Report on the Comparison of Shear Wave Velocity Measurements with Multispectral Analysis of Surface Waves (MASW) along with the Microtremor Array Method (MAM), Seismic Cone Penetration Tests (SCPT), and Standard Penetration Tests (SPT) for the Burlington and Colchester, Vermont USGS 7-1/2 Minute Quadrangles

June 5, 2013

By

John E. Lens^{1, 2}, and George E. Springston³ 1. GeoDesign, Inc., 2. University of Vermont, 3. Norwich University

Submitted to the

Vermont Geological Survey

Background

This study and report follow from the seismic hazard mapping of the Burlington-Colchester quadrangles performed for the Vermont Geological Survey in 2010-2013 and described in the report entitled "Seismic Hazard for the Burlington and Colchester, Vermont USGS 7-1/2 Minute Quadrangles (Lens, Dewoolkar, and Springston, 2013).

The Vermont Geological Survey Open File Report VG13-3 by Lens, Dewoolkar, Springston, and Becker (2013) contains a seismic site classification map (Plate 1) which was developed using Standard Penetration Test (SPT) and shear wave velocity data for the upper 100 feet (30 meters) of subsurface profile at selected sites. The majority of the sites were classified using existing SPT data with the rest of the sites being classified using a combination of existing and study derived shear wave velocity data. Both SPT and shear wave velocity based methods are acceptable for seismic site classification according to the provisions of the International Building Code (IBC, 2012) applicable to publicly occupied buildings and associated structures.

MASW (Multispectral Analysis of Surface Waves) along with the Microtremor Array Method (MAM), and SCPT (Seismic Cone Penetration Tests) methods are widely accepted for obtaining shear wave velocity measurements and numerous publications, such as Stokoe (2008), describe the procedures and applications. Experience shows that shear wave velocity measurements provide more reliable and overall more versatile data sets for characterization of subsurface profiles for seismic site classification and seismic design than do SPT data. This is leading to increased use of shear wave velocity measurements for seismic site classification. This study and report support that trend by expanding the local experience base through comparisons of these methods at three example sites which have geologic profiles common to the area.

Objectives

The objectives of this study were to compare measurements of shear wave velocity in soil and bedrock made with MASW/MAM and Seismic SCPT, and compare those seismic site characterizations with those made with SPT methods within Burlington and Colchester, Vermont 7.5 minute United States Geological Survey (USGS) quadrangles.

Study Methodology

There were three sites within the quadrangles at which SCPT data were already available and where comparison shear wave velocity measurements could be obtained using the MASW/MAM method. These sites consisted of the Moran plant site along the waterfront in Burlington, the new State of Vermont Public Health Building site in Colchester, and a site designated as Milton Square in Milton. These are the Burlington, Colchester, and Milton sites referenced in this report.

In addition, there were two sites available within the quadrangles for shear wave velocity measurements using the MASW method on exposed bedrock. The sites were along the Winooski River and designated as the Winooski Gorge site in South Burlington and the Overlook Park site inWilliston.

George Springston of Norwich University obtained shear wave velocity measurements using the MASW/MAM methods using surface geophone sensor arrays placed nearby to SCPT probe locations at each of the three sites with SCPT data. He also obtained shear wave velocity measurements using the MASW method at the two exposed bedrock sites. Details of the measurement procedures and computed results are described in Appendix 1.

Appendix 2 contains the original SCPT data along with related site background subsurface information including SPT data.

Table 1 summarizes the site information. Figures 1, 2 and 3 provide site location sketches including the MASW/MAM array layouts.

Summary of Measurements and Comparisons – Shear Wave Velocities (Vs)

Figures 4, 5, and 6 illustrate the measurements and comparisons of SCPT and MASW/MAM shear wave velocity profiles at the Burlington, Colchester, and Milton sites, respectively.

At the Burlington and Colchester sites, the MASW/MAM derived shear wave velocities were usually within 20 percent (both above and below) of the mean SCPT shear wave velocities at the same depths. The exception is the Milton site which showed substantially more difference between MASW/MAM and SCPT derived shear wave velocities within the upper 40 feet. In that interval, the MASW/MAM velocities were between 60 and 190 percent of the mean SCPT velocities at the same depth. Below 40 feet the shear wave velocity differences were between 10 and 25 percent, essentially similar to the MASW/MAM and SCPT shear wave velocity differences in the Burlington and Colchester site profiles.

