - SDE 
o Chittenden County .1667m Color Orthophotos (2004) 
o Topographic Maps (1:24,000) 

 
2.   Evaluate possibilities for landslides within the different preliminary areas, based on 
comparison with previous mapping projects and professional expertise.  Locations of 
mass failures and gullies identified by the DEC Rivers Management Section were 
considered.  From this, preliminary site areas were chosen. 

 
3.   To gather first-hand input on the preliminary site areas, the CCRPC provided 
information on current mitigation plans and relevant staff contacts in each of the 
respective towns with potential site areas.  Meetings were then held with each prospective 
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municipality to inform them of the project and to gather information about slope failures 
in that municipality.     
 

Town of Bolton - Eric Andrews, Highway Foreman 
Mr. Andrews pointed out several problem areas along Joiner Brook.  

 
Town of Colchester - Al Voegele, Town Manager; Sarah Hadd, Planning 
Director; Bryan Osborne, Public Works Director 
Town officials suggested several other areas of interest – along Lake Shore Drive, 
along the Winooski River, and around Mill Pond.   These suggestions were taken 
into consideration, and the Indian Brook site area was changed to include the area 
around Mill Pond. 
 
Town of Essex - Dennis Lutz, Public Works Director 
Mr. Lutz showed us areas of gullying and erosion in Alder Brook.  He suggested 
that the water table was artificially raised in this area, because the area is on 
public water, but has no public sewer system.  He feels this may contribute to the 
instabilities and erosion being experienced in Alder Brook.  He stated that no 
future development was scheduled for the Alder Brook area due to these 
problems.   

 
Town of Hinesburg - Alex Weinhagen, Director of Planning; Mike Anthony, 
Road Foreman 
Discussions at the meetings suggested that Hinesburg did not have enough slope 
failures at this time to warrant a site in that town.  As a result, preliminary site 
areas in the town were dropped from consideration. 
 
Town of Shelburne - Bernie Gagnon, Public Works Director; Dean Pierce, 
Planning Director 
A large rotational failure, which occurred in 1863 and affected about 5 acres of 
land near the post office, was discussed at the meeting.  
 
City of South Burlington - Justin Rabidoux, Public Works Director; Paul Connor, 
Planning Director; Tom Dipietro, Stormwater 
Mr. Conner and Mr. Dipietro confirmed that Bartlett Brook was currently the 
most problematic area in the city because of the flooding and erosion due to 
increased development. 

 
4.   Using the information gathered, final site areas were selected.  

 
 
 The original proposal suggested that four site areas between 10 and 20 km2 each would be 
selected.  In the end, six site areas ranging in size from 1.28 to 12.58 km2 for a total of 41.3 km2, 
were selected for detailed development of the protocol.  These site areas ranged from natural 
Lake Champlain shoreline to the western Green Mountains.   
 
 Locations of the site areas are shown in Figure 3.  A synopsis of the site area 
characteristics is given in Table 2.  
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Figure 3. Site Area Location Map. 
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Table 2 – Summary of Site Area Characteristics 

 
Site Area Town Urbanization/ 

Terrain 
Surficial Materials Area 

in km2 
Within limit of 

Champlain Sea? 
Elevation 
in meters 

Alder Brook Essex Rural/suburban, plains Delta sand ( Doll, 1970) 7.8 No 84-158 
Bartlett 
Brook 

South 
Burlington 

Urban, plains/ 
shoreline along Lake 
Champlain 

Till, medium fine sand, silt and 
clay (Wright et al., 2009a) 

2.4 Yes 30-102 

Clay Point Colchester Rural shoreline along 
Lake Champlain 

Champlain Sea delta deposits. 
Pebbly medium coarse to medium 
fine sand (Wright et al., 2009b) 

1.3 Yes 30-54 

Indian 
Brook 

Colchester Rural plains and 
lowlands 

Marine clay, pebbly marine sand 
(Wright et al., 2009b) 

7.6 Yes 14-254 

Joiner 
Brook 

Bolton Rural mountainous Till (Doll, 1970) 12.6 No 200-800 

La Platte 
River 

Shelburne Rural plains Boulders in clay, marine beach 
gravel, delta sand, till (Doll, 1970) 

9.6 Yes 30-130 

 
 A seventh site area at Smugglers Notch was added, but as the project proceeded, it 
became clear that the terrain analysis phases of the procedure could not be implemented there 
due to the lack of lidar topographic data.  Also, the landslides at Smugglers Notch are a 
combination of rock falls and debris flows, landslide types that are relatively uncommon 
throughout the rest of the state. The landslides at Smugglers Notch were mapped by Springston 
(2009) using a combination of field assessment and aerial photo interpretation. This site area will 
be discussed further in the descriptions of the site areas.  
 
 
Part 2 – Develop Protocol 
 
A.  Collect GIS layers 
 A GIS project was created for each site area.  The following layers were added to the 
projects. 
 

 Digital Elevation Model (DEM) – The 2004 3.2m lidar DEM was used at all of the site 
areas except for Smugglers Notch, where the terrain analysis phase was not performed. 
 

 Orthophotos – Orthophotos used on this project, included: 
o 1999 black & white orthophotos from the Vermont Mapping Program 
o 2004 color orthophotos from the Vermont Mapping Program 
o 2009 color orthophotos from National Agriculture Imagery Program (NAIP)  

 
 Aerial photographs – Photo interpretation of the 1962 black & white photos was 

performed for all site areas.   In addition, photo interpretation of the 1942 black & white 
aerial photographs was performed at the La Platte River site area.   
 

 Geologic Maps – The 1:62,500 scale surficial geologic maps were added to the projects.  
These are the maps used to compile Surficial Geologic Map of Vermont (Doll, 1970).   

 
The Colchester and Burlington surficial geology maps at a scale of 1:24,000 were added 
and cover approximately the northern quarter of the La Platte River site area, and all of 
the Bartlett Brook, Indian Brook, and Clay Point site areas (Wright et al., 2009a, 2009b).  
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Outcrop maps were available for some of the site areas (Bartlett Brook, Clay Point, and 
Indian Brook) and were added to those projects (Wright et al., 2009a, 2009b). 

 
 Old Landslides – GIS layers compiled by the USGS showing areas affected by landslides 

were added to the projects.  These layers include recent landslides, recent to prehistoric 
rockfalls, recent to old debris flows, and recent to old slope failure areas.  (Baskerville 
and Ohlmacher, 2001) 

 
 Soils Data – Soil survey data from the U. S. Department of Agriculture, Natural 

Resources Conservation Service was added to the projects.  Soils survey data is derived 
from a combination of field work and aerial photo interpretation. Soil Series are defined 
based on soil horizon characteristics such as grain size (texture), organic matter content, 
color, structure, chemistry, etc. As soils are generally based on the upper parts of the 
surficial deposits (the top 50 inches or 1.3 meters), they are of somewhat limited utility 
for understanding the deeper parts of the surficial deposits. At times, it is possible to get 
partially past this shortcoming, if the soils on the side slopes of a terrace seem to reveal 
the material underlying the terrace.  Many soil attributes were considered and tested as 
aids in identifying landslides, but this study did not identify a way to incorporate the soils 
data directly into the terrain analysis phase.  The data remains very useful for the later 
phases of the protocol. 
 
 

 Outcrop Data – A statewide outcrop map was compiled from four statewide or nearly 
statewide datasets showing outcrops and very shallow bedrock locations.  The four 
datasets used were bedrock outcrops from the GeologicSurficial_SURFICIAL62K 
polygon layer, rocklines from feature class Geologic_SURFICIAL62K_line, soil 
polygons with shallow depth to bedrock or exposed bedrock derived from the soil layer 
Geologic_SO_poly, and a set of outcrop locations along highways compiled for a rockfall 
hazard study of the state.  The resulting compilation appears to show the extent of 
bedrock outcrops and very shallow bedrock reasonably well for most of the state at small 
scales (1:100,000 or smaller). The exception is Essex County, where no soils data was 
available at the time of compilation. With the addition of shallow soils data from Essex 
County, this will be a statewide dataset.   These layers were combined into a common 
raster dataset:   vtoutcrops, which is available at the VGS.  
 

 Fluvial Geomorphology Data – Data from the Stream Geomorphic Assessments 
conducted by the Rivers Management Section of the Vermont DEC was added to the 
projects.  The data include the locations of mass failures, eroding stream banks, and 
channel alterations.  It was found that the locations of mass failures were accurate and 
useful for this project.  The mass failure locations are of key importance in conducting 
landslide inventory. 
 

 Surface Water Data – The Vermont Hydrography Dataset, derived from 1:5000 
orthophotos showing rivers, streams, lakes, and ponds was added to each project.  This 
layer is available through VCGI.  In addition, a layer showing the extent of Lake 
Champlain was added to the projects that border Lake Champlain (Bartlett Brook and 
Clay Point). 
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 Limit of Champlain Sea Marine Sediments – Marine sediments from the Champlain Sea 

have been found to create unstable conditions, however the extensive low angle earth 
flows, such as those in Quebec, are not known to have occurred in Vermont (Lefebvre, 
1996; Scott, 2003).  Low angle rotational slumps that affect acres of land do occur in 
Vermont and seem to be limited to areas within the marine sediments of the Champlain 
Sea.  Therefore, the marine limit is an important consideration for landslide investigations 
in Vermont.  A GIS layer of the marine limit of the Champlain Sea deposits was 
compiled by Springston in 2012 and is available at the VGS.    

 
 Topographic Maps – USGS topographic maps at a scale of 1:24,000 were obtained as 

layer files from VCGI. 
 

 Political Boundaries – These layers (BoundaryOther_BNDHASH) showing state, county, 
city, town, and village boundaries were obtained from VCGI. 

 
 Roads – There are several roads layers available from VCGI. EmergencyE911_RDS 

layer was used for this project.   
 

 Outline of the site areas of interest – Another important layer was the outline of the site 
areas of interest for this project.  These polygon layers were created to show the 
boundaries of study for this project. 

 
B.  Investigation of Site Areas 
 The locations of mass failures delineated by the River Management Program during their 
Stream Geomorphic Assessments were used as a guide to find landslides to visit.  In addition, 
orthophotos and aerial photographs were interpreted to identify landslides at the site areas.  A 
sample of these landslides was visited at each project site area.  Additional landslides 
encountered during the course of our field visits were also located using GPS and characterized 
for inclusion in the database. 

 
In order to facilitate the organization and analysis of field information, a landslide 

database was developed. This includes general site information, as well as data on landslide 
classification, geometry, surficial materials and stratigraphy, and possible causes of the 
landslides. The database and the associated field data sheet are included in Appendices A and B. 
 
 Parcel ownership information was provided by the CCRPC.  A description of the sites 
follows. 
 
Alder Brook  
 
Description of Site Area:  The Alder Brook watershed flows from Milton through Westford and 
Essex into the Winooski River at the border of Essex and Williston.  The Alder Brook site area 
for this project is in south central Essex and includes the area from the intersection of Jericho and 
Center Roads in Essex Center to the mouth of Alder Brook at the Winooski River.  Figure 4 
shows a map of the Alder Brook site area. 
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Figure 4. Alder Brook Site Area Location Map 
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 Geology in the majority of the site area was mapped as delta sand on the 1970 state 
surficial geologic map (Doll, 1970).  At the downstream end, the brook flows through an area 
mapped as pebble marine sand.  As it reaches the Winooski River, the area is mapped as 
alluvium.  There is no bedrock mapped in the site area. 
 
 Alder Brook has had an interesting history.  Prior to 1830, it flowed east from Essex 
Center into Browns River, whose mouth is in the Lamoille River to the north.  The following 
account is given by Frank Bent, editor of The History of the Town of Essex, published in 1963.  
The sawmill discussed was on Alder Brook in Essex Center. 
 
“In 1804, Mr. Pelton leased of Daniel Morgan the right to plow land on Alder Creek, and built a 
sawmill on the bank of the brook ...  This brook ... was then a very small stream, quite shallow, 
emptying into Brown’s River...  This brook Mr. Pelton diverted for his purposes, from its natural 
courses, carrying the water into a flume to a reservoir dam a few rods below the present 
causeway. ... The brook was a small affair.  But in the freshet of 1830, it became a mighty power, 
swept off bridges, dams, and mills.  It cut for itself a new channel, well toward a hundred feet 
below the original bed, and forced its way over all opposing obstacles till it mingled its waters 
with the Winooski in an entirely opposite direction from its original mouth.” 
 
Alder Brook has drained into the Winooski River since that time. 
 
 As part of this project, Mr. Dennis Lutz, the Director of Public Works for the Town of 
Essex, was contacted.  Discussions with Mr. Lutz indicated that gullying and bank erosion have 
been major problems on Alder Brook and its tributaries, which are heavily influenced by 
development.  Mr. Lutz stated that there would be no more development near Alder Brook at this 
time, due to these issues. 
 
 The River Management Program identified 41 mass failures in the site area.  Ten 
landslides and one area of gullying were visited during the initial phase of this project. 
 
 The slides visited were predominantly translational.  Along the brook, a thick layer of 
sand overlies a silty clay layer.  The clay tends to fail in translational blocks, which causes the 
overlying sand to erode beneath the root layer and undermine the trees on the slope.   The trees 
slide down the slope, tilting and falling, and uncovering more of the erodible sand.   The site area 
is above the marine limit of the Champlain Sea, so large rotational slumps are not expected and 
no rotational slumps were identified. 
 
Bartlett Brook  
 
Description of Site Area:  The Bartlett Brook site area is in southwestern South Burlington along 
the Route 7 urban corridor and is heavily developed with parking lots, business complexes, 
hotels, and housing.  As such, the stream is experiencing downcutting and erosion due to the 
increase in stormwater runoff from the impermeable surfaces.  Bartlett Brook flows directly into 
Lake Champlain.  Figure 5 shows a map of the Bartlett Brook site area. 
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Figure 5. Bartlett Brook Site Area Location Map. 
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 The River Management Program identified 4 mass failures in the site area.  Five 
landslides were visited during the initial phase of this project.  Four of the slides exhibited 
translational movement and one exhibited rotational movement.  All of the slides were small in 
area (less than 700 sq. m.) and difficult to find on the orthophotos and aerial photographs.   
 
 The northeastern third of the site area is mapped as medium fine sand (Wright, 2009a).  
Field work found that this area was underlain by sand and silty clay, which flowed when 
saturated adding to the likelihood of slope erosion and failures.  Four landslides were identified 
in this geologic unit – three translational and one rotational.  The remainder of the site area is 
mapped as till (Wright, 2009a).  One translational slide was identified in this unit. 
 
 Although the site area is within the marine limit of the Champlain Sea, no large low angle 
rotational slumps were identified.  The small rotational slump at SBB-02 is more likely to be the 
result of downcutting of the brook due to increased stormwater than the effect of Champlain Sea 
sediments.   
 
Clay Point 
 
Description of Site Area:  The Clay Point site area lies along the shoreline of Lake Champlain in 
northern Colchester just south of the mouth of the Lamoille River.  This site area was included 
because it is located along a stretch of relatively natural shoreline that has not been heavily 
developed.  Figure 6 shows a map of the Clay Point site area. 
 
 The site area is relatively flat with steep bluffs down to the lake.  The bluffs are 
approximately 20 meters high at a 35 to 40o angle.  Lake terraces, about 10 meters above lake 
level, are also present along the shore and through the site area.  The terrace slopes are 6 to 10 
meters high at a 20 to 25o angle.   
 
 Wright (2009b) maps the surficial geology at the site area as pebbly medium coarse to 
medium fine sand.  Stratigraphy of the bluffs showed a layer of sand, about 15 meters thick, 
overlying a 5m thick clay layer.  Sporadic outcrops of till occur at the base of the bluffs.   
 
 Because of its location along the shore, the River Management Program has not identified 
any mass failures within the site area.  One slide in the site area was identified by a colleague 
who lives in that area and knew of the project.  Three other slides were identified by employees 
at Camp Kiniya.  All landslides occurred in the bluffs along the shoreline. 
 
 The shoreline in this area is subject to wind and wave erosion from the lake to the west 
and erosion and sedimentation from currents exiting the mouth of the Lamoille River.  It should 
be noted that in the spring of 2011 when the field work at Clay Point was conducted, rainfall was 
higher than normal and lake levels were approximately 6 feet above normal, so the toes of the 
bluffs were experiencing more erosion than normal.  This undoubtedly caused the initiation of 
most of the slides.  When the lake level is normal, a sloping sandy beach separates the bluffs 
from the water.  The beach provides some measure of protection from erosion, however, some 
land owners have installed rock walls to further protect the bluffs. 
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Figure 6. Clay Point Site Area Location Map. 
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 The three larger slides in the area exhibit primarily translational movement, and affect the 
entire bluff.  One smaller slide at Camp Kiniya seems to be rotational, affecting only the lower 
part of the slope.   
 
Indian Brook 
 
Description of Site Area:  Indian Brook is in central Colchester and drains into Malletts Bay.  
Route 127 crosses the middle of the site area and Interstate 89 is just to the west of the site area.  
Figure 7 shows a map of the Indian Brook site area. 
 
 Indian Brook is a meandering stream in the site area with a flood plain about 75 m wide.  
Sediments in the valley are mapped as alluvium by Wright (2009b) with medium to fine sand 
and clay mapped in the slopes bordering the flood plain and the flatter areas above the slopes.  
Till and silt-clay deposits are mapped in the upland regions of the site area.   
 
 The site area is within the boundary of the marine deposits of the Champlain Sea. 
However, the large, low-angle rotational slumps that were identified in the La Platte River site 
area were not identified during earlier surficial geologic mapping of the Indian Brook area 
(Wright, 2009b), or in this study.  Stephen Wright (email communication, December 2012) 
pointed out that the sandy deposits exposed in the Indian Brook valley are deltaic deposits 
formed by the Lamoille River as it emptied into the Champlain Sea. The deposits at the La Platte 
River site area, although of a similar age, have considerable fine-grained silt and clay in the 
deeper parts. The sandy deposits at Indian Brook are thus unlikely to be subject to low-angle 
landsliding.  
 
 Six mass failures were identified in the site area by the River Management Program.  
Five landslides were visited as part of the initial assessment of the site area.  The slides were 
translational slides with one rotational slump seen at the northwestern part of the site area.    
 
Joiner Brook 
 
Description of Site Area:  The Joiner Brook watershed is on the west side of the Green 
Mountains in central Bolton above the limit of the marine deposits of the Champlain Sea.  Joiner 
Brook flows into the Winooski River.  The Bolton Valley Resort lies in the upper part of the 
drainage and affects the drainage in terms of runoff, sedimentation, and erosion.  The Bolton 
Valley Access Road roughly parallels Joiner Brook on its way up to the resort.  Figure 8 shows a 
map of the Joiner Brook site area. 
 
 Joiner Brook flows south across the site area in a dendritic/rectangular pattern.  One 
major tributary flows east into Joiner Brook from the east central part of the site area.  Bedrock 
outcrops dominate the uplands in the site area.  The remaining surface is covered with glacial till 
(Doll, 1970).   
 
 Eleven mass failures were identified in the site area by the River Management Program.  
Thirteen translational slides were investigated as part of the initial field reconnaissance for this 
project.  All of the slides occur on the valley walls of Joiner Brook, primarily on the east side of 
the valley.  The reason for this is not clear. 
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Figure 7. Indian Brook Site Area Location Map. 
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Figure 8. Joiner Brook Site Area Location Map. 
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La Platte River  
 
Description of Site Area:  The La Platte River site area is in the south central part of Shelburne.  
The site area includes two branches of the river, the main stem of the La Platte River and 
McCabe’s Brook, which roughly parallels the river to the west.  Route 7 traverses the western 
third of the site area and the village of Shelburne is in the central part of the site area.  Figure 9 is 
a map of the La Platte River site area. 
 
 Geology in the northern quarter of the site area was mapped as part of the Burlington 
quadrangle by Wright (2009b).  It is predominantly till with areas of medium to fine sand around 
the La Platte River and McCabe’s Brook.  Geology in the southern part of the site area is shown 
on the 1970 state surficial geologic map (Doll, 1970).  It is predominantly till with some marine 
beach gravels mapped in the McCabe’s Brook area.  Bedrock outcrops are mapped in the center 
of the site area at Shelburne Falls and in the northeastern third and west central edge of the site. 
 
 The La Platte River site area lies within the limit of the marine Champlain Sea deposits.  
Several active and relict large, low angle rotational slumps were identified in the site area.   One 
of these is located east of the post office off the community gardens on La Platte Circle.  
Movement on this slump was reported in 1863 (Cole, 2009) and likely continues today as 
exhibited by the hummocky topography, sag ponds, tilting trees, and flaking at the toe.   These 
slumps are generally characterized by slopes less than 10o and have affected as much as 0.05 sq. 
km.    
 
 The River Management Program identified 8 mass failures along the La Platte River and 
7 along McCabe’s Brook.  Eight translational slides and three rotational slumps were visited 
during the initial phase of this project.  
 
 Smugglers Notch 
 
Description of Site Area:  Smugglers Notch is a narrow mountain pass located in the towns of 
Cambridge and Stowe in Lamoille County (Figure 10). It is flanked by Mount Mansfield on the 
west and Spruce Peak on the east and is largely within the Mount Mansfield State Forest. 
Vermont Route 108 winds through the narrow floor of the Notch, which is studded with large 
talus blocks and overhung by tall cliffs.  
 

Details of the mapping of landslides in Smugglers Notch are contained in Springston 
(2009). Two very distinct types of landslides or slope failures occur in the Smugglers Notch area. 
The first is the broad class of landslide that includes rock falls and slides, and which consists of 
one or more large pieces of rock detaching from a cliff and falling or sliding down a slope. Most 
of the boulders in the floor of the Notch appear to be the result of such rock falls and slides. The 
second class of landslides includes the debris flows, which are slurries of water, mud, pebbles, 
cobbles, and boulders that flow within shifting channels on the talus slopes below the cliffs. In 
the Notch, they are activated by heavy rainstorms and/or snowmelt. 
 

The large boulders that litter the floor of the Notch are strong evidence that rock fall 
hazards are high. Although the well-developed soil and vegetation on some indicate that they fell 
long ago, there is abundant evidence that they continue to come down today.  
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Figure 9. La Platte River Site Area Location Map. 
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Figure 10. Smugglers Notch Site Area Location Map. 
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The level of debris flow activity appears to be accentuated on the west side of the Notch 

due to the increased height of the mountain slopes and the concave topography on that side, a 
combination that results in enlarged catchments for the rock chutes. By contrast, the east side of 
the Notch is lower and much of the east side has a convex topography, resulting in smaller 
catchments. Note, however, that the largest recorded debris flow event occurred on the eastern 
side at the southernmost debris flow near the Stowe-Cambridge town line. This is not surprising 
as this feature has one of the larger catchments in the site area. 

 
The Smugglers Notch site area serves to illustrate the landslides of the debris flow type 

that can be expected in some of the high-elevation parts of Vermont. The landslides shown in 
Figure 8 were mapped using techniques similar to those in Phases 1 and 4 of the protocol. The 
mapping techniques are described in detail in Springston (2009). If lidar data was available, 
procedures similar to those in Phases 2 and 3 could be implemented. It is likely that 
identification of debris flows in high-elevation areas using the terrain analysis techniques can be 
successful, although the parameters may need to be modified. For example, it is likely that aspect 
may emerge as a dominant parameter. However, as Phase 2 and 3 analyses were not undertaken 
in the Smuggler Notch area due to the lack of lidar data, this site will not be discussed in the 
subsequent sections.  

 
The level of detail available with modern lidar data suggests that at the very least these 

features can be identified efficiently by viewing slope or contour data derived from lidar. 
Combined with a modest amount of field work, this could be an effective way of identifying 
debris flows and related features in the mountainous parts of the state. 
 
 
C.  Literature review to choose model for analysis 
 A literature search was undertaken to identify landslide susceptibility models which 
could be applied in Vermont. Turner and Schuster (1996) provide a general overview of the 
different modeling types.  A synopsis of these models is presented below. 
 

Heuristic Models:  These types of models are primarily qualitative and rely on weighting 
factors based on expert opinions (Sarkar and Kanungo, 2004).  According to Yilmaz 
(2009), the main drawbacks with these methods are the following: 

 Knowledge of the area of interest is essential to make accurate judgments on 
weights. 

 Weighting is subjective. 
 Results are often not reproducible, because experts’ opinions may vary. 

 
Deterministic Modeling:  These methods involve computer modeling of geotechnical 
conditions at specific sites to calculate the factor of safety for a specific slope (Haneberg, 
2000).  Programs of this type include SINMAP, LISA, and STABL.  These methods 
work best at specific sites where geotechnical data have been collected for that site.  
Based on statements by Yilmaz (2009), the main drawbacks for using this method on a 
project like the landslide protocol project are the following: 
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 Geotechnical data from one site may not be applicable at another site.  Generic 
data from standard tables and charts can be used, but would not be accurate for all 
sites and would likely lead to erroneous conclusions.  

 Because the necessary geotechnical data is generally collected via subsurface 
drilling and lab testing, the costs involved in obtaining accurate data throughout 
the state would be prohibitive.  

 
Statistical Modeling:  A review of probabilistic and multivariate methods of analysis was 
conducted to determine applicability to this project. (Haneberg, 2000; Lee and Pradhan, 
2007; Yilmaz, 2009)  The process of statistical modeling includes the following steps: 
 

1. Landslides are mapped and data about the characteristics of each landslide in the 
area of interest are collected. 

2. Parameters are selected from the data collected which characterize the landslides.  
Each parameter is divided into appropriate classes for that parameter (i.e. the 
slope angle parameter could be divided into 6 classes:  0 to 10o, 10 to 20o, 20 to 
30o, 30 to 40o, 40 to 50o, and >50o). 

3. Statistical methods are used to calculate weights for each of these parameters.  In 
general, these methods relate the dependent variable (presence or absence of LS) 
and the independent variables (different parameters). 

4. The weighted parameter maps are then combined to produce a map which shows 
the susceptibility to landslides.  The map shows areas of known landslides as well 
as areas with similar conditions, in which landslides have not yet been identified. 

 
According to Yilmaz (2009), the main drawback for using this method is the amount of 
data needed to obtain reliable results.  As with most projects, more data yields better 
results.    
 
Other techniques:   Some other techniques, such as fuzzy-logic and artificial neural 
networks were considered.  Yilmaz (2009) compared the artificial neural network, 
frequency ratio, and logistic regression methods and found them to be similarly accurate 
with artificial neural networks the best, but stated that the frequency ratio method was 
useful because it was easier to use.     

 
Conclusions - Based on the above information, statistical models were determined to be the best 
to analyze the data in this project.  Two types of statistical models, logistic regression and 
frequency ratio, were investigated further for use in this project.  Following numerous trials of 
both modeling methods, it was concluded that for a general protocol, the frequency ratio method 
is more understandable and easier to use than the logistic regression model and will be used in 
this project.  Frequency ratio modeling is discussed in detail in Dhakal et al., 1999; Jadda et al., 
2009; Lee, Choi, and Min, 2004; and Yilmaz, 2009.   
 
 The products of this modeling are maps showing high, moderate, low and very low 
susceptibility to landslide hazard.  Polygons showing areas sensitive to landslides are then 
delineated heuristically using this information and other sources of information.  This process 
will be described more in Phase 2, Task G of this report.    
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D.  Select parameters 
 Parameters were selected based on those used in previous work, knowledge of the site 
areas in this project, and available data.  Some of the references used include Dhakal et al., 1999; 
Ercanoglu and Gokceoglu, 2004; Lee, Choi, and Min, 2004; and Yilmaz, 2009.  Many 
parameters were tried, but not all were useful for this project.  A description of all parameters 
considered is discussed below. 
 

Above/Below Marine Limit of Champlain Sea – The approximate shoreline elevation for 
the highest level of the late-glacial Champlain Sea was derived from the work of Rayburn 
(2004). This shoreline, which is tilted up and to the north at approximately 0.7 m/km, was 
projected onto the recent 10 meter DEM from USGS and a polygon layer was produced, 
which is available through the VGS (Springston, 2012).   
 
 This layer was used more as a guide in the protocol than a parameter.  Areas 
below the marine limit in the Saint Lawrence Valley of Canada that are underlain by soft 
marine clay deposits have been subject to devastating landslides. Once the material is 
disturbed at the onset of a landslide event, the soil loses most of its shear strength and the 
landslide can expand rapidly, resulting in large, low-angle rotational slumps that can 
affect many acres of land. Although these true soft marine clay deposits do not appear to 
occur in Vermont, large low-angle rotational slumps have been identified in the 
Shelburne area and may be related. 
  
 Areas above the marine limit are not likely to experience these types of failures.  
Because a site area is either above or below the limit, this is not a very discriminating 
parameter, but if a site of interest is below the limit, it indicates that the researcher should 
consider the possibility of these large-area low angle slumps in the site of interest. 
 
Aspect – Researchers have used aspect as a parameter for mapping landslide 
susceptibility in Nepal (Dhakal et al., 1999), Korea (Lee et al., 2004), Malaysia (Lee and 
Pradhan, 2007) and Turkey (Yilmaz, 2009).  Ohlmacher and Davis (2003) also included 
aspect in their landslide susceptibility study in northeastern Kansas, but determined no 
statistically significant relationship between aspect and landslide occurrence.   
 
 The results of frequency ratio modeling in this project showed aspect to be of 
lesser importance than other parameters, except at the Joiner Brook site area.  Joiner 
Brook flows south and most of the landslides occurred on the east-facing slope.  Aspect 
was a dominant parameter and was useful in explaining many of these landslides.  
However, areas in the Joiner Brook tributaries, which did not trend north-south were not 
adequately modeled using this parameter.  One such area was the tributary flowing into 
Joiner Brook from the east in the east central part of the site area.  Modeling using aspect 
as a primary parameter showed moderate hazard on the south slope, but field checking in 
this area indicated stable to low hazard slopes.  The conclusions using aspect in Joiner 
Brook indicate that it is not likely to be a good parameter for landslide work in Vermont.   
 
Distance to Stream – Landslides occur most frequently along waterways, therefore the 
distance of a slope to the nearest waterway was thought to be an important parameter.   
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 Results showed that in general, distance to stream was not a very important 
parameter.  The only exception to this was at the Clay Point site area, where all landslides 
occurred on the slopes bordering Lake Champlain.  At this site area, the proximity to the 
shoreline (called “distance to stream” for consistency with the other study sites) was 
calculated from the lake and from the Lamoille River to the north.  Wave and wind 
erosion from the lake are the dominant triggers for slides at this site area, so it follows 
that distance to ‘stream’ would be an important parameter here.   
 
Elevation – Review of the literature suggested that elevation might be an important 
parameter in landslide susceptibility (Ayalew and Yamagishi, 2005; Dhakal et al., 1999; 
Duman et al., 2006; Gorsevski et al., 2006; Lawther, 2008).  However, it was found that 
the elevation changes in Vermont are not great enough to affect landslide susceptibility.   

 
Hydrologic Group (Soil Drainage) – Soils that have similar runoff properties, such as 
rates of infiltration and runoff, are combined into ‘hydrologic groups’ by the NRCS.  
Qualities that affect this are depth to high water table, saturated hydraulic conductivity, 
and depth to a very low permeability layer.  (NRCS, 2003, National Soil Survey 
Handbook, p. 618-24)  Four groups, A, B, C, and D, are delineated and described below. 
 

A: Low Runoff Potential - These soils consist primarily of deep well drained 
sands or gravels which have a high rate of infiltration, and therefore low runoff. 
B – These soils are primarily moderately deep and moderately well drained with a 
moderate rate of water transmission.  Soils in this category are generally medium 
to coarse grained. 
C – These soils drain slowly and have a low rate of infiltration.  Soils in this 
category are generally fine grained. 
D: High Runoff Potential – These soils consist of clay or soils with a permanent 
high water table.  Infiltration is very slow and runoff very high.  

 
Results showed that hydrologic group was not as influential as other parameters at the 
site areas in this project.   
 
Profile Curvature – Profile curvature is a measure of the curvature of the slope in the 
vertical plane, either convex, concave, or neither.  The numerical quantity given by 
terrain analysis is actually the second derivative of the slope.  According to ESRI, profile 
curvature units are one hundredth (1/100) of a z-unit.  Z-unit is a unit of elevation, so 
because the lidar DEM is in meters, profile curvature units are in 1/100 of a meter. For a 
hilly area, the values would be expected to vary from -0.5 to 0.5; whereas a steep, rugged 
mountainous area, the values would be expected to vary from -4 and 4. 
 
 Because profile curvature shows best at the top and bottom of a slope, and not 
within the landslide area, this parameter was used during the final step of the protocol to 
verify the frequency ratio results and delineate areas of sensitivity.      
 
Roughness – The roughness parameter is the standard deviation of the slope angle. It is a 
measure of how variable the topography is over short distances. Smooth, even slopes 
have low roughness values and jagged surfaces have high values. The standard deviation 
is calculated for each pixel location by finding the standard deviation of the slope for all 
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pixels within a 3 x 3 pixel block centered on the pixel. The units for both slope and 
roughness are degrees. 
 
 It should be noted that this parameter could lead to confusion with bedrock 
outcrops, which would also exhibit a ‘rough’ surface.  Therefore, having some kind of 
outcrop map during the verification of frequency ratio results is important.    
 
Slope Angle – Slope angle was found to be the most important parameter at most of the 
site areas.  Translational slides commonly occur on high angle slopes (slopes greater than 
30o), so it follows that since the majority of slides were translational, slope angle would 
be important. 
 
Slope Height (Elevation above Channel) – ‘Elevation above channel’ was used as a proxy 
for slope height.  Results from the modeling indicated that it was not an important 
parameter at any of the site areas.  Whether this is because it was not a good proxy for 
slope height or because slope height is not a good parameter is not clear. 

 
 It was decided that slope height would be considered in the final step of the 
protocol to verify the frequency ratio results.  This would not be done using the 
‘Elevation above channel’ proxy, but was visually factored in with slope angle and 
profile curvature to confirm areas of moderate and high susceptibility to slope failure. 
 
Soil Type – NRCS digital soil data was extensively explored to see if it could serve as a 
useful terrain parameter by itself or as a proxy for surficial geology.   Part of the problem 
with using soils to identify areas susceptible to landsliding is that landslides can occur in 
any soil type.   
 
 Soil type, which is a characteristic of soil series, was tried as a parameter for this 
project.  Soil series is identified by the name of soil type (based on grain size or texture, 
organic matter content, color, structure, chemistry, etc.) and a slope angle delineation.  
An example of this is AdA, which indicates Adams and Windsor loamy sands on 0 to 5% 
slopes.  For this project, soil ‘type’ was investigated as a parameter, which is the soil 
series name without the slope angle designation.   Although the slope designation of soil 
type has been used as an identifier of unstable slopes in the past, the availability of DEM-
derived topographic data renders this particular parameter obsolete for landslide 
identification.  
 
 This parameter was most important in the modeling of the large low angle 
rotational slumps at the La Platte River site area.  Overall, the modeling for these types of 
slides was unsuccessful (that is, mapped large low angle rotational slumps were not in 
high or moderate susceptibility areas on the maps produced by the frequency ratio 
modeling).  However, the fact that soil type was so important may point out that surficial 
geology may also be important and should be considered as a possible parameter for this 
type of slide.  Unfortunately, most of the surficial geologic mapping at the La Platte 
River site area was done for the state map published in 1970 at a scale of 1:62,500 and is 
inadequate for this type of analysis. 
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Stream Power Index (SPI) – Stream Power Index is a measure of the erosive power of the 
water flowing through an area or stream.  This parameter depends on the area upstream of 
the point of interest and slope angle and thus indicates areas of erosion.  It is calculated 
by (Wilson and Gallant, 2000): 

 
    SPI = a tan β 

  Where a= specific area = local upslope area draining through a certain length of contour  
              tan β = the local slope 

 
Stream Power Index seemed to be too insensitive to conditions on the slopes and thus it 
did not have predictive value for finding landslides. 

 
Surficial Geology – An understanding of the surficial geology is certainly critical in 
understanding slope stability. However, it is not a matter of finding some subset of the 
surficial geologic units that is subject to landslides. To the contrary, our experience in this 
and other study areas has clearly demonstrated that landslides occur in all types of 
surficial geologic materials.  
 
 There are two reasons why surficial geology was not included in the terrain 
analysis phases (Phases 2 and 3 of the protocol). One reason is that there was not enough 
detailed mapping available for all of the study blocks. Another is that the blocks where 
surficial geologic information had very little variability in surficial units and thus would 
not provide good tests (larger study areas would probably help with this issue).  
 
 Although we do not use surficial geology in Phases 2 and 3 of the protocol, we do 
use it in Phase 4, which is the delineation of sensitive areas. In this phase, the surficial 
geology serves as a critical data layer which is used to help extrapolate out from the areas 
identified in the terrain analysis phase. 
 
Topographic Wetness Index (TWI) – Topographic Wetness Index is a measure of the 
water draining into an area or ‘steady-state wetness’.  It depends on the slope angle and 
drainage area uphill of the point of interest.  The rationale for using topographic wetness 
index to identify areas susceptible to slope instability is that parts of the landscape that 
have consistently high pore-water pressure in the soil may be more subject to slope 
failure.  It is calculated by (Wilson and Gallant, 2000): 

 
                          TWI = ln (a/tan β) 

  Where a= specific area = local upslope area draining through a certain length of contour  
              tan β = the local slope 

 
For a given slope angle, topographic wetness index increases as the contributing area 
increases.  Higher values represent valleys and depressions and lower values represent 
upper hill slopes, crests, and ridges (Wilson and Gallant, 2000). 

 
 This parameter was somewhat influential at many of the site areas, but was the 
second most important in the modeling of the large low angle rotational slumps at the La 
Platte River site area.  Although the modeling for these types of slides was unsuccessful 
(that is, mapped large low-angle rotational slumps were not in high or moderate 
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susceptibility areas on the maps produced by the frequency ratio modeling), it is 
interesting that TWI was important for low-angle rotational slumps, but not for 
translational slides.  This fact verifies that drainage at low-angle sites is influential in 
landslide susceptibility.   

 
Vegetation/ Land Use (NDVI) – NDVI stands for Normalized Difference Vegetation 
Index.  This GIS layer was developed from NAIP data by the Vermont Agency of Natural 
Resources, Information Technology Division and was intended to help distinguish areas 
of bare soil and pavement from vegetation   
 
 For this project, discrimination of vegetated landslides from non-landslide areas 
was not viable, so this parameter was not used.  With further study, it may be possible to 
identify the bare soil of large non-vegetated landslides, but that remains to be seen. 