The composite shear wave velocity used in the IBC seismic site classification is computed as follows:

$Vs = \sum_{i=1}^{n} di / \sum_{i=1}^{n} di / vsi$	where	Vs = composite shear wave velocity for 100 foot profile
		di = thickness of any layer <i>i</i> between 0 and 100 feet
		vsi = shear wave velocity for layer <i>i</i>

At all three of the sites with combined MASW/MAM and SCPT measurements, the composite shear wave velocity in the top 100 feet of the subsurface profiles resulted in seismic site classification of D of the IBC (2009) criteria. This corresponded to a weighted composite shear wave velocity of between 600 and 1,200 feet per second applicable for that seismic site classification category.

Depth to bedrock was over 200 feet at Burlington and Milton and precluded being able to extend the MASW/MAM arrays long enough for reliable recognition of the soil to bedrock transition depth. Bedrock in Colchester was between 65 and 90 feet deep in the soil borings and probes adjacent to the MASW/MAM array. However, a soil to bedrock transition was not evident in the MASW/MAM results within the approximately 85 foot range of the reliable shear wave velocity measurements. SCPT probes reached to refusal at the Burlington site but did not penetrate deeper as is typical of SCPT probes. SCPT probes were terminated above refusal depths at the other sites.

Shear wave velocities on the two bedrock exposures measured with MASW/MAM surface arrays ranged between approximately 1,000 and 6,600 feet per second. Table 2 summarizes the shear wave velocity measurements. There was considerable variability in measurements at the Winooski Gorge site in South Burlington with much less variability at the Overlook Park site. The source of the Winooski Gorge variability, which ranged from 2,300 to 4,800 feet per second, was not evident.

Summary of Measurements and Comparisons - SPT values

The composite SPT blow count values in the top 100 feet of the subsurface profiles are summarized as:

<u>Site</u>	SPT Blow Count
Burlington	Insufficient depth of borings (maximum = 47 feet < 100 feet required)
Colchester	10.5
Milton	9.8

The Colchester and Milton sites result in a seismic site classification of E according to the IBC (2012), based on the composite SPT blow count of less than 15 and a determination by the design geotechnical engineer that the soils are most likely not liquefiable. The seismic site classification of D for the Burlington site was made primarily on the basis of evaluations made by the SCPT because the borings did not extend deep enough for an SPT-based classification.

Conclusions

- Shear wave velocity measurements made with MASW/MAM and SCPT methods in the upper portion
 of the soil profile at the Milton site varied by as much as a factor of 2 between the MASW/MAM
 measurements and the mean of the nearby SCPT measurements. However, variations between
 MASW/MAM and SCPT derived shear wave velocities within 20 percent were more common.
 Significant variations in the measured shear wave velocity values should be expected as consequence
 of both local variability and the measurement methods (e.g., the larger volume of soil encompassed
 by the MASW/MAM compared to the down-hole SCPT measurements will tend toward a smoother
 velocity profile).
- 2. MASW/MAM and SCPT methods did not detect the presence of strata changes between soil and bedrock. This was expected at the deep bedrock conditions present at the Burlington and Milton sites but was a surprising outcome at the Colchester site. This suggests that such strata changes may be difficult to detect with these methods and that special attention is warranted in planning and executing the measurement program, including use of other methods such as conventional soil borings, where detecting this transition is important for a particular project.

3. Seismic site classification made using SPT blow count data alone was more conservative than the results obtained through shear wave velocity measurements.

Recommendations

- 1. Evaluations for seismic site class should be performed under the direction of qualified professionals in accordance with accepted standards of practice.
- 2. Evaluations for seismic site classification should be expected to potentially require using more than one method of analysis in order to obtain reliable and sufficiently comprehensive data needed for proper seismic site classification. For example, soil sampling and testing is needed to evaluate soil grain size characteristics for liquefaction potential if there is evidence of submerged, loose, granular soils. Liquefiable soils will automatically result in a seismic site classification of F. Other testing may also be warranted for situations with soft and/or cohesive soils for similar reasons.
- 3. Shear wave velocity measurements for bedrock may require cross-hole or down-hole methods where it is important to evaluate the shear wave velocities.
- 4. <u>The information provided in this report should not be used in place of proper site-specific seismic</u> <u>evaluation performed under the direction of a qualified professional in accordance with accepted</u> <u>standards of practice.</u>

Acknowledgements

The site specific data used in this evaluation were obtained through cooperative effort from Laurence Becker, George Springston, David Kuhn, Todd Merchant, James Olson, Kirsten Merriman-Shapiro, Shawn Kelley, Jason Gaudette, Russ Miller-Johnson, the Vermont Department of Buildings and General Services, the City of Burlington, and other local consulting engineering firms and businesses. Field work performed to obtain shear wave velocity measurements was by George Springston of Norwich University. The study was funded by the Vermont Geological Survey through a grant provided by the Federal Emergency Management Agency.

References

International Building Code (2012), International Code Council, Country Club Hills, IL.

Springston, G.E., (2011), Shear Wave Analysis in the Colchester Quadrangle and Vicinity, Northwest Vermont, Norwich University Department of Geology and Environmental Science, Draft Internal Report.

Springston, G.E., (2013), File information on Shear Wave Velocity Measurements at the Vermont Public Health Building Site in Colchester, Overlook Park in Williston, and Winooksi Gorge in South Burlington.

Lens, J.E., Dewoolkar, M.M., Springston, G.E., and Becker, L.R., (2013) Open File Report VG13-3, Seismic Hazard for the Burlington and Colchester, Vermont USGS 7-1/2 Minute Quadrangles, Vermont Geological Survey.

Stokoe, K, (2008), The Increasing Role of Seismic Measurements in Geotechnical Engineering, The Spencer J. Buchanan Lecture presented at Texas A & M University.

Figure 2 - Colchester Site Vermont Center for Geographic Information

vermont.gov

Figure 3 - Milton Site Vermont Center for Geographic Information

vermont.gov

Ottawa

Table 1Summary of Site Information

Site Name	Location	SCPT Data Acquisition	MASW Data Acquisition	Quantity of SCPT Probes	SCPT Probe Depths	Quantity of Borings	Boring Depths	Estimated Bedrock Depth	Soil Profile	Remarks
Burlington	Moran Plant along Waterfront	August 2010	April 2011	2	134 and 217 feet	4	32 to 47 feet	Bottom of SCPT probes	Miscellaneous fill (20-feet +/-) over stratified lacustrine sands, silt and clay	1.
Colchester	Vermont Public Health Building Site	January 2011	May 2013	8	40 to 58 feet	2 (8 bedrock probes)	56 to 59 feet (probes to 93 feet)	Varies between 65 and 90 feet across site	Fine sand (10 to 20- feet) over fluvial silt	1.
Milton	Route 5	March 2011	August 2011	2	116 and 120 feet	14	25 to 102 feet	220 feet based on water well data	Interbedded fine to medium sands with silt and coarse sand layers	1.

Remarks:

1. Refer to Appendices 1 and 2 for additional details.

Table 2 Summary of Bedrock Shear Wave Velocity Measurements

Site	Location	Shear Wave Velocity	Rock Type	Remarks
		(feet/second)		
Winooksi Gorge	South Burlington	980 to 3300 (forward Survey 1800 to 6600 (reverse direction survey)	Shelburne Formation (Limestone)	1
Overlook Park	Williston	3900 (range is 3600 to 4400)	Clarendon Springs Formation (Limestone)	1

Remarks:

1. Refer to Appendix 1 for additional details.

Appendix 1 Shear Wave Analyses at Three Sites With Seismic Cone Penetrometer Data in the Burlington and Colchester Quadrangles, Northern Vermont

George Springston Norwich University Department of Geology and Environmental Science 158 Harmon Drive, Northfield, VT 05663

June 5, 2013

1. Introduction

Shear wave velocity data was collected at three sites in Chittenden County where Seismic Cone Penetrometer data was also available. The site locations are described in the main report.

This analysis was conducted by means of the Multichannel Analysis of Surface Waves (MASW) and Microtremor Array Measurement (MAM) techniques. Both of these techniques are based on the measurement of Rayleigh waves moving across the surface of the earth. High frequency surface waves from a seismic source stress only the shallow layers of the soil while low frequency waves can stress the deeper materials. If the material properties vary with depth, this results in a dispersion of surface wave velocities. In both methods, a spectral analysis is used to identify the dominant mode at each frequency and then a curve of phase velocity versus frequency is constructed. This curve is then used to theoretically model the thickness and stiffness of soil layers. The two methods differ in that the MASW technique uses a single artificial source (commonly a hammer striking a plate) while the MAM technique makes use of ambient vibrations.

2. Methods

Data was collected using a Geometrics SmartSeis ST seismograph with three different arrangements of geophones. Data was collected for the active or MASW technique using linear arrays of 12 geophones with spacings that generally range from 1 to 2 meters (spread lengths of 11 and 22 meter, respectively). Shot locations were generally at 1 and 2 meters off of each end of both the 1- and the 2-meter arrays. The source was an 8-pound sledge hammer striking an aluminum plate. Data was collected for the passive or MAM technique using an "L" shaped array of 11 geophones. All passive surveys had 25-meter arms. The "source" in this case was ambient vibrations from a wide variety of natural and artificial sources. Data was processed using Geometrics Seisimager/SW software.