 
 

For use in the Frequency Ratio model, the parameters were divided into increments or 
‘classes’.  An example of this is slope, which was divided into 10o increments.   Table 3 
is a list of the parameters considered for this project, their classes, and whether they were 
used in the final analysis.  
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Table 3 - Landslide-Related Parameters 
Primary Parameters Classes Brief Description Source Result 

Above / Below Marine 
Limit of Champlain Sea 

 Limit is approximately 107 m, but varies with latitude; Parameter only 
applicable in Champlain lowland 

Champlain Sea Limit 
layer* 

Used in Phase 2-G 

Aspect (degrees) 1-45                        181-225 
46-90                      226-270 
91-135                    271-315 
136-180                  315-360 

Compass direction of slope in degrees DEM- Lidar 3.2m Not used as parameter 
in final analysis; see 
Phase 2-D 

Distance to nearest stream 
(meters) 
 
 

0-30                        180-210 
31-60                      210-240 
61-90                      240-270 
90-120                    270-300 
120-150                  300-500 
150-180                  500-700 

Different width buffers around 1:5000 surface waters in meters DEM- Lidar 3.2m Used in final analysis 

Elevation  Elevation of  point in DEM DEM- Lidar 3.2m Not used as parameter 
in final analysis; see 
Phase 2-D 

Hydrologic Group (Soil 
Drainage) 
 
 
 

A    
B   
C   
D    

Runoff potential which depends on infiltration and transmission rates of 
the soil; Group A is coarse-grained (sand and gravel) with a high 
infiltration and transmission rate and therefore a low runoff rate; Group 
D is fine-grained (clay) or poorly sorted (till) with a low infiltration and 
transmission rate and therefore a high runoff rate. 

NRCS Used in final analysis 

Profile Curvature  
(1/100 of a meter) 

-6723 to -98; -98 to -63 
-63 to -6; -6 to +6 
+6 to +41 
+41 to +76; +76 to +6754 

Shape of slope indicating concave, planar slope, or convex. The coding 
is intended to help distinguish concave upward terrain at the base of 
slopes from planar slopes and concave downward terrain at the tops of 
slopes. Bright colors in the high and low ranges and neutral or no 
colors in the central ranges proved to be most effective. 

DEM- Lidar 3.2m Used in Phase 2-G 

Roughness (degrees) 0-2, 2-4, 4-6, 6-8,8-10,10-
12,12-24 

Roughness is the standard deviation of the slope angle. Units are in 
degrees. 

Slope map derived from 
DEM- Lidar 3.2m 

Used in final analysis 

Slope Angle (degrees) 
 
 

0-10                      30-40 
10-20                    40-50 
20-30                    50-90 

Steepness of slope in degrees DEM- Lidar 3.2m Used in final analysis 

Soil Type Depends on what soil types 
are in the area of interest 

Labeled as ‘musym’ on NRCS GIS layer, but does not include slope 
angle reference; indicates only Soil Series (see Phase 2-D) 

NRCS Used in final analysis 

Stream Power Index  Measure of the erosive power of the water flowing through an area or 
stream 

DEM- Lidar 3.2m Not used as parameter 
in final analysis; see 
Phase 2-D 

Surficial Geology 
 
 
 

  From detailed surficial mapping where available; units should delineate 
origin as well as grain size and texture (examples:  lacustrine/marine 
fine-grained deposits, ice-contact deposits, till, alluvial fan, etc.) 

Geologic mapping - VGS Used in Phase 2-G 

Topographic Wetness 
Index (TWI) (square 
meters) 
 

0-3                          12-15 
3-6                          15-18 
6-9                          18-21 
9-12                        21-24 

Measure of water draining into the area; function of the local upslope 
area and the slope gradient; units in square meters; see Phase 2-D 
 

DEM- Lidar 3.2m Used in final analysis 

Vegetation / Land Use  NDVI – Normalized difference vegetation index  ANR-GIS Not used in final 
analysis; see Phase 2-D 

* Springston, George, 2012, Champlain Sea Limit in Vermont GIS layer, available from Vermont Geological Survey  
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E.  Run models 
 Frequency ratio analysis is a ratio of the area of landslides in the different parameter 
classes to the area of the parameter classes in the site area of interest.  Area in GIS can be 
described in pixels.  In order to do frequency ratio analysis for this project, a spreadsheet was 
created for each site area.  The columns, labeled here as a through j, contain the following 
information: 
 

a. Parameter 
b. Class number – artificial number; starts at 1, goes to however many classes there are for 

that parameter  
c. Classes – Each parameter is divided into classes.  An example of this is the slope angle 

parameter, which is divided into 0-10o, 10-20o, 20-30o, 30-40o, 40-50o, and 50-90o or 
hydrologic group parameter, which is divided into A, B, C, and D.  The classes should 
represent the distribution of data for the whole site. 

d. Area of Landslides - number of pixels in class within landslide areas 
e. Total number of landslide pixels within site area 
f. %  of class pixels within landslide areas = number of pixels in class within landslide areas 

/ total number of landslide pixels within site area (column d / column e)   
g. Number of pixels in class within site area 
h. Total number of pixels in site area 
i. % of class pixels in site area = number of pixels in class within site area / total number of 

pixels in site area (column g / column h) 
j. Frequency Ratio = % of class pixels within landslide areas *1000 / % of class pixels in 

site areas (column f *1000 / column i)   
(Note that raster values in GIS raster must be whole numbers, so the frequency ratio 
values have been multiplied by 1000.  Because all of the frequency ratio values are 
treated similarly, it does not affect the outcome of the analysis.) 

 
Data are entered into each column from the GIS layers.  Frequency ratios are then calculated in 
the spreadsheet.  These values show the quantitative importance of each parameter class with 
respect to landslides at that site area.   
 
 Below is an example of the spreadsheet for the hydrologic group parameter.  Not shown 
here is column a, which is the parameter, in this case hydrologic group. 
 

b c d e f g h i j 

Class 
Number Classes  

# of pixels in 
class within 

landslide 
areas  

Total # of 
landslide 

pixels within 
site area 

% of class 
pixels within 

landslide 
areas 

Number of 
pixels in class 

within site 
area 

Total # 
pixels in site 

area 

% of class 
pixels in site 

area 
Frequency 

Ratio  

1 A 284 298 95.3 255199 456541 55.9 1705 

2 B 14 298 4.7 47844 456541 10.5 448 

3 C 0 298 0 24553 456541 5.4 0 

4 D 0 298 0 128945 456541 28.2 0 

 
Total 298 

 
Total 456541 

    
 
 The amount of influence of each parameter on landslide susceptibility is given by the 
highest frequency ratio values for that parameter at each site area.  Table 4 shows the maximum 
frequency ratio numbers for each parameter at each site area.  For example, at the Indian Brook 
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site area, the most important parameters are slope angle and roughness, as shown by the high 
frequency ratio values in Table 4.   
 

Table 4 – Highest Frequency Ratio Values for Each Parameter at Each Site 
 

Parameter 
Alder 
Brook 

Bartlett 
Brook 

Clay 
Point 

Indian 
Brook 

Joiner 
Brook 

Shelburne - 
all slides 

Shelburne - 
translational 

Shelburne - 
rotational 

Aspect 1379 5785 nc 3164 6704 nc 3465 2462 

Distance to Stream 6057 5908 10398 5885 3212 1769 5448 1836 

Hydrologic Group 1746 2880 7102 1705 2309 2960 1216 3159 

Roughness 8844 142795 9548 85076 4215 10349 34484 3045 

Slope Angle 34340 133275 32180 169488 6558 8859 32050 1691 
 
Soil Type - Musym 
without slope angle 
designation  8942 nc nc 1806 nc 5246 21278 4088 
 
Topographic 
Wetness Index 7661 10688 5781 5648 3384 4721 7292 3890 

   nc – not calculated 
 
 
 Susceptibility maps are produced by combining the parameters with the highest 
frequency ratio values for each site area.  Calculated frequency ratios for each class of the most 
important parameters are input into a GIS layer.  For example, for Indian Brook, two frequency 
ratio maps (slope angle and roughness) are produced.  On one map (slope angle), the parameter 
classes (0-10o, 10 -20o, 20-30o, 30-40o, 40-50o, 50-90o) are reclassified to show the calculated 
frequency ratio values.  On the other map (roughness), the parameter classes are also reclassified 
to show the calculated frequency ratio values.   Combining these two maps (or adding them 
together in GIS terms) produces a landslide susceptibility map.   
 
 In the case of Indian Brook, adding the frequency ratio values of other parameters to this 
combined map would not change the susceptibility much because frequency ratio values for 
slope angle and roughness are at least one to two orders of magnitude higher than other 
parameters.  In the case of Alder Brook, slope angle is the most important parameter, but the 
second most important parameter is not as clear-cut.  Soil type and roughness are the second 
most important parameters and are quite close in value.  For this site area, several maps should 
be constructed, such as a slope angle-soil type combination, slope angle-roughness combination, 
or a combination of all three parameters. The map that best shows the mapped landslides as 
susceptible should be used. 
 
F.  Field Calibration 
 The results of the terrain modeling were checked by conducting field visits to verify the 
presence of unstable slopes. Over 80 field locations were visited within the six site areas in 
Chittenden County.  An attempt was made to visit site areas delineated as stable on the 
susceptibility maps as well as to verify site areas shown as high hazard on the susceptibility 
maps. 
 
G.  Delineation of Sensitive Areas 

Areas sensitive to slope instability and landsliding were delineated at a scale of 
approximately 1:3000 to produce hazard potential maps.  The sensitive areas include areas of 
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active and inactive landslides, relict landslides that can foreseeably be reactivated, areas 
susceptible to future landslides, active and inactive gullies, and areas susceptible to future 
gullying.  The details of this procedure are contained in the attached protocol. 

 
Artificial cut and fill slopes were excluded from the delineations.  It is outside the scope 

of this work to evaluate stability in artificial materials and on engineered slopes.  Areas underlain 
by exposed or shallow bedrock were excluded. The terrain analysis methods used here should 
not be used to distinguish stable and unstable bedrock slopes. That would require more detailed, 
field-based analysis.  

 
 H.  Write Protocol 
 A protocol was written to delineate landslide susceptibility throughout the state, based on 
the work done to delineate susceptibility at the six site areas in this project.  Each step of the 
delineation process is discussed in detail in the protocol.  The protocol is included in a later 
section of this report. 
 
I.   Meet with CCRPC to Develop the Most Useful Product 
 As a partner on this project, CCRPC reviewed the protocol and maps.  The wording of 
the protocol was checked and verified to produce the most easily understood document.  The 
maps were reviewed to produce the best product for planning purposes. 
 
J.  Finalize Protocol and Compile Final Maps 
 Changes suggested by CCRPC were incorporated into the protocol and maps were 
adjusted as appropriate.  Final maps for this project show both the results from the frequency 
ratio analyses and from the delineation of sensitive areas.  Moderate and high susceptibility areas 
from the frequency ratio analyses are grouped and shown in raster form on the maps.  The 
sensitive areas, which include those areas of moderate/high susceptibility as well as the areas 
which could be affected by mass failures (landslide runouts, etc.), are shown as polygons.  
 
 
Part 3 – State Hazard Mitigation Plan Update 
 The Vermont Geological Survey will coordinate with the Vermont Emergency 
Management Agency to incorporate the protocol into the 2013 State Hazard Mitigation Plan.  A 
Vermont Association of Planning and Development Agencies (VAPDA) meeting was attended 
in May 2012 to inform them of the protocol and in February 2013, the final draft of the protocol 
was distributed by CCRPC to VAPDA and to the municipalities with site areas for their review.  
The protocol will be available for use by regional planning commissions and municipalities to 
delineate areas susceptible to slope failure. 
 
 

Results of Analysis 
 
 The results of the frequency ratio analysis are discussed below and shown in Figures 11 
through 17.  The frequency analysis is reported in percent on the figures. 
 
Alder Brook 
 Results of the frequency ratio modeling shown in Table 4 indicate that slope angle is the 
most influential parameter at this site area.  Also important are soil type, roughness, and 
topographic wetness index.  Different combinations of maps were compiled and examined, 
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including slope angle-soil type, slope angle-roughness, slope angle-roughness-topographic 
wetness index-distance to stream maps.   
 
 Slopes in the western part of the site area exhibited moderate to high potential on the 
maps and were verified as such in the field.  The best map found to show the landslide 
susceptibility at this site area was the slope-roughness map.  This map is shown on Figure 11. 
 
Bartlett Brook 
 Results of the frequency ratio modeling shown in Table 4 indicate that roughness and 
slope angle are the most influential parameters for landslide susceptibility.  Figure 12 shows the 
resulting map.   
 
 Five landslides were mapped at this site area.  Intuitively, it would seem that an active 
landslide should show a high hazard potential.  However, this is not the case in Bartlett Brook.  
The table below shows some characteristics of these landslides.   
 
 Four of the landslides are translational with areas less than 200 sq. m.  Only one of these 
(SBB-04) is rated as having high potential on the frequency ratio map. The other translational 
landslides (SBB-01, SBB-03, and SBB-05) show very low to low hazard potential.   
 

 
Landslide ID 

 
Type 

 
Area (sq. m.) 

Hazard Potential based on 
Frequency Ratios 

SBB-01 Translational 172 Very low to low 
SBB-02 Rotational 610 Very low to low 
SBB-03 Translational, inactive 60 Very low to low 
SBB-04 Translational 198 Moderate to high 
SBB-05 Translational 94 Very low to moderate 

  
 The fact that small active translational landslides are shown as having very low to low 
hazard potential on the frequency ratio maps is a problem for landslide susceptibility mapping.  
This problem is likely due to the inaccurate location of the landslides because of the following 
reasons.  
 

 Polygons for small landslides are difficult to draw in the correct location, because the 
slides are difficult to identify on orthophotos and aerial photographs.   

 
 The accuracy of the GPS instrument used for this project was + 3 to 4 m.  This error is 

sometimes greater than the size of the small landslide itself, which could also add to 
incorrect location of the slide.   
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Figure 11. Alder Brook Site Area. Results of Frequency Ratio Analysis in 
Percent and Areas of Slope Sensitivity. 
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Figure 12. Bartlett Brook Site Area. Results of Frequency Ratio Analysis in 
Percent and Areas of Slope Sensitivity. 
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 This location inaccuracy will lead to errors when calculating the frequency ratios, 
because pixels within the incorrectly located landslide polygon will be counted in a different 
parameter class.  If the hazard potential of the site area is based on the frequency ratios 
calculated using primarily small landslides, this could render the entire hazard potential map 
inaccurate.  
 
 The other landslide in Bartlett Brook (SBB-02) is a larger rotational slump, but it also 
shows as very low to low hazard potential on the frequency ratio map.  The difficulty with 
rotational slumps is that they are often not distinct from the surrounding landscape, because the 
area involved has just slipped down and not been uncovered except at the head scarp.  This is 
true especially if they are recent and not large as is the case of SBB-02.  In this case, they may 
not exhibit the classic hummocky topography that could potentially be shown by ‘roughness’, or 
the sag ponds that could potentially be shown by ‘topographic wetness index’.  Even the slope of 
a rotational slump such as this (20o), is not distinctive from the surrounding landscape.  This may 
explain why SBB-02 is rated as low hazard on the map. 
 
Clay Point 
 Results of the frequency ratio modeling shown in Table 4 indicate that slope angle is the 
most important parameter at this site area, followed by distance to stream/lake and roughness.  
These parameters were combined to make three maps:   

o slope angle-roughness 
o slope angle-roughness-distance to stream/lake 
o slope angle-distance to stream/lake 

 
 The maps were then compared to the landslides identified initially during this project.  
Existing active landslides should be shown within a moderate to high susceptibility area on the 
map.  The following table shows results of this comparison. 

 
Results of Comparison of Existing Landslides to Frequency Ratio Maps 

Landslide 
Number 
LS_ID Notes 

Hazard 
Potential 
Based on 
Type of 
Hazard 

Hazard Potential Based 
on Frequency Ratio Map               

File:  Slope angle & 

Roughness  

Hazard Potential Based on 
Frequency Ratio Map               

File:  Distance to Stream, 

Slope angle & Roughness  

Hazard Potential Based on 
Frequency Ratio Map               

File:  Distance to Stream & 

Slope angle  

CCP-01 
Translational 
slide High Moderate to high Moderate to high Moderate to high 

CCP-02 
Translational 
slide High Moderate to high Moderate to high Moderate to high 

CCP-03 Rotational slump High Low to high Moderate to high Moderate to high 

CCP-04 
Translational 
slide High Moderate to high Moderate to high Moderate to high 

 
 
 The table shows that the slope angle-roughness map does not show the existing landslides 
as well as the slope angle-roughness-distance to stream/lake map and the slope angle-distance to 
stream/lake map.   Other considerations at this site area are the terrace slopes.  The terrace slopes 
are not considered moderate or high hazard.  They are lower angle (20 to 25o) and not as high (6 
to 10 meters) as the bluff along the lake (35 to 40o, ~20 meters high).  The terraces are shown on 
the slope angle-roughness map as low to moderate, on the slope angle-roughness-distance to 
stream/lake map as low, and on the slope angle-distance to stream/lake map as very low to low.  
Therefore, it was concluded that the best map to show landslide susceptibility at this site area is 
the slope angle-distance to stream/lake map.  This map is shown in Figure 13. 
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Indian Brook 
 Results of the frequency ratio modeling shown in Table 4 indicate that the most 
influential parameters were slope angle and roughness.  A map combining these was made and is 
shown in Figure 14. 
 
Joiner Brook 
 The frequency ratio modeling shown in Table 4 indicates that aspect, slope angle, and 
roughness are the most influential parameters in Joiner Brook.  Because Joiner Brook flows 
south across the site area and most of the landslides are on the eastern side of the valley, aspect 
was a dominant parameter and was able to explain many of the landslides.  However, areas in 
valleys not trending north-south, such as the tributary flowing into Joiner Brook from the east 
were not adequately modeled using this parameter.  Therefore, the best map found to identify 
most landslides at this site area was a combination of slope angle and roughness.  This map is 
shown in Figure 15. 
 
La Platte River 
 The La Platte River site area is interesting because it contains both translational and large 
low-angle rotational slumps.  This site area was modeled in three ways: 

o Using all the slides identified in the site area 
o Using only the translational slides 
o Using only the low-angle rotational slumps 

 
This was done because translational and rotational slumps are very different and it was thought 
that the difference might be important in the frequency ratio analysis.  Translational slides occur 
on higher-angle slopes and generally affect less area than rotational slumps.  Twenty-seven 
translational slides were identified at the site area, whereas only two low-angle rotational slumps 
were identified.  Several relict low-angle rotational slumps were also identified, but were not 
used in the analysis. 
 
 Based on the frequency ratio analysis as shown in Table 4, the most influential 
parameters for both the translational slides and all combined slides are slope angle and 
roughness.  The maps for this site area are shown as Figures 16 and 17.   
 
 The most influential parameters for the low-angle rotational slumps are soil type, 
topographic wetness, and hydrologic group.  The resulting map is perplexing, because although 
the two known low-angle rotational slumps show an unusual signature, they do not show up as 
high landslide potential.  Because no other large active rotational slumps were identified at this 
site area, it is difficult to determine the validity of the results of this modeling.  It seems that 
additional work is required to fully understand the influential parameters for these types of 
slides. 
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Figure 13. Clay Point Site Area. Results of Frequency Ratio Analysis in 
Percent and Areas of Slope Sensitivity. 
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Figure 14. Indian Brook Site Area, Results of Frequency Ratio Analysis in 
Percent and Areas of Slope Sensitivity. 
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Figure 15. Joiner Brook Site Area. Results of Frequency Ratio Analysis in 
Percent and Areas of Slope Sensitivity. 
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Figure 16. La Platte River Site Area (All Slides). Results of Frequency Ratio 
Analysis in Percent and Areas of Slope Sensitivity. 

McCabe’s Brook 
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Figure 17. La Platte River Site Area (All Slides with Low-Angle Slides 
Highlighted). Results of Frequency Ratio Analysis in Percent and Areas of 
Slope Sensitivity. 

McCabe’s 
Brook 
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Comparison of Lidar 3.2m DEM to USGS 10m DEM for Use in Protocol 
 
 Elevations for the entire state of Vermont are available in a 10 meter DEM prepared by 
the USGS.  This DEM was constructed using the elevations on the 1:24,000 topographic 
quadrangle maps.  Recently (within the past 10 years), lidar imagery has become available for 
parts of the state.  This imagery is produced by laser imaging from the air.  The resulting DEM is 
3.2 meters.  Currently parts of Chittenden and Essex counties are covered by lidar. 
 
 The protocol for identifying areas sensitive to landslide hazards is intended to be useful 
throughout the state of Vermont.  It was developed using the 3.2m lidar DEM to identify the best 
process for the protocol.  Because lidar is not available throughout the state, the protocol was 
then tested using the 10m DEM at the Indian Brook site area in Colchester.    
 
 In one 10m grid of the 10m USGS DEM, there are about nine 3.2m lidar grids, so the 
lidar data is more detailed.  Therefore it is intuitive that the landslide protocol will be most 
accurate when the 3.2m lidar DEM is used.  Table 5 shows a comparison of the slope angle data 
derived from the 3.2m lidar and 10m USGS DEMs in the Indian Brook site area.  This 
comparison shows that the maximum reported slope is much lower for the 10m USGS DEM than 
for the 3.2m lidar DEM.  The higher standard deviation in the 3.2m lidar DEM reflects the 
increased detail and higher variability in the elevation values.   
 
 

Table 5- Comparison of Slope Angle Statistics of 3.2m Lidar and 10m USGS DEMs in 
Indian Brook Site Area 

 
Statistics 3.2m Lidar DEM 10m USGS DEM 

Number of Pixels 498027 51038 
Minimum 0 0 
Maximum 52.3 37.8 
Mean 6.3 5.5 
Standard Deviation 7.5 6.2 

 
 
 Figure 18 shows a comparison of the slope angle data in the part of the Indian Brook site 
area southeast of the intersection of Route 7 and Main Street.  Although the general form is the 
same, the details are not.  Table 6 is a comparison of the slope angle data at selected points on 
the two DEMS. 
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Table 6 – Comparison of Slope Angle Points as Derived on the 3.2m and 10m DEMs 
Points of 

Comparison 
Comments 

A More of the landslide and different parts of the landslide are shown as high angle in 
the 3.2m lidar DEM image; the slope angle shown is also higher in the 3.2m lidar 
DEM image.    

B Field reconnaissance showed the area across the river from the landslide as flat.  
The 10m USGS DEM image shows the slope angle in this area as 30 to 40o.  The 
lidar shows the slope in this area as 0 to 10o. 

C The general shape of the slopes in the area is somewhat similar, but lower slope 
angles are shown in the 10m DEM. 

D Maximum slope angles in the two landslides in the southeast corner of the map are 
shown as 465o on the 3.2m DEM and 22o on the 10m DEM. 

 
 A comparison of the frequency ratio analysis results for the same area is shown in Figure 
19.   Slope angle and roughness were used to calculate the frequency ratio values for this site.  
Table 7 is a comparison of the frequency ratio results at selected points on the two DEMs. 
 

Table 7 – Comparison of Frequency Ratio Results on the 3.2m and 10m DEMs 
Points of 

Comparison 
Comments 

A Results are comparable.    
B The 10m USGS DEM image shows the area as high hazard potential.  The lidar 

shows the area as low hazard potential. 
C The area to the south of C is shown as moderate potential in both DEMs, but the 

area to the west of C shows as moderate in the 3.2m DEM and low in the 10m 
DEM. 

D Results for the 3.2m DEM show high and moderate hazard.  Results for the 10m 
DEM show moderate hazard. 

E The 3.2m DEM shows moderate hazard potential in this area, however this slope is 
rated as high hazard potential in the 10m DEM. 

 
 Based on this analysis the 10m DEM does not seem to be nearly as suitable for terrain 
analysis as the 3.2 m DEM. The hazard potential of the large slide at point A is well-represented 
on both maps in Figure 19.  However, the hazard potential at point B is shown as low on the 
3.2m DEM map and high on the 10m DEM map.  Based on field reconnaissance, that area is 
known to be flat with little hazard potential.  The area at point E to the south-southeast of the 
large slide is also not represented equally on the maps.  The 3.2 m DEM shows moderate hazard 
potential, whereas the 10m DEM shows high hazard. 
 

Our trials indicate that an accurate lidar DEM is probably an essential prerequisite for 
successful terrain analysis using the frequency ratio method. That does not mean that hazard 
mapping cannot be undertaken without lidar terrain data. Frequency ratio analysis can be tried, 
and if field review indicates that it is inadequate, then the areas of high hazard potential can be 
identified by careful stereoscopic photointerpretation and field work. 
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     a.   Slope angle as measured in 3.2m lidar DEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     b.   Slope angle as measured in 10m USGS DEM 
 
 
Figure 18. Comparison of Slope Angle 
derived from 3.2m Lidar DEM and 10m 
USGS DEM. 
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     a.   Frequency ratio results for slope angle and roughness on 3.2m lidar DEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     b.   Frequency ratio results for slope angle and roughness on 10m USGS DEM 
 
Figure 19. Comparison of Frequency Ratio 
Results for 3.2m Lidar DEM and 10m 
USGS DEM. 
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Protocol 
for Identification of Areas Sensitive to Landslide Hazards in Vermont 

 
A protocol for identifying potentially unstable slopes has been developed and tested at six 

site areas in Chittenden County.  The analysis on the tested site areas utilized ESRI’s ArcGIS 
Standard with the Spatial Analyst extension.  While other GIS software could be used, the 
protocol outlined below assumes the analysis uses ESRI ArcGIS software.  The protocol is 
divided into five phases: 

 
Phase 1.  Selection of a site area of interest;  preparation of the project in ArcGIS; initial data 

collection on existing landslides; photo interpretation of orthophotos and aerial 
photographs; field reconnaissance of a sampling of landslides; and compilation of 
the landslides identified from different sources at the site area.   

Phase 2.  GIS-based terrain analysis using the best-available Digital Elevation Model (DEM)  
parameters in the protocol include distance to stream, hydrologic group, roughness, 
slope angle, soil type, and topographic wetness index. 

Phase 3.  Frequency ratio analysis. Each parameter is divided into classes (e.g. slope angle 0-
10o, 10 -20o, 20-30o, 30-40o, 40-50o, and 50-90o).  Within the site area, the number 
of landslide pixels in each class is compared to the total number of pixels in that 
class and a frequency ratio is calculated.  The parameters that show the highest 
frequency ratios are then added together to produce a preliminary map of 
potentially unstable areas. 

Phase 4.  Random areas and questionable areas in the site area are field checked to verify and 
calibrate the maps.  Maps are compared to the surficial geology, bedrock outcrops, 
topographic contours, and profile curvature to delineate sensitive areas.   

Phase 5.  Final maps showing potentially unstable areas and areas sensitive to landslide 
hazard are prepared.   

 
Two GIS programs are considered in this protocol. Most of the analysis is undertaken with 

ArcGIS with the SpatialAnalyst extension. Familiarity with this program is assumed. Part of the 
terrain analysis in Phase 2 is undertaken with SAGA. This is free and open source software 
available at http://www.saga-gis.org/en/index.html. Other GIS programs such as ArcGIS can be 
used for the terrain calculations such as topographic wetness index, but SAGA has the advantage 
of having built-in algorithms that simplify the steps needed to run the calculations. Once the data 
is loaded, it is a one-step process to set the “Basic Terrain Analysis” module running. It is not 
essential to use SAGA, but we found it to be a useful tool for the terrain analysis. 

 
Note that a large number of  GIS files are created in this protocol. Consistent naming 

conventions should be used throughout. Document file names and processing steps in a 
spreadsheet as discussed in Phase 2 below. 
 
Phase 1 – This phase involves selection of the site area of interest, creation of the project in 
ArcGIS, initial data collection, creation of a landslide database for the site area, photo 
interpretation, field reconnaissance, and resolution of the landslide polygons. 
 

A. Selection of the site area of interest – In the work to develop the protocol, site areas were 
selected in part of a watershed based on the availability of lidar data and the presence of a 
variety of geologic and land-use characteristics.   
 

http://www.saga-gis.org/en/index.html
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 There is no set size for a site area, although the site area should be large enough to 
include a good representation of the landslides there.  The area should be at least 25 to 50 
sq. km. This would probably yield enough landslides for a robust analysis.   For best 
results at smaller site areas, the following criteria should be met: There is an average of at 
least one landslide per square kilometer in the site area; the average size of the landslides 
is at least 400 square meters; and at least 30% of the landslides are greater than 400 
square meters. 
 
The site areas for the initial protocol development ranged from 1.3 to 12.6 sq. km. Note 
that the areas were kept small in order to facilitate testing of multiple approaches in a 
limited amount of time. Areas of at least 25 to 50 sq km. are much more likely to be 
suitable in practice.  
 
When possible, the study area should include complete subwatersheds. This will facilitate 
accurate calculation of Topographic Wetness Index (TWI, described in Phase 2 below). If 
it is not possible to include complete watersheds for the 1st order streams in the study 
area, a larger block of terrain data should be analyzed for TWI. The outputs for the study 
area can then be extracted. This will ensure that the correct contributing area is used in 
the TWI calculation (see Phase 2 below). The complete watersheds of the larger streams 
in a block are not needed as TWI is more sensitive to the steep slopes of local side valleys 
than it is to large contributing areas of the floodplain pixels.  
 

B. The ArcGIS Data Frame properties and all data layers should be in Vermont State Plane 
coordinates (meters), NAD 83.  The initial data layers needed to start the project in 
ArcGIS are listed below in Table 8.  Some data layers will be used in the analysis.  
Others will not be used in the analysis, but will provide overall knowledge of the site 
area. 
 
Existing geologic data should be reviewed. Surficial geologic maps of the site area should 
be reviewed to identify known landslides. Bedrock geologic maps may provide locations 
of areas of bedrock exposures. The GIS data files should be downloaded and incorporated 
into the GIS project. Check the VGS website for updated information on these and other 
geologic hazard datasets. 
 
A wide variety of other sources may contain information regarding landslides. Local 
libraries and historical societies be helpful. The University of Vermont Special 
Collections and the Vermont Historical Society library contain extensive collections of 
newspapers, maps, and other documents that may contain information on past landslides. 
  
Historic views of landslides in or near the study area may be available from the extensive 
image collection maintained at the Vermont Landscape Change Program at 
http://www.uvm.edu/landscape/ . 

http://www.uvm.edu/landscape/
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  Table 8 – GIS Layers Needed to Start Landslide Susceptibility Assessment 
 

Layer Content File Type Source* 
Political boundaries that may be useful (state, county, city, town, village) Polygon  VCGI 
Roads Line VCGI 
Surface Waters from Vermont Hydrography Dataset (VHD) Line/Polygon VCGI 
Outline of the site area of interest Polygon  User 

defined 
Lake Champlain – you must have this layer if your site area borders Lake Champlain, otherwise not. Polygon VCGI 
Topographic maps (USGS 1:24,000) TIF file VCGI 
DEM (At this point, the 2004 lidar bare-earth 3.2m DEM is preferable, however this is only 
available in a few parts of Vermont.  The USGS 10m DEM is usable and would be an alternative, 
although it will not give as accurate results.)   

Raster VCGI 

Surficial Geology (from 1970 statewide map and 1:24,000 quadrangles if available) Polygon VGS 
USGS mapped landslides – includes recent landslides, recent to prehistoric rockfalls, recent to old 
debris flows, and recent to old slope failure areas) 

Point/Line/ Polygon VGS 
website 

Location of marine limit of Champlain Sea (if your site area is in a county bordering Lake 
Champlain)  

Polygon VGS 

NRCS Soils Data (This covers the whole state, so it is a very big file.  You may want to make it 
smaller, using the Geoprocessing ‘clip’ tool.  You can ‘clip’ it to the county boundary or site area or 
whatever suits you best.)  

Polygon VCGI 

Outcrop maps as available Polygon/raster VGS 
Statewide Stream Geomorphic Assessment Layers (These layers indicate which streams have been 
assessed by the Rivers Program and  the type of assessment) 

Point/Line/ Polygon RMP 

Stream Geomorphic Assessment FIT Layers (These layers show the stream features identified 
during field work along the assessed stream.  Mass failures noted as the assessor walked along in the 
stream are documented.  Bank erosion is also noted.)  (FIT=Feature Indexing Tool) 

Point/Line RMP 

Available orthophotos for the site area (possibilities include 1999 black and white, 2004 and 2007 
color);  Leaf-off imagery is the most helpful.  The years vary for different areas of the state.  
Vermont Orthophoto Program imagery found on VCGI’s website is suggested. 

TIF file See text, 
Phase 1A 

* RMP – River Management Program - Geomorphic Assessment data can be obtained from the Agency of Natural  
  Resources, River Management Program, at http://www.vtwaterquality.org/rivers/htm/rv_geoassess.htm 

VCGI – Vermont Center for Geographic Information, at www.vcgi.vermont.gov  
VGS – Vermont Geological Survey, at http://www.anr.state.vt.us/dec/geo/hazinx.htm  

 
Meeting with site area town/city officials and road crew to learn about landslides and 
unstable slopes in their area. 
 
Interpretation of orthophotos, which were loaded into the GIS project. Orthophotos are 
available through the Vermont Center for Geographic Information (VCGI) at 
www.vcgi.vermont.gov.  
 
Interpretation of older aerial photographs.  These are not orthorectified, but are often very 
useful to identify areas of recurrent instability.  Older aerial photographs, which can be 
used in stereo are available through: 

 UVM Government Documents Office 
 U. S. Department of Agriculture, Natural Resources Conservation Service 

(NRCS) Offices located around Vermont 
 Vermont Agency of Natural Resources (ANR) Water Quality Division 
 ANR Department of Forest, Parks, and Recreation  

The photographs will probably need to be viewed in-house, but the stereoscopic analysis 
is a critical step in the landslide inventory process. Even when lidar data is available, it is 
extremely useful to examine sharp, leaf-off photography in stereo. 

 
C. Create a landslide database in which you give each landslide a unique name (LS_ID) and 

tabulate its characteristics.  This includes general site information, as well as data on 
landslide classification, geometry, surficial materials and stratigraphy, and possible 
causes of the landslides. The database and the associated field data sheet are described in 
detail in Appendices B and A, respectively. 

http://www.vtwaterquality.org/rivers/htm/rv_geoassess.htm
http://www.vcgi.vermont/
http://www.anr.state.vt.us/dec/geo/hazinx.htm
http://www.vcgi.vermont.gov/
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D. Interpretation of the orthophotos and stereoscopic interpretation of the older aerial photos 

should be performed to identify existing and past landslides.  Landslides identified on the 
orthophoto layers in ArcGIS can be drawn as landslide polygons directly into the data 
layer file.  Landslides identified on the older aerial photographs (presumably paper copies 
in stereo) will have to be located in ArcGIS and drawn in as polygons.  It works well to 
have different landslide polygon layers for each source.  All landslides should be 
identified by their unique identification number (LS_ID) in the landslide database and 
polygon layers.  If a landslide is identified in the same place in multiple sources (e.g. 
orthophotos, aerial photographs, field), the LS_ID number will be the same in all layers.  
The polygons will likely overlap in this case, as shown in Figure 20.   

 
 

 
 

Figure 20 - Example of Overlapping Polygons of the Same Landslide. Each different 
colored outline was made during photo interpretations of aerial photographs from 
different years.  All of these landslides are the same and therefore have the same LS_ID 
number SLP-02. 

 
E. Field reconnaissance of some of the landslides should be performed to document their 

boundaries using GPS and tabulate pertinent characteristics, such as those in Appendices 
A and B.  The locations of mass failures delineated by the River Management Program 
during their Stream Geomorphic Assessments were used as a guide to find landslides to 
visit.  The River Management Program only identifies the locations of slides along 
waterways. Because the size and characteristics of mass failures they have identified are 
not part of their data collection process, it is necessary to visit some of these locations 
and collect GPS points and characteristics to add into the landslide database.  Unstable 
areas identified by the city/town officials should also be visited.  If these areas are 
confirmed to be unstable, they should be identified by a polygon or a GPS point in the 
GIS project, because slope failures tend to recur in the same place (Giraud and Shaw, 
2007).   Remediated slides, even if they are stable now, are in sensitive areas and should 
be included in the database. 
 
IMPORTANT:  It is probably not feasible to visit every landslide in the site area, but it 
is critical to visit a sampling of the slides to get the basic characteristics of the slope 
failures in the site area.  Given the highly variable distribution of landslides in Vermont, 

Date of Photos Used 
     1942 – Purple 
     1962 – Brown 
     1999 – Pink 
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it is difficult to specify how many landslides need to be visited, but it is important to keep 
in mind the criteria outlined in Phase 1A of the protocol. 
 
The following layers should now be in the GIS project. 
 

Layer Content File Type 
Landslide database w/ landslide ID number (LS_ID) and pertinent  information about the landslides Point 
Landslide extent (one or several files showing extent of landslide areas from field reconnaissance, orthophoto and 
aerial photo interpretation)   Be sure that the landslides have a unique identification number LS_ID, unless they 
are the same landslide. 

Polygon 

GPS Points (any GPS points recorded during field reconnaissance may be useful later to delineate landslide 
locations or boundaries) 

Point 

 
F. At this point, you may have several files of landslide polygons identified from different 

sources.  In order to use the landslides in the analysis, they must be resolved into one file.    
Landslides in different places should have different identification numbers.  Landslides in 
the same place could have different boundaries if they are the same landslide identified in 
aerial photographs of different years. In this case, they should have the same landslide 
identification number because they are the same landslide. An example of this is shown in 
Figure 19.   If two different landslides are adjacent, but they share a boundary, they 
should have different LS_ID numbers, as shown in Figure19. 
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Figure 21 shows the outlines of two translational slides in the Indian Brook site area.  The 
slides share a boundary, but are distinct slides and therefore have different LS_ID 
numbers, CIB-03 and CIB-04.   

 
 
 
 

Figure 21 – Example of Different 
   Landslides That Share the Same  
                     Boundary 

 
 
 
 
 
 

The goal is to have all the landslide polygons from the different sources in one ‘merge’ 
layer, if the landslides do not overlap, or one ‘dissolve’ layer, if the landslides overlap.  
The dissolve tool will remove or ‘dissolve’ the boundaries of the same landslide with 
overlapping boundaries, so that landslide (same LS_ID) will now have one outer 
boundary.  Examples of this process are shown in Figure 22. The steps in this process are 
listed below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 - Example of Merging and Dissolving Landslide Boundaries. 
 

a. Look in the attribute tables for the landslide polygon files you have.  Make sure 
that each landslide has an identification number (LS_ID).  All of these 
identification numbers should coordinate with data in the landslide database.   
 
Note:  If all the landslides in a site area are in one layer file and they do not 

overlap, go directly to Phase 2.  You do not need to do the next two steps 
(steps b and c below). 