The field procedures and use of the software are described detail in Geometrics (2009). The general principles of these surface wave techniques are explained in Park and others (1999) and Park and others (2007). Park and Miller (2005) provide a very useful discussion of optimum parameters for MASW surveys. Long and Donohue (2007) use the MASW technique to characterize shear wave velocities in Norwegian clay, silt and sand deposits and compare the results with cone penetrometer and other geotechnical data. Their article provides useful analyses of the optimum equipment parameters to use for fairly shallow analyses of surficial geologic materials. Lin and others (2004) discuss field configurations, give a useful description of the principles of dispersion analysis, and show how the MASW technique can be used to evaluate liquefaction potential. Miller and others (no date) show the utility of these techniques for mapping depth to bedrock. Detailed analyses of shear wave velocity profiles produced using a related two-receiver method are given in Stokoe and others, 2005). This last report gives a useful overview of the general methodology used in these surface wave analysis methods.

3. Results from Moran Plant, Burlington 3A. Active Survey.

Figure 1. Results from active MASW analysis using 27.5 m spread with 2.5m spacing and 2.5 m end offset from west end. RMS error after inversion = 6.0 m/Sec. 1a. Dispersion curve. 1b. Results of shear wave velocity model after inversion.

3B. Passive Survey.

Figure 2. Results from L-shaped passive seismic array with 25 m arms. Data from a set of 100 8-second files. RMS error = 8.3 m/sec. a. Dispersion curve. b. Results of shear wave velocity model after inversion.

3C. Combined Survey.

Figure 3. Results of combination of MASW File 1DMASW_12ch_2pt5m_308.rst and passive seismic file 1DPS_111_25M_ F.rst. The passive seismic record consists of set of 100 8-second files. RMS error after inversion = 7.0 m/sec. V_S30m = 227.3 m/sec = 745.7 ft/sec. a. Dispersion curve. b. Results of shear wave velocity model after inversion.

Figure 4. Combination of MASW File 1DMASW_12ch_2pt5m_312.rst and passive seismic file 1DPS_111_25M_ F.rst. The passive seismic record is the same 100 file set used in the previous figure. Note that results are nearly identical to the previous figures. RMS error after inversion = 7.0 m/sec. V_S30m = 228.8 m/sec = 750.6 ft/sec. a. Dispersion curve. b. Results of shear wave velocity model after inversion.

4. Results from Milton Square Site in Milton

4A. Results from active survey using file 23.dat, 22 meter survey length with 4 meter shot offset.

Figure 5. Time-distance plot and phase velocity versus frequency plot for active survey at Milton Square site.

Figure 6. Dispersion curve and velocity model for active survey at Milton Square site.

4B. Passive Survey at Milton Square

Press Enter key to continue Surface Wave Analysis Wizard. Passive 1D MAM(1) Source= 0.0m Time (msec) 1000 2000 5000 6000 7000 8000 0 3000 4000 9000 0 or rough or idea with 2 4 Distance (m) 6 Area and ~~~ وورياعه المعاصر المحاليه وا 8 المراكبة فوالجريص المريط يتصالحوانه ,wayeelayeeneringthyintyshaphasatyshas be<mark>n befolgeren berne andere be</mark>reter n deputpel ~V. 10 Trigger 183.dat Press Enter key to start Surface Wave Analysis Wizard. 1D Surface wave analysis Frequency (Hz) 0 5 10 15 20 25 30 35 40 45 50

Figure 7. Example of an 8 second file of passive seismic data from files 183 to 270. Data collected using all low gains (24 dB) and the associated dispersion curve.

Figure 8. Modeled velocity profile for passive seismic data. Solution converged with 5 iterations to an RMS error of 18.0 m/s. There is a good general correspondence with velocities in hole B-104.

4C. Combined Active and Passive Surveys at Milton Square.

Figure 9. Dispersion curve and velocity model based on combined active and passive surveys for the Milton Square site.

5. Public Health Lab, UVM, Colchester

Data collected 05/03/2013 Data Processed 05/22/2013 by George Springston

5A. Active survey, File 328.dat. 22 meter spread length, hammer offset 2 meters.

Figure 10. Dispersion curve and phase velocity versus frequency plot for active survey at Public Health Lab.

Figure 11. Dispersion curve and velocity model for active survey at Public Health Lab.

5B. Passive survey at Public Health Lab. Files 200-300.dat. L-shaped array with 25 meter arms, 11 geophones.

Figure 12. Example data file and phase velocity versus frequency plot for passive survey at Public Health Lab.

Figure 13. Dispersion curve and velocity model for passive survey at Public Health Lab.

5C. Combined Active and Passive surveys at Public Health Lab.

Figure 14. Dispersion curve and velocity model for combined active and passive surveys at Public Health Lab. The combined active and passive surveys shown above show a consistent picture of low, but increasing velocity down to about 16 meters, with an abrupt increase below there.

Average Vs 30m = 231.7 m/sec

6. Acknowledgements

Thanks to John Lens and Bradford Berry for their hard work and enthusiastic assistance in gathering the field data.

7. References

Geometrics, 2009, SeisImager/SW Manual: Windows software for analysis of surface waves: Manual version 3.0, Geometrics Inc., 314p.

Lin, Chih-Ping, Cheng-Chou Chang, and Tzong-Sheng Chang, 2004, The use of MASW method in the assessment of soil liquefaction: Soil dynamics and Earthquake Engineering, v. 24, p 689-698.

Long, Michael, and Donahue, Shane, 2007, In situ shear wave velocity from multichannel analysis of surface waves (MASW) tests at eight Norwegian research sites: Canadian Geotechnical Journal, v. 44, p. 533-544.

Miller, R.D., Xia, Jianghai, Park, C.B and Ivanov, Julian, no date, Multichannel analysis of surface waves to map bedrock, 6 p., downloaded from http://geom.geometrics.com/pub/seismic/Literature/SurfaceWaves/KGS/LEv18n12.pdf

Park, C.B., and Miller, R.D., 2005, Seismic characterization of wind turbine sites in Kansas by the MASW method: Kansas Geological Survey Open File Report 2005-23, 30 p.

Park, C.B., Miller, R.D., and Xia, Jianghai, 1999, Multichannel analysis of surface waves: Geophysics, v. 64, no. 3, p. 800-808.

Park, C.B., Miller, R.D., Xia, Jianghai, and Ivanov, Julian, 2007, Multichannel analysis of surface waves (MASW)—active and passive methods: The Leading Edge, January, 6 p.

Stokoe, K.H., II, Lin, Yin-Cheng, Menq, Farn-Yuh, and Rosenblad, Brent, 2005, SASW measurements in Taiwan at 26 strong motion recordings sites: Summary report of the shear wave velocity profiles: Geotechnical Engineering Report GR05-2, Geotechnical Engineering Center, University of Texas at Austin,

Appendix 2

Subsurface Data for:

Burlington (Moran) Site State of Vermont-Colchester Public Health Building Site Milton Square Site Burlington (Moran) Site SCPT and Soil Boring Data

PRESENTATION OF IN SITU TESTING PROGRAM RESULTS

Community Sailing Center Burlington, Vermont

August 25th, 2009

Prepared for:

GeoDesign, Inc. Windsor, Vermont

Prepared by:

ConeTec Inc. West Berlin, NJ

August 31st, 2009

1.0 INTRODUCTION

This report presents the results of a piezocone penetrometer testing (CPTU; also CPT) program carried out at the Community Sailing Center Site located in Burlington, Vermont. The work was performed under subcontract to GeoDesign, Inc. of Windsor, Vermont. The CPT program took place on August 25th, 2009.

A total of two soundings were completed at two different sounding locations. The CPT program was performed to evaluate in situ geotechnical criteria relative to the soils.

In addition to the CPT soundings, shear wave velocity tests were performed at both of the locations with testing at various depth intervals.

CPT sounding locations were selected and numbered under the direction and supervision of GeoDesign personnel.

Shear Wave Velocity CPT Plots

Job No	09-756		
Client	GeoDesign		
Project Title	Community S	Sailing Center	
Hole	CPT-1		
Site	Burlington, V	'ermont	
Date	8/25/2009		
Seismic Sou	·ce:	Beam	
Source Offse	et:	1.97	(ft)
Source Dept	า:	0.00	(ft)
Geophone Of	ffset:	0.66	(ft)