 

CIB-04 

CIB-03 

a.  Boundaries of landslide 
SLP-02 from 1942, 1962, and 

1999 aerial photographs 
 
 

b.  Merged – Landslide 
boundaries for SLP-02 are 

merged into one file 
 
 

c.  Dissolved – Outermost 
landslide boundary for SLP-02 

remains 
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If you have several files of landslide polygons from different sources, do 
the next two steps (steps b and c below). 

 
If all the landslides at your site area are in one layer file and there are 
overlapping boundaries, do the dissolve step only (step c below). 

 
b. Use the Geoprocessing Tool\Merge to get all the landslide polygons into one file.  

The resulting merge layer will contain many landslide polygons, some of which 
may have the same identification number, if they are the same landslide, as shown 
in Figure 24. 
 
Input Datasets:  All landslide polygon layers (Each landslide polygon should have 
a corresponding LS_ID number) 
Output Dataset: Use a consistent naming convention 
Field Map:  No change  
 
If all the polygons in the merge file are discrete and do not overlap, you do not 
need to do the dissolve step (step c below).  You can go directly to Phase 2.  
 

c. Because the landslides were identified using different sources, boundaries of the 
same landslide may differ, as shown in Figure 20.  Use the Geoprocessing 
Tool\Dissolve to combine these landslides into one slide of the same name.  In 
order to do this, you must have a property common to the same landslide in the 
Merge layer.  In this case, it is LS_ID, so when you run Dissolve, be sure to click 
on LS_ID. 
 
Input Features:  Merged layer from step b 
Output Dataset: Use a consistent naming convention 
Dissolve_Field:  Click on LS_ID 
Statistics Field:  No change 
Create multipart features:  Leave as checked 
Unsplit lines:  Leave as unchecked 

 
The output feature from the Dissolve tool should now contain landslides 
identified from many sources, but only one polygon for each landslide 
identification number (LS_ID).  The boundary of each landslide is now the 
maximum extent of all the failures at that particular area identified using different 
sources, as shown in Figure 22c. 

 
 
 

Phase 2 – This phase involves conducting terrain analysis on the best DEM available for 
the site area to produce layers which will be used for frequency analysis later in the process.  Our 
trials indicate that an accurate bare-earth lidar DEM is probably an essential prerequisite for 
successful terrain analysis using the frequency ratio method. That does not mean that hazard 
mapping cannot be undertaken without lidar terrain data. In many parts of Vermont no lidar data 
is currently available. In these areas, the best available DEM may be the USGS 10 m DEM. In 
such areas the procedures outlined in this phase can be attempted, and if field review indicates 
that it is inadequate, then the areas of high hazard potential will need to be identified by careful 
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stereoscopic photointerpretation and field work. However, the work will proceed far more 
efficiently if an accurate bare-earth lidar DEM is available.  
 
 If your site area does not include an entire watershed, it is suggested that you first analyze 
a ‘study block’ larger than your site area because of ‘edge effects’ that might occur when 
analyzing the exact extent of the site area.  For example, if the site area is only a portion of a 
watershed, it is important to include the upper part of the watershed in the larger block because 
some parameters depend on upstream characteristics (e.g. topographic wetness index). The block 
must be at least large enough to encompass the first order tributaries that are in the site area. 
After calculation of parameters, the pixels within the site area can then be extracted from the 
larger block file.  
 
 Details to accomplish the terrain analysis are explained below.  It is suggested that a log 
of the files be kept as the project progresses.  An Excel spreadsheet can be very useful to keep 
file names organized.  Other important entries in the spreadsheet are the subdirectory in which 
the file can be found and the process by which it was created.  
  

A. Layers should be created for each of the following parameters:  distance to stream, 
hydrologic group or soil drainage, profile curvature, roughness, slope angle, soil type, 
and topographic wetness index.  A brief description of each parameter is below. 

 
Distance to Stream – Landslides occur most frequently along waterways, therefore the 
distance of a slope to the nearest waterway is an important parameter.   
 
Hydrologic Group (Soil Drainage) – Soils that have similar runoff properties, such as 
rates of infiltration and runoff, are combined into ‘hydrologic groups’ by the NRCS.  
Qualities that affect this are depth to high water table, saturated hydraulic conductivity, 
and depth to a very low permeability layer.  (NRCS, 2003, National Soil Survey 
Handbook, p. 618-24)  Four groups, A, B, C, and D, are delineated and described below. 
 

A: Low Runoff Potential - These soils consist primarily of deep well drained 
sands or gravels which have a high rate of water transmission. 
B – These soils are primarily moderately deep and moderately well drained with a 
moderate rate of water transmission.  Soils in this category are generally medium 
to coarse grained. 
C – These soils drain slowly and have a low rate of infiltration.  Soils in this 
category are generally fine grained. 
D: High Runoff Potential – These soils consist of clay or soils with a permanent 
high water table.  Infiltration is very slow and runoff is very high.  

 
Profile Curvature – Profile curvature is a measure of the curvature of the slope in the 
vertical direction.  Profile curvature is a quantity indicating whether the slope is convex, 
concave, or neither.  Because the highest values for profile curvature were at the top or 
bottom of a slope, the values within the landslide areas were similar to the values in flat 
areas (neither concave nor convex).  Although profile curvature is more useful in the final 
step of the protocol to verify the frequency ratio results, the layer should be calculated 
during the terrain analysis process.      
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Roughness – The roughness parameter is the standard deviation of the slope angle. It is a 
measure of how variable the topography is over short distances. Smooth, even slopes 
have low roughness values and jagged surfaces have high values. The standard deviation 
is calculated for each pixel location by finding the standard deviation of the slope for all 
pixels within a 3 x 3 pixel block centered on the pixel. The units for both slope and 
roughness are degrees. 
 
 It should be noted that this parameter could lead to confusion with bedrock 
outcrops, which would also exhibit a ‘rough’ surface.  Therefore, having some kind of 
outcrop map during the verification of frequency ratio results is important.    
 
Slope Angle – Translational slides commonly occur on high angle slopes (slopes greater 
than 30o), so it follows that since the majority of slides were translational, slope angle 
would be important. 

 
Soil Type – Soil type, which is a characteristic of soil series, is used as a parameter for 
this project.  Soil series is identified by the name of soil type (based on soil horizon 
characteristics, including grain size or texture, organic matter content, color, structure, 
chemistry, etc.) and slope angle delineation.  An example of this is AdA, which indicates 
Adams and Windsor loamy sands on 0 to 5% slopes.  For this project, soil ‘type’ was 
investigated as a parameter, which is the soil series name without the slope angle 
designation, so in the previous example, only ‘Ad’ would be used.    
 
Topographic Wetness Index (TWI) – Topographic Wetness Index is a measure of the 
water draining into the area.  It depends on the slope angle and drainage area uphill of the 
point of interest.  It is calculated by (Wilson and Gallant, 2000): 

 
                            TWI = ln (a/tan β) 
  Where a = specific area = local upslope area draining through a certain pixel per unit  
  contour length 
              β = the local slope 
 
 

Methods of creation of these layers are listed in Table 9.  Each of the parameters considered were 
abbreviated to help with file naming during the frequency ratio analysis (e.g. ‘ds’ for distance to 
stream, ‘hg’ for hydrologic group, ‘pc’ for profile curvature, ‘ro’ for roughness, ‘sl’ for slope 
angle, ‘so’ for soil type, and ‘tw’ for topographic wetness index).  These seven files should be 
created for each site area. 
 

Table 9 – Method of Creation of Parameter Layers 
 

Parameter Method of Creation Input File 
Distance to Stream (ds)  ArcGIS\Spatial Analyst\Distance\Euclidean Distance (make sure the 

output cell size is the same as the DEM size you are using; e.g. Lidar 
cell size = 3.2m; you do not need to specify maximum distance) 

Rivers – stream 
layer clipped to 
larger study 
block  

Hydrologic Group (indicative of soil 
drainage) (hg) 

a.  Geoprocessing Tool\Clip NRCS Soils  layer to site area  
b.  Open Properties; choose Display tab; change Display Expression to  
      HYDROGROUP 
c.  Choose Symbology tab; click on Categories; change Value Field to  
      HYDROGROUP; click on ‘Add All Values’ 
d.  Choose Labels tab; click on Text String/Label Field; change to  
      HYDROGROUP 

NRCS layer 
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e.  Click okay at bottom of window;  If labels are not showing, right- 
      click on layer name and click on Label Features 
f.  Use ArcGIS\Conversion Tools\To Raster\Polygon to Raster to  
      convert hydrologic group polygons to a raster file (Input file: hg  
      layer clipped to site area; Value Field:  ‘HYDROGROUP’; Cell  
      Size:   whatever size DEM is being used (3.2m for lidar). 
g.  Use ArcGIS\Spatial Analyst\Reclass\Reclassify to change water  
      pixels to Hydrologic Group D and Not Rated pixels to NoData 

Profile Curvature (pc) ArcGIS\Spatial Analyst\Surface\Curvature (choose profile curvature) DEM 
Slope Angle (sl) ArcGIS\Spatial Analyst\Surface\Slope (specify degrees; z factor = 1 for 

lidar; check and change accordingly for other DEMs) 
DEM 

Roughness (standard deviation of slope) (ro) ArcGIS\Spatial Analyst\Neighborhood\Focal Statistics (choose standard 
deviation) 

Slope file ‘sl’ in 
degrees 
previously 
generated (see 
below) 

Soil Type (so) Soil type in the GIS layer is indicated by ‘musym’.  These soil types 
generally have 3 letters, such as AdA.  The first two indicate the soil 
type; in this case, Adams and Windsor loamy sands.  The third letter 
indicates slope in a general way.  Slopes ‘A’ through ‘E’ vary from flat 
more steep.  This slope designation must be removed. 
a.  Geoprocessing Tool\Clip NRCS Soils  layer to site area  (may have  
      already been done for Hydrologic Group) 
b.  Open Properties; choose Display tab; change Display Expression to  
      MUSYM 
c.  Choose Symbology tab.  If hydrologic group symbols are displayed,   
      change Value Field to MUSYM; click on ‘Add All Values’ 
d.  Choose Labels tab; click on Text String/Label Field; change to  
      MUSYM 
e.  Click okay at bottom of window;  If labels are not showing, right- 
      click on layer name and click on Label Features 
f.  Go into Editor and start editing soils layer. 
g.  Open attribute table;  right-click on the ‘musym’ column and sort  
      ascending;  delete the third letter of each of the ‘musym’ entries to  
      get rid of the slope designation.  Do not change anything if there is  
      no third letter on the musym designation.  Save edits and stop  
      editing when complete.  Close attribute table. 
g.  Use ArcGIS\Conversion Tools\To Raster\Polygon to Raster to  
      convert musym polygons to a raster file (Input file: soils layer  
      showing musym clipped to site area; Value Field:  ‘MUSYM’; Cell  
      Size:   whatever size DEM is being used (3.2m for lidar). 

NRCS layer 

Topographic Wetness Index (tw)  This can either be created in the SAGA GIS program (see Glossary) or 
as a script in ArcGIS. 

DEM 

 
 
 
 

B. If the site area of interest is not along the shore of Lake Champlain or a large water body, 
proceed to step C. 
 
If the site area of interest is on the shore of Lake Champlain or a large water body, you 
will need to remove that water body before proceeding.  This is because the terrain 
analysis does not distinguish between land surface and water surface, so the parameters 
(distance to stream, profile curvature, roughness, slope angle, and topographic wetness 
index) will be calculated on the water surface as well as the land surface and will skew 
the frequency ratio results.  
 
Follow the steps below to remove the water body area from the site area. 

a.   Open ArcCatalog. 
Right-click on the file you want to change (in this case, Lake Champlain layer). 
Click on Properties. 
Go to Fields tab. 
Go to the first empty line of Field Name and click on it. 
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Type in ‘Id’. 
Under Data Type, click in the space and find the pull down menu. 
Click on Long Integer. 
Click OK at the bottom of the window. 
Close ArcCatalog 

 
b.   Open ArcMap; start editing the Lake Champlain layer. 

Right click on Lake Champlain in the Table of Contents and click on Open 
Attribute Table. 
Change the Field labeled ‘Id’ to 1. 
Save Edits and Stop Editing. 

 
c.   Open Geoprocessing Tools  

Click on Union to join polygon files together (File showing the outline of your 
site area and Lake Champlain layer).  

Input Features:   Outline of Your Site area file and Lake Champlain layer 
Output Feature:   Outline of Your Site area_noLakeChamp 
Select ALL for join attributes; so Lake Champlain Id_1=1, and land area 
in the site area Id_1=0. 

 
d. Open ArcMap; start editing Outline of Your Site area_noLakeChamp 

Right click on Outline of Your Site area_noLakeChamp and click on Open 
Attribute Table 
Delete the Lake Champlain areas; (FTYPE=LakePond) (If you scroll right to the 
end of the table, these will have Id_1 = 1) 
Select these lines by clicking on the box at the far left to highlight the line; then 
right-click on this box and select ‘Delete Selected’ 
Save Edits and Stop Editing 

 
e. This file will show your new site area.  It only includes the land part of the site 

area. 
 

C. Cut the site area out of each of the larger block files created above in step A.  With the 
exception of Hydrologic Group and Soil Type, which should already include just the site 
area, it is necessary to cut the site area out of each of the block files.   

Process:  ArcGIS\ Spatial Analyst\Extraction\Extract by Mask.   
Input file:  Block file for parameter.   
Mask file:  Site area boundary file (if your site area borders Lake 
Champlain, use the Outline of Your Site area_noLakeChamp file just 
created above) 
 

D. Since the number of pixels in areas affected by landslides is necessary to do frequency 
ratio analysis, layers showing just the parameters in the landslide-affected areas will now 
be created.  This will be done by using ArcGIS\Spatial Analyst\Extraction \Extract by 
Mask.  The input files are the files created in Phase 2-A.  The mask file is the dissolve 
layer created in Phase 1-Gc.   
 
At this point, you should have the following layers for both your site area and the 
previously identified landslides within your site area.   
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a. Distance to stream 
b. Hydrologic group 
c. Roughness 
d. Slope angle 
e. Soil type 
f. Topographic wetness index 

 
 
Phase 3 – Frequency ratio analysis will be conducted during this phase.  Frequency ratio is 
basically a comparison of the landslide pixels in the site area to the total number of pixels in the 
site area for each parameter.  The following steps will explain how to calculate and understand 
frequency ratio.   
 

A.   Divide each topographic parameter (distance to stream, roughness, slope angle, and 
topographic wetness index) into classes that represent the distribution of points.  
Nothing should be done with the soil parameters (hydrologic group and soil type) at this 
time.  To see the distribution of points within a parameter,  

a. Right-click on one of the layers, for example, the slope angle layer for the site 
area.   

b. Click on Properties. 
c. Click on the Symbology tab. 
d. Click on Classified (left-hand side of box). 
e. Click on the ‘Classify’ button in the right middle of the box. 
f. You should see the distribution of points. 
g. To change the number of classes in the parameter, you click on the ‘Classes’ pull-

down menu at the top left and select the number of classes.  If you cannot change 
the number of classes there, click on ‘okay’ at the bottom right and go back to 
the last window.  You will be able to change the number of classes there.   

h. On the point distribution graph window, you should look at the ‘break values’ on 
the right side of the window.   

i. You can change the break values for the classes there by clicking on the break 
value and typing in a new one. 

j. Table 10 illustrates the break values for the classes used in the test run of this 
protocol.  The goal is to have the classes reflect the distribution, so if these class 
breaks do not describe the distribution adequately, change them. (For example, 
Topographic Wetness Index can be classed by either twos or threes, depending 
on how the distribution looks.) 

 
Table 10 – Class Breaks for Parameters 

 
Parameter* Class Number Classes 

Distance to Stream (m) 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0-30 
30-60 
60-90 

90-120 
120-150 
150-180 
180-210 
210-240 
240-270 
270-300 
300-500 
500-700 
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Hydrologic Group 1 
2 
3 
4 

A 
B 
C 
D 

Roughness  - standard deviation of 
slope; units are in degrees 

1 
2 
3 
4 
5 
6 
7 
8 

0-2 
2-4 
4-6 
6-8 
8-10 

10-12 
12-14 
14-18 

Slope Angle in degrees 1 
2 
3 
4 
5 
6 

0-10 
10-20 
20-30 
30-40 
40-50 
50-90 

Soil Type Depends on how 
many soil types are 

in the site area 

Soil Type names in site 
area 

Topographic Wetness Index (can 
be classified by twos or threes, 
depending on distribution – threes 
shown here); units are in sq. m. 

1 
2 
3 
4 
5 
6 
7 
8 

0-3 
3-6 
6-9 
9-12 

12-15 
15-18 
18-21 
21-24 

*Profile Curvature will not be used in the frequency ratio analysis.  It will be used in  
   Phase 4 to verify the results of the frequency ratio analysis. 

 
k.   Change the break values for the classes for the continuously distributed 

parameter layers (distance to stream, roughness, slope angle, and topographic 
wetness index) for the site area and also for those parameter layers for the 
landslides.  Class breaks for each parameter should be the same in both the site 
area and landslide layers. 

 
B.   The parameter layers need to be reclassified into their respective classes to obtain the 

number of pixels in each class.  Do this by using ArcGIS\Spatial 
Analyst\Reclass\Reclassify.   
 

Input raster:     parameter layer to be reclassified 
When you put in the raster name, the old values will show with 
new numerical values (class numbers).  These values do not need 
to be changed. 

Output Raster:  Name of your choice 
Click ‘OK’ 

  
Do this for the continuously distributed parameter layers (distance to stream, roughness, 
slope angle, and topographic wetness index) for the site area and for the landslides. 
Nothing should be done with the hydrologic group and soil type layers at this time.   

 
C.   To calculate frequency ratios, set up a spreadsheet in a program like Excel with the 

headings shown in Table 11. 
 
 

Table 11 – Spreadsheet Setup for Calculation of Frequency Ratio Values 
 



63 
 

a b c d e f g h i J 

 
 
 

Parameter Class 
Number Classes  

# of pixels in 
class within 

landslide 
areas  

Total # of 
landslide 

pixels 
within site 

area 

% of class 
pixels 
within 

landslide 
areas 

Number of 
pixels in 

class 
within site 

area 

Total # 
pixels 
in site 
area 

% of class 
pixels in site 

area 
Frequency 

Ratio  
      

Column f = 
column d 

*100 / 
column e 

   
Column i = 
column g 

*100 / 
column h 

 
Column j = 

column f 
*1000 / 
column i 

 
 

D.   Populate the columns of the spreadsheet as follows: 
 

a. Parameter – name of parameter (distance to stream, hydrologic group, roughness, 
slope angle, soil type, topographic wetness index) 
 

b. Class Number – artificial number; starts at 1, goes to however many classes there are 
for that parameter; use values from Table 10 
 

c. Classes – Each parameter is divided into classes, which represent the distribution of 
data for the whole site.  Use values from Table 10 for all the parameters, except Soil 
Type.   

o For Soil Type, classes corresponding to each class number are listed in the 
attribute table of the soil type raster layer masked to the site area boundary.  
To get these classes: 

 Right-click on the soil type raster layer for the site area 
 Click on ‘Open Attribute Table’ 
 Classes are listed in the column labeled ‘MUSYM’ 
 Type these into column c in the spreadsheet next to the corresponding 

class number 
 Close attribute table 

 
d. Populate columns d and e at the same time.   