SEISMIC TEST RESULTS - Vs

Tip	Geophone	Ray	Depth	Time	Mid-layer	Vs Interval
Depth	Depth	Path	Interval	Interval	Depth	Velocity
(ft)	(ft)	(ft)	(ft)	(ms)	(ft)	(ft/s)
5.08	4.42	4.84				
20.01	19.35	19.45	14.61	29.70	11.89	492
46.10	45.44	45.49	26.03	38.89	32.40	669
66.11	65.45	65.48	20.00	24.66	55.45	811
86.12	85.46	85.49	20.00	22.88	75.46	874
106.79	106.13	106.15	20.67	21.70	95.80	952
126.31	125.65	125.67	19.52	20.05	115.89	973
133.86	133.20	133.22	7.55	5.91	129.43	1277

Job No	09-756		
Client	GeoDesign		
Project Title	Community S	Sailing Center	
Hole	CPT-2		
Site	Burlington, V	ermont	
Date	8/25/2009		
Seismic Sou	rce:	Beam	
Source Offse	et:	1.97	(ft)
Source Dept	n:	0.00	(ft)
Geophone O	ffset:	0.66	(ft)

SEISMIC TEST RESULTS - Vs

Tip	Geophone	Ray	Depth	Time	Mid-layer	Vs Interval
Depth	Depth	Path	Interval	Interval	Depth	Velocity
(ft)	(ft)	(ft)	(ft)	(ms)	(ft)	(ft/s)
7.05	6.39	6.69				
21.00	20.34	20.44	13.75	21.36	13.37	644
40.19	39.53	39.58	19.14	26.58	29.94	720
60.04	59.38	59.42	19.83	25.14	49.46	789
80.54	79.88	79.91	20.49	24.08	69.63	851
101.05	100.39	100.41	20.51	18.59	90.14	1103
121.55	120.89	120.91	20.50	25.55	110.64	802
139.93	139.27	139.29	18.38	18.29	130.08	1005
160.10	159.44	159.46	20.17	21.37	149.36	944
180.12	179.46	179.47	20.02	27.50	169.45	728
201.12	200.46	200.47	21.00	16.94	189.96	1240
216.70	216.04	216.05	15.58	12.05	208.25	1293

.

		ч, ⁴	Gree	en MOL R. D. 2 —	BARRE, VER	MONT 0	CO., 1 5641	DATE9.	<mark>О</mark> ғ /26/91 SB–1
	1							OFFSET	None
	<u> </u>	GROUN	ID WATER OBSE	RVATIONS	1 .	CASIN	G SAMI	PLER CORE BAR. SURFACE ELEV.	
	A		at	Hours	Type Size L D	AUGE	RS SPLIT S	DATE STARTED .9./. DATE COMPL	26/91 26/91
•	A	I	at	Hours	Hammer Wt	· · · · · · · · · · · · · · · · · · ·		BORING FOREMAN ' INSPECTOR '' SOILS ENGR.	
		<u></u>		A	staked		<u></u>		
					llour par 4"	Moleture			1
	DEPTH	Blows per	Sample Depths		on Sampler om To	Density	Strata Change Elev.	Remarks include color, gradation, Type of soil etc. Rock-color, type, condition, hard-	SAM
		foot		Drv 3	6-12 12-18	B Consist.		Brown medium sand with	1 24
		~		9				trace of stone	
		· · · · · · · · · · · · · · · · · · ·	10'-12'	Dry 8	3 3	- Wet		Brown medium sand some pebbles	2 24
		*****	151-171	Dry 13	16 23	Vet	16'	Coarse sand into medium sand	3 24
			201-221	Dry 3-	5 10	Wet		Fine sand and silt	4 24
			251-271	Dry 3 18	8 12	Wet		Fine sand with trace	5 24
			30'-32'	Dry 8 17	10 14	Wet		Fine sand with trace	6 24
			35'-37'	Dry 4 14	6 10	Wet		Fine sand	7 24
			40'-42'	Dry 5	6 8	∛et		Fine sand, silt, clay	8 24
			45!-47!	Dry 4	5 5	Wet		Fine sand and silt '	9 24
			·						
						· .			
	-	GROUND	SURFACE TO	45!		.2.50!! /	AUGERS:	THEN Split spoon to 47!	

ν i'r			κ. υ .			, י נגוי			DATE 9/25/0 HOLE NO. MW-1 LINE & STA. OFFSET None					
	GROUN	D-WATER OBSER	VATIO	NS ,			CASING	SAMI	PLER CORE BAR. SURFACE ELEV.					
A	N	atO. at	н н	lours lours	Type Size I Hamm	Type AUGERS SPLIT SPOON DATE STARTED Size I. D. 3.25 '' 13/6" DATE COMPL. Hammer Wt. 140# INSPECTOR Hammer Fall 30" SOILS ENGR.								
<u> </u>									SOILS ENGR.					
PTH T	Casing Blows	Sample Depths	of of nple	BI	ows pe on Samp	r 6" der	Moisture Density	Strata Change	SOIL IDENTIFICATION Remarks include color, gradation, Type of					
В	· per · foot	From — To	Sar 1	Froi 0-6	n 6-12	To 12-18	or Consist.	Elev.	soll etc. Rock-color, type, condition, hard- ness, Drilling time, seams and etc. No. P					
									Augered to 12'					
							-		and installed well					
						•••]		Materials Used:					
							•		4' 2" riser					
							-		1 top wing cap					
		· · · · · · · · · · · · · · · · · · ·							13 bags of sand					
	· .			<u> </u>					t bag of bentonite					
						1	-		· · ·					
							-							
				<u> </u>										
					<u> </u>	+	- - -							
			•						·					
							-							
							4							
				<u> .</u>	<u> </u>									
				ļ	<u> </u>	· · · · · · · · · · · · · · · · · · ·	-							
			<u> </u>		·		- - -							
							-							
				<u> </u>		<u> </u>	-							
					· · · · · ·									
			-											
	GROUND	SURFACE TO	121		<u></u>	USED	3.25"	UGERS:	THEN Installed well					

.

Green Mountain Boring Co., Inc. R. D. 2 – BARRE; VERMONT 05641

At

Casing

Blows

per

foot

DEPTH

Sample

Depths'

From - To

N

Type of Sampl

DATE 9/26/91 HOLE NO. MW-2 LINE & STA. OFFSETNone... SURFACE ELEV: 9/26/91 SAMPLER CORE BAR. CASING GROUND WATER OBSERVATIONS DATE STARTED 9/26/91 DATE COMPL 9/26/91 at O Hours AUGERS SPLIT SPOON Type 3.25" 13/8" Size I. D. BORING FOREMAN 140# Hammer Wt. INSPECTOR at Hours 30" SOILS ENGR. Hammer Fall ******** LOCATION OF BORING: As mapped SOIL IDENTIFICATION Blows per 6" Moisture Strata SAMPLE on Sampler Remarks include color; gradation, Type of Density Change soll etc. Rock-color, type, condition, hardor From То Elev. No. Pen ness, Drilling time, seams and etc. 0-6 6-12 12-18 Consist. Augered to 14! and installed well Materials Used: 10' .020 screen 6' 2" riser top wing cap 1 bottom slip cap 1 13 bags of sand .h. bag of bentonite . . 1999 Installed well. THEN .. USED 2.4 AUGERS: GROUND SURFACE TO 14 140 lb, Wt, x 30" fall an 2" O, D, Sampler SUMMARY **Proportions** Used Cohesive Consistency 0-4 Soft 30 + Hard Cohesionless Density Earth Boring Rock Coring 0 to 10% W-Washed trace 0-10 Loose little 10 to 20% 10-30 Med, Dense 4-8 . M/Stiff Samples TP=Test Pit A=Auger V=Vane Test some 20 to 35% 30-50 Dense 8-15 Stiff

50 +

Very Dense

and

35 to 50%

15-30 V-Stiff

HOLE NO. MW.

Sample Type

C = Cored

UP=Undisturbed Piston

UT == Undisturbed Thinwall

D⇔Dry

			R. D.	2 — E	BARRE,	VERM	ONT 0	5641		SHEET4 DATE9 HOLE NO LINE & STA. OFFSET	/26 MW- Non	OF /91 3
AI AI	GROUNI	D WATER OBSEF	10ITAV8 н0. н	NS ours ours	Type Size I. Hamm Hamm	D. er Wt. er Fall	AUGE	3 SAMP RS SPLIT S 1 13/ 140 30	POON *******************************	DATE STARTED .9/2 DATE COMPL9/2 BORING FOREMAN INSPECTOR SOILS ENGR.	6/9 6/9	.1 11
	OCATION	1-OF-BORING	;l	↓sm	appe	1			ار این می از این	لیون می این می برد. به از می این می برد این این می این می این می برد این می با این می برد این می برد این می برد این می این می این م این می برد این می برد ا		
РТН	Casing Blows	Sample Depths	/pe of npie	Bl	ows per n Samp	6" ler	Moisture Density	Strata Change	SOIL' IDE Remarks include c	NTIFICATION olor, gradation, Type of type, condition, hard-		SAMPL
B	per foot	From - To	Sar 1	0-6	n 6-12	12-18	Consist.	Elev.	ness, Drilling time	, seams and etc.	No.	Pen
									Augered to	vell		++
									Materials	Used"		
									10'.020 s 6' 2" rise	screen		
							- · ·	-	1 top wing 1 bottom	g cap slip cap f sand		++
	· · · · · · · · · · · · · · · · · · ·						•		$\frac{1}{4}$ bag ben	tonite	i	
									•			
								·				
						· · · · · · · · · · · · · · · · · · ·	-			· ·		
							- - -	.				
							-					
			•				-				· · ·	
										· · ·		
				<u>.</u>						allen well		