For column d:  Number of pixels in class within landslide areas   
o Right-click on reclassified parameter layers for landslides (distance to 

stream, roughness, slope angle, and topographic wetness index created in 
Phase 3-B).  For hydrologic group and soil type, use the landslide raster files 
created in Phase 2-D.  

o Click on ‘Open Attribute Table’ 
o The number of pixels in each class number (column labeled ‘VALUE’) is in 

column labeled ‘COUNT’ 
o Put these count values in column d of the spreadsheet, making sure that the 

count values are placed in the correct class number.  Note that for hydrologic 
group, the class numbers 1, 2, 3, 4 do not necessarily correspond to A, B, C, 
and D classes.   

For column e:  Total number of landslide pixels within site area 
o Right-click on the ‘COUNT’ column. 
o Click on Statistics 
o The sum is given in the Statistics box on the left side of the window.   
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o Put this number in column e of the spreadsheet.  Note that hydrologic group 
and soil type may not have the same total number of pixels as other 
parameters due to missing data. 

 
e. Total number of landslide pixels within site area – See column d instructions 

 
f. % of class pixels within landslide areas = column d *100 / column e 

 
g. Populate columns g and h at the same time. 

For column g:  Number of pixels in class within site area  
o Right-click on reclassified parameter layers for site area (distance to stream, 

roughness, slope angle, and topographic wetness index created in Phase 3-B).  
For hydrologic group and soil type, use the raster files for the site area 
created in Phase 2-D. 

o Click on ‘Open Attribute Table’ 
o The number of pixels in each class number (column labeled ‘VALUE’) is in 

column labeled ‘COUNT’ 
o Put these count values in column g of the spreadsheet, making sure that the 

count values are placed in the correct class number.  Note that for hydrologic 
group, the class numbers 1, 2, 3, 4 do not necessarily correspond to A, B, C, 
and D classes.   

For Column h:  Total number of pixels in site area 
o Right-click on the ‘COUNT’ column. 
o Click on Statistics 
o The sum is given in the Statistics box on the left side of the window.   
o Put this number in column h of the spreadsheet.  Note that hydrologic group 

and soil type may not have the same total number of pixels as other 
parameters due to missing data. 
 

h. Total number of pixels in site area – See column g instructions 
 

i. % of class pixels in site area = column g *100 / column h 
 

j. Frequency Ratio = column f *1000/ column i   
GIS raster values are whole numbers, therefore the raw frequency ratio values must 
be multiplied by 1000 in order to use them in a raster format.  This will not change 
the results of the analysis, provided all frequency ratio values are changed. 
 

 Below is an example of the spreadsheet for the hydrologic group parameter.  Not 
shown here is column a, which is the parameter, in this case hydrologic group. 

 
b c d e f g h i j 

Class 
Number Classes  

# of pixels in 
class within 

landslide 
areas  

Total # of 
landslide 

pixels within 
site area 

% of class 
pixels within 

landslide 
areas 

Number of 
pixels in class 

within site 
area 

Total # 
pixels in site 

area 

% of class 
pixels in site 

area 
Frequency 

Ratio  

1 A 284 298 95.3 255199 456541 55.9 1705 

2 B 14 298 4.7 47844 456541 10.5 448 

3 C 0 298 0 24553 456541 5.4 0 
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4 D 0 298 0 128945 456541 28.2 0 

 
Total 298 

 
Total 456541 

    
E.   Create a new table which will show the highest frequency ratio values for each 

parameter at the site area.   An example table is shown in Table 12 below. 
 

Table 12 – Example List of Highest Frequency Ratio Values* for Each Parameter 
 

Parameter Indian Brook Joiner Brook 
Distance to stream 5885 3212 
Hydrologic group 1705 2309 
Roughness 85076 4215 
Slope angle 169488 6558 
Soil type 1806 nc 
Topographic wetness index 5648 3384 

* Frequency ratio values are multiplied by 1000 to get whole numbers to enter into the  
raster (See Phase 3-Dj in the Protocol for more information). 

            nc = not calculated 
 
For the slides in Indian Brook, it is easy to see that slope and roughness are the most 
important parameters and will dominate the landslide potential when added together.  
The remaining factors will have little influence. 
 
For the slides in Joiner Brook, all of the frequency ratios are in the same order of 
magnitude.  This makes it much more difficult to determine what influences landslide 
potential.  Although it is important to try adding the highest values together first, it may 
make sense to try combining a number of different factors too.     
 

F.   In order to finish the frequency ratio analysis, the frequency ratios of the parameters of 
highest influence will be added together.  The steps for this are as follows: 

a.   For the parameter having the highest frequency ratio value, it is necessary to 
reclassify the classes with frequency ratio values.   

o Open ArcGIS/Spatial Analyst/Reclass/Reclassify   
o Input raster:  reclassified layer of the parameter with the highest frequency 

ratio value (Phase 3-B) 
o In the column labeled ‘New values’, input the frequency ratio values from 

the spreadsheet for each class. 
o Output raster:  file name of your choice 
o Click ‘OK’ 

 
b.   Repeat previous step with the parameter layer having the second highest 

frequency ratio value. 
 
c.    Add the two frequency ratio files together.   

o Open ArcGIS/Spatial Analyst/Math/Plus 
o Input raster or constant value 1:  parameter layer with the highest 

frequency ratios, created in Phase 3-Fa 
o Input raster or constant value 2:  parameter layer with the second highest 

frequency ratios, created in Phase 3-Fb 
o Output raster:  file name of your choice 
o Click ‘OK’ 
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d.   The result is a first-cut of a landslide potential map.  In order to easily view the 

map, it is necessary to change the colors and classification breaks. 
o Right-click on the file name. 
o Click on Properties 
o Click on the Symbology tab 
o Click on Classified on the left side of the window.   
o Click on the button that says classified in the right middle part of the 

window 
o Change the Classification Method at the top and change to Natural Breaks 

(Jenks) 
o Change the classes just below that to 10.   
o After changing these values, Click ‘OK’ to get back to the main Layer 

Properties window.  Click on the right end of the color ramp in the 
middle of the window.  Choose a color ramp that helps you to see the 
different hazard potentials.  Red to yellow to blue was used for this study 
to mean high to very low hazard potential.  If the brightest color is on the 
lowest hazard potential after you choose your color ramp, you may want 
to make the brightest color on the highest hazard potential.  To do this, 
click on the word ‘symbol’, then click on ‘flip colors’ and the colors will 
flip, so the brightest is now at the highest hazard potential. 

o Click ‘OK’ to view your map.  
o Open the dissolve layer with the outlines of the existing landslides and 

compare the high and moderate hazard areas with those landslides.   
o Change the colors in the 10 categories to three distinct colors, such as red, 

yellow, and blue, representing high, moderate, and low potential hazard 
respectively.  By changing some of the intermediate colors, try to find 
high, moderate, and low frequency ratio categories that best reflect the 
hazard potential in the site area.  The moderate and high category areas 
should fall predominantly within the mapped landslides, whereas the low 
category areas should fall predominantly outside of the mapped 
landslides. 
 

If you are satisfied with this map, make a note of the break values.  Then return 
to the Properties window and click on Symbology.   

o Click on the classify button at the right middle of the window.  
o Change the number of classes to three. 
o Change the break values to the numbers you have selected from your 

analysis.  Click on the % button to the right of break values to change 
those numbers to percent. 
 

If you are not satisfied and want to add the parameter with the third highest 
frequency ratio, follow the steps in Phase 3-Fa to produce the frequency ratio 
layer for that parameter.  Then add these values to the other frequency ratio map 
by adding the maps together as outlined in Phase 3-Fc.  Finish the map by 
following the steps in Phase 3-Fd. 

 
Phase 4 – Calibration of the maps and construction of the hazard potential maps 
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A.   Field Calibration of Maps - A sampling of sites from the frequency ratio map should be 
field-checked to verify the results and calibrate the maps for each site area.  Include both areas 
mapped as high hazard and stable areas identified in the field. This provides a more objective 
view of how well the sites are being classified. 
 

a.   Choose sites - include a sampling of sites that the Phase 3 outputs have identified as high 
 hazard as well as those identified as stable.  

 
b.   Conduct field visits  

 
c.   Fill out slope stability data sheets for the sites (Appendix A) 

 
d.   Enter data into LSPoint database (Appendix B). 
 

B.   Construction of Hazard Potential Maps - Areas sensitive to slope instability and landsliding 
should be delineated to produce hazard potential maps.  The sensitive areas are intended to 
include areas of active and inactive landslides, relict landslides that can foreseeably be 
reactivated, areas susceptible to future landslides, active and inactive gullies, and areas 
susceptible to future gullying.  Artificial cut and fill slopes should be excluded from the 
delineations.  It is outside the scope of this work to evaluate stability in artificial materials 
and on engineered slopes.  Areas underlain by exposed or shallow bedrock are also to be 
excluded. The terrain analysis methods used here should not be used to distinguish stable and 
unstable bedrock slopes. 

 
The following steps outline the method to delineate sensitive areas. 
 

Working at a scale of approximately 1:3,000, delineate areas of high susceptibility to 
include all known landslides and mass failure locations and to include areas with high 
frequency ratio index.  These will generally be steep areas that are in close proximity to 
streams and drainages, although areas with steep, high, non-bedrock slopes that are distant 
from the streams should also be considered.  Areas of low susceptibility that are entirely 
enclosed within an area of high susceptibility should be delineated and coded as such. In 
order to produce the sensitivity maps, the following data layers can be used: 

 
 Best map of combined frequency ratio values for each site area 
 Field calibration stations 
 Outlines of landslides identified in previous phases of this work  
 Shallow soils and outcrops (vtoutcrop plus available outcrop locations from 

 bedrock and surficial mapping) 
 Mass Failures from Stream Geomorphic Assessment data of the DEC Rivers 

 Program 
 Surface Waters from Vermont Hydrography Dataset (VHD) 
 Slope layer from DEM (lidar or best available substitute) 
 Profile curvature from DEM (lidar or best available substitute) 
 2 meter contours from lidar or best available substitute 
 Recent ‘leaf-off’ orthophotos.  
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Field data should be consulted for site conditions.  On reaches which have Stream 
Geomorphic Assessment data, the mass failure locations are used to identify the bases of 
near-stream landslides.  The VHD streams layer is helpful for quickly reading the terrain. 
Stream erosion is the major cause of slope failures in Vermont, and thus many landslides can 
be found on steep slopes adjacent to streams. However, it is important to realize that the 
VHD layer does not show all perennial and intermittent streams. Check the slope and contour 
maps for additional small drainages and consider the stability of their side slopes. 

 
The shallow soils and outcrop data can be used to exclude bedrock areas from 

delineation.  The vtoutcrop layer is derived largely from the NRCS soil surveys and small-
scale (1:250,000) surficial geologic mapping.  It is intended as a rough indication of the 
presence of shallow or exposed bedrock, not as a precise delineation.  Thus, use this layer 
with caution and fully consider the other data layers. 

 
Bedrock outcrop locations from detailed (1:24,000) bedrock and surficial geologic 

mapping projects are generally quite accurate, but it should be realized that these maps only 
show outcrops that the researcher actually visited and thus there may be many additional 
outcrops that are not shown.  If detailed surficial geologic mapping is available, check to see 
if areas of thin till over bedrock were delineated.  If available, these should provide a good 
idea of the location of shallow soils, which should not be included in the areas delineated as 
sensitive for landslide hazard.   

 
Surficial geologic data is used to help extrapolate the extent of sensitive areas. For 

example, if a steep slope has abundant areas of moderate to high frequency ratio values and 
is underlain by similar surficial material with no signs of bedrock, then it is probably 
reasonable to extend the sensitive polygon across the slope, connecting up the areas of 
moderate to high frequency ratio values. 

 
The combination of the slope and the profile curvature layers is a powerful tool for 

reading the landscape. The slope layer, coded with a standard deviation classification serves 
to accentuate subtle changes in slope.  Profile curvature is used to define bottoms and tops of 
sensitive areas.  The combination of the slope and the profile curvature layers accentuates the 
steep slopes and their bottoms and tops and serves as one of the key tools in delineating the 
sensitive areas. 

 
The contours derived from lidar provide a detailed view of the shape of the terrain 

and help in defining the extent of the sensitive areas. A 2-meter contour interval provides a 
sufficiently detailed view of the terrain. By viewing the contours, the higher slopes can be 
readily distinguished from isolated steep but low areas (bank erosion). If lidar is not 
available, it is unlikely that any of the other contour layers will be sufficiently detailed to be 
of much assistance in delineating the sensitive areas. 

 
Orthophotos can be very helpful in picking out significant landslides, but only if they 

have relatively high resolution and are produced from leaf-off aerial imagery. Use the most 
recent available. 

  
Terrace tops are generally excluded from the sensitive areas, although small sections 

of the terrace tops can be included when they are surrounded by sensitive slopes on three 
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sides and have necks that are narrower than about 15 meters, that is, the distance across the 
top of the terrace is at some point less than about 15 meters. 

 
Areas at the base of high, sensitive slopes should generally be included in the 

delineation as slides from the slopes above are very likely to extend down onto them. Thus, 
some of the sensitive areas will include lower frequency ratio and lower slope areas at their 
bases.  Isolated areas with high frequency ratio and/or slope that are less than 4 meters high 
that are not adjacent to streams should be excluded as they are unlikely to lead to significant 
slope failures. 

 
Phase 5 – Preparation of maps showing potentially unstable areas 
 
 Final maps will show the moderate/high hazard zones and the areas designated as 
sensitive to landslide effects.  The scale of presentation is optional, but this protocol is intended 
to produce maps that can be used for planning purposes at scales of about 1:10,000 or smaller 
(that is, less detailed). Additional buffering of the sensitive areas may be undertaken based on 
planning considerations.  
 

Suggestions for Future Work 
 
1.  Conduct landslide mapping over larger areas in order to have more landslide polygons for 
analysis. One of the principal difficulties encountered in this study was the small number of 
landslide pixels available for analysis.  This would be solved by investigating site areas of 25 to 
50 sq. km. in size or larger. 
 
2.  Identify special procedures to be used in small study areas and/or those with small landslides. 
Locations given by the GPS used for this project are accurate to within no better than + 3 to 4 m.  
As a result, small landslides may not be accurately located on the maps.  Table 13 below shows 
statistics about the site areas and landslides. Note the small average size of the landslides in the 
Bartlett Brook site area. Mismatches between the true location of the landslides and the pixels 
identified as being within the landslides could cause inaccurate characteristics to be input into the 
frequency ratio analysis and thus weakening the terrain signatures of the landslides. This may 
well have been the case at Bartlett Brook. 
 
 Table 13. Statistics about the size and number of landslides in the study sites investigated 
in this project.   
 

 
 

Site 

Average Size 
of Landslides 

(sq.m)  
# LS 

Identified 
Area of 

Site (km2) 
# LS / km2 of site 

area 

Correlation of Landslides 
with Results of Frequency 

Ratio Analysis 
%LS 

>400sq.m. 
Alder Brook 1009 19 7.8 2.44 Worked okay 63 

 
Bartlett Brook 

227 5 2.4 2.08 Did not work well 25 
Clay Point 484 4 1.3 3.08 Worked well 75 

Indian Brook 398 8 7.6 1.05 Worked okay 37 
Joiner Brook 3556 17 12.6 1.35 Worked well 35 

La Platte River – 
all slides 4311 29 9.6 3.02 

 
65 

La Platte River – 
translational slides 1145 27 9.6 2.81 Worked well  62 
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La Platte River – 
rotational slumps 47052 2 9.6 0.21 Did not work well  100 

 
Several conclusions can be made based on the information in this table.  For best results from the 
frequency ratio analysis, 

 The site area should have, on average, a minimum of 1 landslide per square 
kilometer. 

 The average size of the landslides used in the analysis should be greater than 400 
sq. m. 

 At least 30% of the landslides should be greater than 400 sq. m.  
 
3. Investigate the occurrence of low-angle rotational slides, which currently appear to be limited 
to areas below the upper shoreline of the Champlain Sea deposits in the Champlain Valley. 

 
 

Conclusions 
 
 A protocol was developed to map landslide susceptible areas in the state of Vermont.  
The protocol requires use of a GIS system for compiling and analyzing the data.  Below is a brief 
synopsis of the steps involved in the protocol. 
 

1. Select site area to be studied 
2. Collect literature about slope failures at the site area of interest; meet with town 

officials to obtain first-hand information about slope failures 
3. Develop GIS project with basic mapping layers 
4. Obtain orthophotos and aerial photographs relevant to the site area of interest 
5. Conduct field reconnaissance on a sample of landslides within the site area of 

interest to collect landslide boundaries and characteristics 
6. Conduct stereoscopic photo interpretation of aerial photos to identify additional 

landslides within the site area 
7. Perform GIS terrain analysis on the site area  
8. Run frequency ratio models 
9. Verify accuracy of maps by field checking random areas and questionable areas 

within the site area of interest 
10.  Draw polygons around sensitive areas, including areas that have not currently 

failed, but have moderate to high potential to do so and areas that would be 
affected if adjacent land failed  

11.  Produce final maps of landslide susceptibility and sensitive areas 
 

Our trials indicate that an accurate bare-earth lidar DEM is probably an essential 
prerequisite for successful terrain analysis using the frequency ratio method. That does not mean 
that hazard mapping cannot be undertaken without lidar terrain data. Frequency ratio analysis 
can be tried, and if field review indicates that it is inadequate, then the areas of high hazard 
potential can be identified by careful stereoscopic photointerpretation and field work. However, 
the work will proceed far more efficiently if an accurate bare-earth lidar DEM is available. 
 
 
 During development of the protocol, it was found that this process currently works best 
for high-angle landslides.  In these study sites most of the high-angle landslides were 
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translational. Based on the results of the frequency ratio analysis, the most important parameters 
for identifying these high-angle landslides are slope angle and roughness, although soil type and 
topographic wetness index are also important at some site areas.  Slope and proximity to the 
shoreline were found to be the most important parameters along the Lake Champlain shoreline.  
 
 Low-angle rotational slumps were encountered in the La Platte River site area. These 
low-angle rotational slumps were challenging to identify using the terrain analysis phase of the 
protocol.  This is probably because the terrain lacks a distinctive rough character displayed by 
the high-angle landslides. Although a head scarp and bulging toe may be apparent, the bulk of 
the slumped area may not be heavily disturbed. They are thus difficult to distinguish from the 
surrounding terrain.  However, it should be noted that three of these features were identified 
during the field work and photo-interpretation. Those in the La Platte River site area did not 
provide enough area to come to significant conclusions. The low-angle sites observed to date are 
all below the upper Champlain Sea shoreline and are underlain by fine-grained silt/clay deposits. 
Surficial geology may thus serve as a key to identifying areas that could be subject to these large 
low-angle rotational slumps. Further research is needed. 
 

Debris flows and associated features in the Smugglers Notch area can be accurately 
mapped by a combination of field work and photointerpretation, but lidar data was not available 
to test whether or not terrain analysis could successfully identify the features. The level of detail 
available with modern lidar data suggests that at the very least these features can be identified 
efficiently by viewing slope or contour data derived from lidar. 
 

 Based on the results of this study, it is suggested that in most parts of Vermont, areas of 
25 to 50 sq. km. will probably yield enough landslides for a robust analysis. Alternatively if the 
site of interest is smaller, the best results occurred when the following criteria were met: There 
is, on average, a minimum of one landslide per square kilometer in the site area; the average size 
of the landslides is at least 400 square meters; and at least 30% of the landslides are greater than 
400 square meters. It is probably best to consider 25 to 50 sq. km. as a minimum size for 
implementation of the frequency ratio method. 
 

If the landslides are small in area, then it becomes critical to use a mapping-grade GPS 
with sub-meter accuracy. 
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CCRPC – Chittenden County Regional Planning Commission 
DEC – State of Vermont, Agency of Natural Resources, Department of Environmental 
Conservation 
DEM – Digital elevation model 
km - kilometers 
m – meters 
mm -- millimeters 
NAIP - National Agriculture Imagery Program  
NRCS – U. S. Department of Agriculture, Natural Resources Conservation Service 
SHMP – State Hazard Mitigation Plan 
VAPDA – Vermont Association of Planning and Development Agencies 
VCGI – Vermont Center for Geographic Information 
VGS – Vermont Geological Survey 
USGS – United States Geological Survey 
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Glossary 
 
Block file – for the purposes of this report a block file is a block if terrain data that may be larger 

than the Ssite area (see below) in order to avoid ‘edge effects’ that might occur analyzing 
the exact extent of the site area.  For example, if the site area is only a portion of a 
watershed, it is important to include the upper part of the watershed in the larger block 
because some parameters depend on upstream characteristics (e.g. topographic wetness 
index). The block must be at least large enough to encompass the first order tributaries 
that are in the site area. After calculation of parameters, the pixels within the site area can 
then be extracted from the larger block file. 

 
Class – a division of a parameter. An example is the parameter slope, which can be divided into 

classes or increments, such as 0 to 10o, 10 to 20o, 20 to 30o, 30 to 40o, 40 to 50o, 50 to 90o 

or whatever classes are appropriate for the work. 
 
Hazard potential/Susceptibility – hazard potential has been rated using this protocol as high, 

moderate, and low.  High zones are generally steep areas that have failed in the past or 
are exhibiting characteristics that indicate a high potential for failure in the future.  
Moderate zones may be less steep, but could potentially fail if landscape conditions 
change.  This might be increased erosion at the toe of a slope from a nearby stream, 
additional development in the area, which could increase stormwater runoff, or 
construction which could jeopardize the slope. 

 
Parameter – a measurable terrain, hydrologic, geologic, or cultural factor that will be evaluated. 
 Some examples of parameters in this study that were found to affect the hazard potential 

of an area are slope angle, roughness, distance to stream, hydrologic group, and 
topographic wetness index.  

 
SAGA – A GIS program used for part of the terrain analysis in Phase 2 of the Protocol. It is a 

free and open source software available at http://www.saga-gis.org/en/index.html. Other 
GIS programs such as ArcGIS can be used for the terrain calculations such as 
topographic wetness index, but SAGA has the advantage of having built-in algorithms 
that simplify the steps needed to run the calculations. Once the data is loaded, it is a one-
step process to set the “Basic Terrain Analysis” module running. It is not essential to use 
SAGA, but we found it to be a useful tool for the terrain analysis. 

 
Sensitive area — an area that could be affected by slope failure.  This includes areas of active 

and inactive landslides, relict landslides that can foreseeably be reactivated, areas 
susceptible to future landslides, active and inactive gullies, and areas susceptible to future 
gullying.    

 
Site area– the area of interest 
 The site area can be an irregularly-shaped block or an entire watershed. If the site area 

does not encompass an entire watershed, it is important to analyze a larger area of terrain 
data that will encompasses at least all of the watersheds of first-order tributaries (see 
Block file above). 

http://www.saga-gis.org/en/index.html
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Appendix A 
Vermont Geological Survey Slope Stability Data Sheet 

Location __________________________________ 
Observer__________________________________ 
USGS Map ________________________________

Site No.______________ Date_________________ 
Town_____________________________________ 
Stream Reach/Segment ID ____________________ 

Style of slope failure: None / Soil creep / Gullying / 
Landslide / Landslide-gully complex / Streambank 
erosion (low bank) 
Landslide type: Fall / Topple / Rotational slump / 
Rotational slump-flow / Translational slide / 
Translational slide-flow / Flow / Other 
________________________________________ 
Landslide material: Rock / Debris / Earth 
Activity: Active / Inactive / Relict / None 
Date of most recent failure _______________________ 
Dimensions (in meters): 
Width (across)______ Depth _________ 
Length ______    Height_______       Aspect _______° 
Overall slide angle_____°    Original slope angle _____° 
Area estimate: <100 m2 / 100 - 1000 m2 / >1,000 m2 

Condition of toe: Intact/Partly removed/Totally removed

Bedrock present on slope? Yes / No / Unsure 

Bedrock grade control in stream? Yes/ No/ Unsure/ NA 
Is slope on outside of a stream meander? Yes / No 
Headcuts in bottom of stream ? Yes / No / Unsure/ NA  
Springs? Yes / No    Seeps? Yes / No    Piping? Yes / No 
Photos 
Photo # Description 
  

  

  

  

  

  

  

 
Points on Feature. UTM NAD83. Grid Zone: 18 / 19 (circle one). 
Waypoint Easting Northing Comments (NW corner of slide, center of slide, base of gully, etc) 

    
    
    
    
    
    
 
Dominant Surficial Material (circle one): dense till, loose till, till, boulder gravel, cobble gravel, pebble gravel, 
gravel/sand, sand, sand/silt, silt, silt/clay, muck, peat, unknown. For complex stratigraphy, describe in Stratigraphic Log. 
 
Stratigraphic Log (with thickness of layers in meters). Surficial material choices include dense till, loose till, till, 
boulder gravel, cobble gravel, pebble gravel, gravel/sand, sand, sand/silt, silt, silt/clay, muck, peat, unknown. 
Thick-
ness 

Surficial 
Material 

Cohesive 
(yes / no) 

Description (texture, color, sorting, consistency, moisture, 
bedding, structures, roots, etc.) 

Environment of Deposition 

     
     
     
     
     
     
     
 



 

 
 
     Profile of Slope. Specify scale and orientation.     Site No. ____ 
     Show major breaks in slope, the extent of any displaced mass, and the extent of any toe deposit. 

 Show stratigraphy of the deposit as far as it can be determined. 

 
 
 
 

                              
   

 
                            

                               
                               
                               
                               
                               
                               
                               
                               
                               
                               
                               
                               
                               
                               
                               
                                

 
 
  Map View. Include scale and orientation.           
 
 
 
 

                        
   

 
                      

                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         

 
Comments ________________________________________________________________________________________ 

_________________________________________________________________________________________________ 

_________________________________________________________________________________________________ 

_________________________________________________________________________________________________ 

_________________________________________________________________________________________________ 
SlopeSheet12312012a.doc 

Causes of Slope Failure (circle 
dominant cause and underline 
subordinate causes): 
  Stream erosion 
  Heavy rainfall 
  Rapid snowmelt 
  Wave erosion 
  Water diversion onto slope 
  Water level drawdown 
  Loading on slope or crest 
  Excavation at toe or on slope 
  Other 
  Unknown   
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Instructions for the Vermont Geological Survey Slope Stability Data Sheet  
 
Introductory Matter 
Location: Name of river, landslide complex, study area, etc. 
Observer: List principal observers. 
Site No: Original researcher’s site ID number. These are likely to be project-specific and take many forms.  
Date: Date of field visit. 
Town: Town or city. 
Stream Reach/Segment ID: VT DEC Identification code.  
 
Classification 
Style of slope failure: Choose the appropriate broad class or style of feature from the list. This sheet is not intended 
for analysis of rock slope failures or erosion of low streambanks (those less than about 3 meters high).  
None:     
Soil Creep: The process operates to varying degrees on almost all slopes, whether of rock or soil. Creep may affect 
the upper few centimeters of soil on a bank or operate at depths of one or perhaps several meters. However, creep 
processes are commonly observed at the incipient stages of landslide activity at a site and/or at the margins of an 
active landslide.  
  Gullying: Areas of active or former gully formation should be noted. When a gully has distinct landslides at the 
head or on the sides, it can be classified as a landslide-gully complex (see below) . 
  Landslide: Classify using the landslide types described below. 
  Landslide-Gully complex: A gully that is actively expanding may have prominent landslides at the head or on the 
sides. Classify the landslides using the landslide types described below. 
  Streambank Erosion: The processes leading to streambank erosion are essentially identical to those that result in 
landslides. Both are indications of unstable slopes. However, features below approximately 3 meters in height are 
here classed as streambank erosion and are not a focus of this manual.  
 Landslide type:  Although fresh landslides may have forms that correspond reasonably well to those in Table 1, the 
slides that occur on stream banks tend to be rapidly altered by the stream at the base, by ground water sapping or 
piping, by surface runoff down from the top, and by surface earth flows. The end result of a bank failure that is 
more than a few months old may be somewhat difficult to classify. However, if there are other nearby slides in 
similar materials that are at different stages in their evolution, these may be used to interpret the older slides. 
 
A typical rotational slump-flow landslide is shown in Figure 1. 
 
Table 1. Simplified classification of slope movement types. Modified from Varnes (1978). Types common in 
Vermont are in bold. Spreads have not been encountered in Vermont. 

Type of Movement Type of Material 
Bedrock Engineering Soils 
 Predominantly coarse Predominantly fine 

Falls Rock fall Debris fall Earth fall 
Topples Rock topple Debris topple Earth topple 
Slides* Rock slide Debris slide Earth slide or slump 
Spreads Rock spread Debris spread Earth spread 
Flows  Debris flow Earth flow 
Complex Combinations of two or more types of movement 
Creep Several types 

 
*Slides may be subdivided into rotational and translational types. Rotational slides in relatively homogeneous 
materials have commonly been called “slumps”. The term “rotational slump” although somewhat redundant, will be 
used here to emphasize the rotational nature of the slump  
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Figure 1. Generalized complex rotational slump/flow showing principal features. Landslides with this overall form 
are common on clayey to sandy lacustrine deposits throughout Vermont. In many cases the displaced material has 
been at least partially eroded away by stream flow. Length (L) refers to the total slope length from crown to the tip 
of the toe. Width (W) refers to the width of the feature measured across the slope at the location of greatest width. 
Depth (D) is measured in a vertical plane and perpendicular to the original slope. Height (Ht) refers to the vertical 
height from the toe up to the top of the slide. Modified from Cruden and Varnes (1996, Figure 3-3). 
 
 The most common types of landslides in Vermont are the slides, which take two general forms as shown in Figure 
2; rotational slides (here called rotational slumps) and translational slides. The translational slides generally occur 
on unstable slopes underlain be weathered, dense till, as well as slopes underlain by sandy to clayey lacustrine 
deposits, while the rotational slides (here called rotational slumps) are more common on unstable slopes underlain 
by sandy to clayey lacustrine deposits. Both rotational and translational failures imply that the material has internal 
cohesion, otherwise the material would disintegrate into some sort of flow. They are described in more detail in the 
following sections.  
 
  Note that no classification of velocity of landslide movement is included. In the experience of the authors, 
information on velocity is so rarely available for Vermont landslides that it will be sufficient to incorporate it as a 
comment in the few cases where it is available. 
 
Rotational Slumps 
   Rotational slumps are common in the stratified deposits that are widespread in the larger stream valleys of 
Vermont, especially the cohesive glaciolacustrine silts, silty clays, and clays, although they may also occur in 
glacial till following especially severe episodes of stream erosion. The characteristic form of the rotational slump, 
as shown in Figure 1, has a curving fracture or shear surface that intersects the ground either on the bank or behind 
the top of the bank. It is then seen to curve down to a bed or lamination either within the bank or at the base. The 
shear may then extend all the way out to the free face or, more commonly, curve upward to take a path of least 
resistance to the free surface. Slump material often undergoes considerable deformation during failure and as the 
displaced material moves downward, the lower parts of this must, if they stay at least partly together, ride up over 
the lower end of the rupture surface (where the rupture broke up toward the old ground surface). It is also common 
for pieces of the displaced material to stack up on top of or push over earlier blocks or masses of displaced material.  
Seen in plan view from above, such rotational shear surfaces are commonly arcuate and concave out toward the 

Ht 
L 

W 

D 
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stream. Earth flows in the lower portions of rotational slump/flows are in some places so extensive that they mask 
the original brittle nature of the slope failure. 
 

 
 

Figure 2. The translational and rotational forms of slope failures and 
composite forms. The pure translational slide would have a tension crack 
at the top and be completely translational from there down. Actual 
translational slides will often have some shearing motion in the upper 
part and may well break out in the lower parts as one or more rotational 
shears. The lower set of three sketches shows a rotational slide 
progressively changing to a debris avalanche or flow as a result of the 
disaggregation of the sliding mass. From Prellwitz and Remboldt (1994, 
Figure 5A.2).  

    
Translational Slides: Unstable slopes that are underlain by the dense till that is common throughout Vermont 
commonly fail through relatively shallow landslides. These slides are also common in stratified lacustrine and 
marine sands, silts, and clays. On wooded slopes that have not experienced landsliding for a considerable time, the 
upper several feet is typically some combination of surficial material that has weathered in place and/or colluvial 
material derived from the surficial deposits. In both cases the material retains the wide range in grain sizes of the 
parent material and is significantly weaker than the underlying unweathered deposit. This upper material is often 
relatively impermeable and thus slow to drain. If the toe of such a slope is eroded by a stream, the contrast in 
strength between the weathered surficial material above and the dense, relatively unweathered material below 
results in the slope having a tendency to fail along the boundary. Thus, although the slides can extend great 
distances up and down the slopes and along the slopes, the slides rarely "bite" into the hillside deeper than 3 meters 
(10 feet) or so at a time. 
   More than one process may operate in a translational slide. The cohesion due to roots may help hold the slope 
together in large patches, yet failure has to happen somewhere. The first visible fractures will be in the form of  
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tension cracks at the upper boundaries and perhaps fractures along the sides of the failing area. Some blocks will 
slide intact all the way down to the base of the slope while others will disaggregate into flows.  
 
Flows 
  Flow-type slope failures are found in two main settings in Vermont. The displaced material of translational and 
rotational slides is commonly disaggregated into small- or medium-scale earth or debris flows or channelized debris 
flows on steep mountainsides. The channelized debris flows may originate from slope failures on the slope or be 
initiated by rock fall from a cliff above.  
 
A Note on Mechanisms of Detachment 
  During floods, the fluvial shear stress operating on the base of a slope (especially on the outside of a meander 
bend) can tear away individual grains and irregular chunks of material, oversteepening the bank, and leading to 
slope failure that extends far above the reach of the flood waters. 
 
Detachment of irregularly shaped blocks is especially common on dense till slopes. Slopes of unweathered dense 
till commonly have sufficient short-term shear strength to stand as vertical or even overhanging slopes for some 
months after a flood. Blocks will continue to detach from such a slope for many months after the erosion event. The 
blocks may fall, roll, or slide downslope. Eventually, weathering will soften the remaining material and the failure 
mechanisms will shift toward the more common slides and flows. In these cases the landslide type should be 
recorded as “other” and this should be described in the comments as “irregular block detachment.”  
 
Landslides comprised primarily of loose, non-cohesive material (primarily loose sands and gravels) may, in the 
response to fluvial erosion, fail by detachment of separate particles. The landslide type should be recorded as 
“other” and this should be described in the comments as “grain detachment.”
 
Landslide Material 
The definitions in this section are after Cruden and Varnes (1996). Rock consists of an intact mass of hard or firm 
material. We will further restrict this here to mean solid bedrock. Thus, if a solid rock mass detached from a cliff 
and slid down a slope, it would be called a rock slide. Debris contains a large amount of coarse material greater 
than 2 mm in diameter (20 to 80%). Earth consists of material that has 80% or more of particles smaller than 2 mm. 
Debris and earth together constitute the materials that engineers conventionally describe as soil.  
 
Activity 
An active landslide is one that has moved within the last year.  The sides and upper margin of such a landslide are 
generally sharp and any exposed slide surfaces are bare of vegetation or have only the beginnings of pioneer 
vegetation on them.  
 
An inactive landslide has not moved within the last year, but it is in a setting in which it could be reactivated 
(Cruden and Varnes, 1996). One that has been inactive for several years may be largely revegetated, at least with 
pioneer vegetation. Inactive landslides are common near actively migrating stream meander bends where the site of 
landslide activity has shifted downstream as the stream meander has shifted downstream. The inactive slides may 
very well be reactivated if another meander bend migrates down from upstream.  
 
We define a relict slide as one where there is no evidence of movement for many years and the likely causative 
agent is no longer present. An example would be a former stream cut bank formed by stream erosion in early 
Holocene time. If the stream has since cut down vertically and moved away in such a fashion that it is now trapped 
by bedrock and would be unable to move back to the old cut bank, that cut bank could be considered relict. Such a 
feature is generally completely revegetated and the edges have been softened by erosion.  
 
If dates of landslide activity are known, they should be noted. This information can be critical to understanding the 
frequency of landslide activity at a site. Precise dates can help to evaluate connections between times of snowmelt 
or heavy precipitation and landslide activity. 
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Slope Failure Geometry: Note that all dimensions should be measured in meters.  
Width: Measured across the toe of the landslide. Shown as W in Figure 1.   
Depth: Measured perpendicular to the original slope. Shown as D on Figure 1. 
Length: Slope length. Shown as L on Figures 1 and 3. Measurement is optional as it can be calculated from the 
height and overall slide angle.  
Height: The vertical height should be obtained, when possible, by actual measurement. This may be done by tape 
and clinometer, rangefinder and clinometer, or by hand-leveling up the feature. Shown as Ht on Figures 1 and 3. 
 
One way to calculate the height is use the formula Ht = Lsin(va), where Ht = height, L = slope distance, and va = 
the vertical angle from the top of the slide to the toe. The slope length L can be measured with either a tape or a 
laser rangefinder. The vertical angle needs to be measured with a clinometer. If the measurements are made by a 
person standing at the bottom of the slope, then the eye-height (eh) of the person needs to be added to the calculated 
height as follows: Ht = (Lsin(va))+eh. 
 
 
 
 
 
 
 
 
 
 
Figure 3. Calculation of height of a landslide. L = slope distance, va = vertical angle, eh = eye height, Ht = total 
height of landslide.  
 
 
Example: L = 18.6 m, va = 36°, and eh = 1.8 m. 
Ht = (18.6sin(36°))+1.8  
Ht = ((18.6)(.5878))+1.8 
Ht = 12.7 m 
 
Another way to measure the height of a slope is to use a hand level to measure a succession of eye-heights up the 
slope. The number of steps is tallied and multiplied by the eye height. Fractions of an eye height can be either 
estimated or measured using a survey rod, folding rule, or Jacobs staff. 
 
Example: If a person’s eye height is 1.75 m, and a succession of 6 eye heights plus an additional 0.5 m are 
measured from top to bottom, the total height is 10.5+ 0.5 = 11.0 m.  
 
 Aspect: The direction that is most nearly directly down the slope of the feature. This should be measured relative to 
true north and values should run from 1 to 360 degrees. 
Overall Slide Angle: The vertical angle from the toe to the crown. 
Original Slope angle: The vertical angle of the slope on which a landslide subsequently formed. The original slope 
angle can often be approximated by measuring the slope of the land to the side of the slope failure. However, in 
cases where there have clearly been successive slope failures, measure the slope on which the most recent failure 
occurred. 
Area Estimate: A rough estimate of the area in square meters. Although polygons will be delineated using the GPS 
points for the larger landslides during the GIS analysis, this will not always be feasible for the smaller landslides.  
 
Other Features: 
Condition of Toe: An indication of how much the landslide has been modified since it was last active. Is the toe 
intact? Has it been partly eroded by a stream at the base or by human activity? Has it been removed entirely? 

Ht 

L 

eh 

va 
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Bedrock present on slope?: Look to see if bedrock is exposed anywhere on the slope. The presence of bedrock 
might limit the extent of possible slope failures.  
Bedrock grade control in stream? The presence of a grade control in the stream bed may limit the possibility for 
incision and thus reduce the severity of future landsliding or, alternatively it may mean that the stream may be 
prone to lateral shifts in planform, which may aggravate any slope stability problems. Be sure to check up and 
downstream from the site and to review available stream geomorphic assessment data. 
Is slope on outside of a meander bend? Landslides in proximity to streams are commonly found at these locations. 
Keep in mind that an inactive or relict slide may well have formed at a meander bend, even though the stream has 
since shifted position. If that is the case, note the fact in the comments rather than by checking yes for this question. 
Headcut in bottom of stream? Headcuts or knickpoints are locations where the bed abruptly lowers. They are a sign 
that the stream is changing grade in response to changes in sediment supply, flood frequency, or flood magnitude. If 
a stream segment is undergoing active headcutting, the adjacent slopes can be expected to become less stable. 
Springs? Seeps? Piping? The presence of any of these features provides important information about the presence 
of groundwater on the slope. Springs are areas of groundwater discharge with visible flow. Seeps are persistently 
wet areas on the slope where groundwater comes to the surface. Pipes are areas where outward subsurface flow of 
groundwater has eroded a subterranean channel back into the slope. 
 
Photos: The photographs that you take at a site can be among the most valuable pieces of field information, but 
only if they are sharp and well-documented. Make sure there is a person or survey rod or other scale in each photo. 
Record the number and what the photo shows. Fewer photos with good documentation are preferable to a large 
number of undocumented ones. 
 
Points on Feature: Obtain GPS positions in order to facilitate delineation of the landslide in GIS. At the very least, 
obtain one position at the bottom, top, or center of the feature (specify which). Use UTM Grid, NAD 83. Specify 
UTM Grid Zone (18 or 19 in Vermont). When an LSPOINT record is created for the landslide, the position of the  
approximate center of the feature will be estimated. This task is made considerably easier if GPS positions have 
been taken at 3 or more points on the margin. Mapping-grade GPS receivers and post-processing of the data to 
a sub-meter level of accuracy are preferred, but a recreation-grade receiver can be used if it meets the contract 
requirements. 
 
Dominant Surficial Material:  This may be one of the following: dense till, loose till, till, boulder gravel, cobble 
gravel, pebble gravel, gravel/sand, sand, sand/silt, silt, silt/clay, unknown. Make an attempt to identify the dominant 
material. Note that this is primarily a material description, not an interpretation of environment of deposition. It is 
necessary to distinguish toe deposits and later deposits of materials that have sloughed down from above from the 
in-place surficial material. Look for gullies and eroded spots where this material is exposed. Judicious shoveling 
and scraping can often expose a series of spots that will give you a good idea of the underlying material. Almost all 
sites will have two or more units, which should be described in the stratigraphic log. 
 
Stratigraphic Log: This is intended to be a flexible way of recording detailed observations of the units 
encountered. Although the log only gives columns for thickness, basic type of material, cohesion, texture, color, 
sorting density/stiffness, moisture, bedding, structures, and interpretations, additional features can be included in 
comments section. 

 
Thickness:  Vertical thicknesses of the units in meters.  The surficial units will generally be bounded by upper and 
lower surfaces that are approximately horizontal. If that is not the case, then this should be noted on the profile 
sketch and in the comments. Even in the case of steeply dipping delta foreset beds, the foreset beds will commonly 
be bounded below by roughly horizontal bottomset beds and above by either topset beds or they will have been 
planed of along an approximately horizontal erosion surface and overlain by fluvial deposits. 
 
 
Cohesion: Surficial materials can be either cohesive or non-cohesive. This parameter is very important for 
understanding the stability of slopes. Cohesive materials are those with a substantial clay content, such as clayey 
silt or silty clay, while coarser grained soils such as the coarser sands and gravels and sandy till are to be classed as 
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non-cohesive. Till should only be classed as cohesive if it has a clay-rich matrix. This is a rough field classification 
and would not necessarily stand up to laboratory scrutiny.  
 
Texture: In soil science terminology, the term "texture" refers to grain size distribution. The grain size of  materials 
is important for understanding the geotechnical behavior of the bank, because of the influence on soil shear 
strength, the influence on hydraulic ease of ground water movement, and surface water erosion. The standard 
classification for geologic analysis is the Udden-Wentworth scale described in Table 2. 
  
Table 2. Udden-Wentworth grain size classification. Modified from Boggs (1995,Table 4.1). 

Millimeters Udden-Wentworth 
Size Class 

 

>256 Boulder Gravel 
16 - 256 Cobble 

4 - 16 Pebble 
2 - 4 Granule 
1 -2 Very coarse sand Sand 

.5 - 1 Coarse sand 
.25 - .5 Medium sand 

.125 - .25 Fine sand 
.0625 -.125 Very fine sand 
.031 - .0625 Coarse silt Silt 
.0156 - .031 Medium silt 
.0078 - .0156 Fine silt 
.0039 - .0078 Very fine silt 

<.0039 Clay Clay 
 
 
Color:   The color of surficial materials can be helpful in interpreting the environment of deposition and the soil 
drainage conditions. The standard technique is to use a Munsell color chart.  It is best to compare a sample to the 
chart while in a moist state and in direct sun when possible. Besides the matrix color, also record the color, 
distinctness, and abundance of mottles and other redoximorphic features.   
 
Sorting:  Sorting is the degree to which grains are of a uniform size (Figure 3). A very well sorted material has a 
uniform grain size while a very poorly sorted material has a wide range in grain sizes. The soil engineer’s term 
“grading” is the inverse of sorting, with well graded soils having a wide variety of grain size and uniformly/poorly 
graded soils being of uniform size.  
 

 
 
Figure 3. Sorting of particles. Very well sorted materials have uniform grain size (upper left) while poorly sorted 
materials have a wide variation in grain size (lower right). From Boggs (1994). 
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Consistency: This term is used to refer to the geotechnical terms density and consistency. These are material 
characteristics that essentially refer to the ability to resist penetration. In standard geotechnical usage the term 
density is used to refer to coarse grained deposits and the term consistency refers to fine grained materials: silts and 
clays. The standard geotechnical classifications for these are given in Tables 3 and 4. 
 
Table 3. Relative density classification. N-values refer to the Standard Penetration Test (a commonly used field test 
performed while conducting split-spoon augering). From  Renteria (1994). 
 

 
Table 4. Consistency classification for fine-grained soils. Unconfined compressive strength of clay can be roughly 
determined by penetrometer or torvane tests. From Renteria (1994). 

N-value Unconfined 
compressive strength 
(tsf) 

Consistency 

0 - 2 < 0.25 Very soft 
3 - 4 0.25 - 0.50 Soft 
5 - 8 0.50 - 1.0 Medium 
9 - 15 1.0 - 2.0 Stiff 
16 - 30 2.0 - 4.0 Very Stiff 
> 30 >4.0 Hard 

 

 

Moisture: Dry material feels dry to the touch, moist material feels damp but there is no visible water, and wet 
materials have visible water. 
 
Bedding or Stratification: Surficial materials display a wide variety of physical features at a scale larger than the 
individual grains. Some of these features formed as sediment was deposited while others formed long afterwards. 
"Stratification" is the general term for the primary depositional layering of sediments. As described in Table 5, 
strata can vary from thick beds to thin laminae. It is possible for a deposit to be massive, that is, completely uniform 
throughout. This is most commonly encountered in deposits of till, although it is quite common that a careful search 
will reveal signs of stratification even in these. 
  
Table 5. Stratification. From Boggs (1995). 

Very thickly bedded >100 cm thick 

Thickly bedded 30 - 100 cm thick 

Medium bedded 10 - 30 cm thick 

Thinly bedded 3 - 10 cm thick 

Very thinly bedded 1 - 3 cm thick 

Laminated < 1 cm thick 
 
Structures: The term "structure" has unfortunately been used in three very different senses. Geologists use structure 
in two senses. They define primary sedimentary structures as the features formed during and shortly after the 
deposition of sediments, such as bedding, lamination, cross bedding, ripple marks, rain drop prints, faults and folds 
resulting from collapse, water escape structures, etc. By contrast, secondary structures form at some time after 
deposition. These include a wide variety of faults and folds that form long after deposition, as well as concretions 
formed through chemical interaction of ground water and sediments. In each of these geologic senses of the term 

N-value Relative Density 
0 - 4 Very loose 

5 - 10 Loose 
11 - 29 Medium dense 
30 - 49 Dense 

>50 Very dense 
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"structure" the terms have strong genetic connotations. In contrast to the wide variety of structures recognized by 
geologists, soil scientists describe the structure within soil horizons using a fairly simple geometric classification 
(Table 6). Some of these have their origin as sedimentary features while others are the result of soil-forming 
processes. These terms provide a rough way to describe how the individual grains in the deposit form aggregates or 
bodies as they are broken out of the side of the bank.  
 
 
Table 6. Soil structure. Modified from Schoeneberger and others (2002). 

Massive Individual soil particles 
entirely bound together into 
one aggregate 

Single-
grain 

Individual soil particles not 
bound to one another at all 

Granular Spheroidal peds or granules 
usually packed loosely 

Blocky Irregular, roughly cubelike 
peds with planar faces (angular 
to subangular) 

Platy Flat peds, usually roughly 
horizontal 

Prismatic Vertical, pillarlike peds with 
flat tops 

 
 
Contacts: If exposed, contacts between units should be described by specifying whether the lower contact of each 
unit is sharp (<= 2 cm thick) or gradational (> 2 cm). If gradational, note the thickness of this transition interval. 
 
Stratigraphy: Describe the overall depositional patterns, viewed both in cross-section and in planform. These 
shifting patterns are due to changes in source areas and changes in the energy distribution within the depositional 
system (changes in water velocity, flow depth, turbulence, etc.). Patterns include the small-scale rhythmic 
sedimentation of varved lacustrine deposits, large-scale coarsening of grain size upward within lacustrine deposits 
as the water body fills in over time, and fining upward of fluvial deposits due to changing from bed load to 
suspended or wash load. 
 
Roots: These can have a considerable strengthening effect. Both the distribution and size of roots should be noted. 
On most freshly eroded stream banks, the roots will be seen to be concentrated in the upper meter or so of the bank, 
although cases of very deep penetration are encountered.    
 
Other Features: The features listed below can be important for interpreting the slope stability at a site.  
Plasticity: A rough field classification of  plasticity that can be performed by kneading a sample, rolling it out in the 
hand into a rod, and seeing if it can hold together when suspended. The criteria are listed in Table 7.  
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Table 7. Field criteria for determining the plasticity of cohesive soils (Schoeneberger and others (2002). 
 

Will not support 6 mm 
diameter roll if held on 
end. 

Non-
plastic 

6 mm diameter roll can be 
repeatedly rolled and 
supports itself, 4 mm does 
not. 

Low 
plasticity 

4 mm diameter roll can be 
repeatedly rolled and 
supports itself, 2 mm does 
not. 

Medium 
plasticity 

2 mm diameter roll can be 
repeatedly rolled and 
supports itself 

high 
plasticity 

 
Fractures: Surficial deposits may be fractured, in places to depths of several meters. Prominent fractures should be 
described as encountered. The features to observe include the geometry of the fractures, the fracture density, 
continuity, and cross-cutting relationships. As the fractures are developed in non-lithified materials below the 
surface of the ground, great attention should be paid to fracture infillings and alterations along the walls of the 
fractures. A good description of the general terminology for fracture description is in Bureau of Reclamation (1998, 
Chapter 5). 
 
Weathering: Are freshly exposed parts a different color or consistency from parts long-subjected to weathering? 
This can have profound effects on the strength of surficial materials. 
 
Reaction to HCl: A simple test for the presence of carbonate minerals is made by placing a drop of dilute (10%) 
hydrochloric acid on a sample. Fizzing indicates the presence of carbonate. Carbonate-rich parent materials will 
often show strong leaching in their weathered upper horizons. 
 
Clasts: In the sense of these field descriptions, the clasts are the large particles that stand out in a finer matrix. Their 
size, shape, arrangement, and lithology may be useful in interpreting the source area and environment of deposition. 
Clast characteristics are particularly important to note in till or diamict deposits. 
 
Fabric: This refers to the orientation of the particles in a sedimentary deposit. Examples include the imbricated 
arrangement of pebbles, cobbles, or boulders arranged by flowing water so as to face upstream or the preferred 
alignment of the long axes of clasts parallel to the glacial flow direction as seen in some tills. 
 
Environment of Deposition: Make an effort to objectively describe the characteristics of the layers and the 
landforms. If you don’t feel confident that you understand the origin of a particular unit or landform, refrain from 
speculating and just describe it. The characteristics listed below are all, important for the understanding of slope 
stability and should be selectively included in the interpretations and comments as the situation requires.  
 
Profile of Slope and Map View: The profile and sketch map are very important. On one or both of these include 
details on the major breaks in the slope, the extent of any displaced mass, the extent of toe deposits, stratigraphic 
breaks, zones of groundwater flow, etc.  
 
Causes of Slope Failure: There is commonly more than one cause for a slope failure. The most common ones are 
listed on the data sheet. For a more detailed discussion of causes see Wieczorek (1996).  
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Comments: The comment section can include more detail as to location, type of landslide, movement history, 
velocity of movement, landscape position, stream geomorphology, causes of slope failure, and geologic 
interpretation. This is a very important part of the data sheet where characteristics that are unique to the site in 
question can be recorded. 
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Appendix B 
 

Fields to Be Used for Landslide Point Database (LSPoint) 
 

Attribute Name Data Type Description Gen. 
LS_ID Text (15) Landslide name composed of the 4 or 5 

character quad abbreviation plus a four digit 
sequential number, e.g. Burl0022 
 

 

LS_COMPLEX Text (20) Name of landslide complex, if applicable 
 

 

ORIG_SITE_ID 
 

Text (15) Original researcher’s site ID number   

OBSERVER Text (15) Researcher name 
 

 

ORGANIZATION Text (15) Researcher organization 
 

 

LS_DATA_SOURCE Text (20) Data source (map, publication, report, air photo, 
oral communication, field) 
 

drop-
down 

FIELD_VISIT Text (3) yes/no drop-
down 

VISIT_DATE Date Date of field visit; assumes that observer did the 
work 
 

 

CREATION_DATE Date Date of record creation 
 

 

REVISION_DATE Date Date of latest record revision 
 

 

TOPOMAP Text (20) 7.5 minute quad name(s)  
 

auto 

TOWN Text (20) Town name with initial capitals  
 

auto 

UTM_NORTHING Float UTM coordinates, NAD83 
 

 

UTM_EASTING Float UTM coordinates, NAD83 
 

 

UTM_GRID_ZONE Short 
integer 

Valid choices for Vermont are 18 or 19 
 

 

RchptID Text (12) Tie-in to Stream Geomorphic Assessment data 
from the DEC River Management Program)  
 

auto 

RchsegID Text (12) Tie-in to Stream Geomorphic Assessment data 
from the DEC River Management Program)  
 

auto 
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LS_TYPE Text (25) Fall, topple, slide (undifferentiated), rotational 
slide, translational slide, complex slide/flow, 
flow, other 
 

drop-
down 

TALUS Text (5) yes/no/unknown 
 

drop-
down 

LS_DEPTH Text (20) Shallow (<3 m; deep (>3 m); unknown drop-
down 

MATERIAL Text (10) Rock, debris, earth drop-
down 

ACTIVITY Text (10) Active, inactive or dormant, relict drop-
down 

DATE_FAILURE Date Date of most recent failure; see comments for 
dates of  previous failures 
 

 

LS_CERTAINTY Text (12) Certainty that feature is a landslide (definite, 
probable, questionable) 

drop-
down 

LENGTH_M Float  
 

 

WIDTH_M Float  
 

 

HEIGHT_M Float Elevation difference between top and bottom of 
slide 
 

 

SLOPE Float Angle of the original slope in which the slide 
occurred, in degrees down from horizontal 
 

 

ASPECT Float Aspect of original slope, in degrees, measured 
to the right from true north; valid values are 1 to 
360, zero is not used 
 

 

ELEV_CROWN_M Float NVD, 1988 
 

 

ELEV_TOE_M Float NVD, 1988 
 

 

PROFILE_GEOM Text (15) Original slope profile geometry (convex, planar, 
concave, complex) 
 

drop-
down 

PLANFORM_GEOM Text (15) Original slope planform geometry (convex, 
planar, concave, complex) 
 

drop-
down 

VEGETATION Text (20) In landslide source area (trees, saplings or 
shrubs, herbaceous, mixed, bare) 
 

drop-
down 

LAND_USE Text (10) Standard USGS land-use/land cover 
classification 
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SURF_MATERIAL1 Text (20) Material in uppermost layer (dense till, loose 

till, till, boulder gravel, cobble gravel, pebble 
gravel, gravel/sand, sand, sand/silt, silt, 
silt/clay, muck, peat, unknown) 

drop-
down 

SURF_MATERIAL2 Text (20) Material in layer underlying 
SURF_MATERIAL1 (dense till, loose till, till, 
boulder gravel, cobble gravel, pebble gravel, 
gravel/sand, sand, sand/silt, silt, silt/clay, muck, 
peat, unknown) 
 

drop-
down 

SURF_MATERIAL3 Text (20) Material in layer underlying 
SURF_MATERIAL2 (dense till, loose till, till, 
boulder gravel, cobble gravel, pebble gravel, 
gravel/sand, sand, sand/silt, silt, silt/clay, muck, 
peat, unknown) 
 

drop-
down 

SURF_MATERIAL4 Text (20) Material in layer underlying 
SURF_MATERIAL3 (dense till, loose till, till, 
boulder gravel, cobble gravel, pebble gravel, 
gravel/sand, sand, sand/silt, silt, silt/clay, muck, 
peat, unknown) 
 

drop-
down 

SURF_MAP_UNIT Text (25) Classification on a surficial geologic map at a 
scale of 1:24,000 or larger, if available (e.g. 
Pleistocene esker deposit, Holocene stream 
terrace deposit, etc.) 
 

 

SURF_MAP_SOURCE Text (25) Map used to identify geologic materials at the 
surface 
 

 

GULLIES Text (6) yes/no/unknown 
 

drop-
down 

SEEPS Text (6) yes/no/unknown 
 

drop-
down 

PIPING Text (6) yes/no/unknown 
 

drop-
down 

TOE_EROSION Text (6) yes/no/unknown 
 

drop-
down 

DAMAGE Text (6) yes/no/unknown 
 

drop-
down 

INJURIES Text (6) yes/no/unknown 
 

drop-
down 

COMMENTS Text (100)  
 

 

DOMINANT_SURF_M Text (20) Dominant surficial material: dense till, loose drop-
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till, till, boulder gravel, cobble gravel, pebble 
gravel, gravel/sand, sand, sand/silt, silt, 
silt/clay, muck, peat, unknown 

down 

SLIDE_ANGLE 
 

Float Overall angle from top of slide to toe  

TOE_CONDITION Text (16) Intact/partly removed/totally removed drop-
down 

BEDROCK_SLOPE Text (6) Bedrock present on slope: yes/no/unknown drop-
down 

BEDROCK_STREAM Text (6) Bedrock grade control present in stream bed: 
yes/no /unknown 

drop-
down 

MEANDER_BEND Text (6) Slope on outside of meander bend: yes/no / 
unknown 

drop-
down 

SPRINGS Text (6) yes/no/unknown drop-
down 

 
 
 