			R. Ó.	2 — 1	BARRE	, VERM	IONT 05	5641	SHEET	۱۴.
A	GROUNE	> WATER OBSER at at	н	NS Iours Iours	Type Size I Hamm Hamm	, D. ner Wt. ner Fall	CASINC AUGEF 3 25 "	PLER CORE BAR. SURFACE ELEV. POON	1	
HI HI	Casing Biows	LOF_BORING Sample		BI	As ma Blows per 6" on Sampler		mapped ws per 6" Moisture Sampler Density		SOL IDENTIFICATION Remarks include color, gradation, Type of SA	Ŵ
DEP	per foot	From - To	Sam	From 0-6	n 6-12	To 12-18	or Consist.	Elev.	soil etc. Rock-color, type, condition, hard- ness, Drilling time, seams and etc. No. Pr	en
			-						Augered to 14' and	
		·····							installed well	
		•					·			
									Materials Used:	
									10'.020 screen	
									1 top wing cap	
		•						, . ,	1 bottom slip cap	<u></u>
							- · 		1 bag of bentonite	
							-			
					}					
							-			
			·							
ľ	· · ·						-			
		· · · · · · · · · · · · · · · · · · ·	-							
							- - -			
							-	· ·		
			_							
				-						<u> </u>
					<u> </u>		-			
							4			
1.							-			
					·					
				<u> </u>			4			
							1			;
		• • • • • • • • • • • • • • • • • • • •			<u> </u>		-			
								1		,

•

		0166	R, D.	2 B	ARRE,	VERM	ONT 05	5641		SHEET	27/9 SB 	OF)1 -2
Aı	GROUN	D WATER OBSER		NS Iour s	Typə Size I. Hamm	D, er Wt.	CASINC AUGEF	DATE STARTED	/27/ /27/	/91 /91		
A1			n	A a m	Hamm	er Fall	B-4)	30	41	SOILS ENGR		
 Тн Г	Casing Blows	Sample	pe ple	810 0	ows per n Samp	6" er	Moisture Density	Strata Change	SOIL IDE Remarks include o	NTIFICATION olor, gradation, Type of	[SAMPL
DED	per foot	From - To $5^{1} - 7^{1}$	Drv	From 0-6 6	1 6-12 8	To 12-18 72	or Consist. Dry	Elev.	soil etc. Rock-color ness, Drilling time Fine sand	fractures	No. 1	Pen 24 '
				23					of brick			
				· ,					at 7' Offset 5'	West		
		10'-12'	Dry	8	8	10	Wet	· · · · · · · · · · · · · · · · · · ·	Medium san	nd some	2	24.'
		15'-17'	Dry	12	14	24	Wet		Coarse sam medium sam	nd into nd with	3	24"
		201-221	Dry	8 26	.25	<u>,26</u>	Wet		Medium sa: fine sand	nd.into	3	24
		25'-27'	Dry	5	6	6	Wet		Fine sand clay	, little	4.	24
		<u>-30'-32'</u>	Dry	- 3		5	Wet		Fine sand clay	with a littl	<u>e 5</u>	24
		<u>35'-37'</u>	Dry	13	5	8	Wet		Fine sand	, some clay	6	24
1		40'-42'	Dry	7 .3	3	4	Wet		Silty gre	y clay	7	24
		45'-47'	Dry	7 3	4	6] Wet		Silty gre	y clay	8	24
				9			-					
							-					
	GROUNI		15	1		USED	2.50"	AUGERS:	THENS.D.1.1.1	spoonto47	1	

GROUND WATER OBSERVATIONS At	SHEET	OF /27/91 3B-3 one
A1	ACE ELEV,	
Al	STARTED9.2 COMPL NG FOREMAN	/27/91
LOCATION OF BORING: As mapped. (SB-6)	ECTOR	· •••
Easing Blows perform Sample Depths From - To Blows perform Moisture Density Strate Change Elev. Solid att. Rockcolor, yee and the construction of the construction o	·····	
Image: boot from - 10 Image: brow	ATION adation, Type of condition, hard-	SAMPLE
3' - 7' Dry 8 11 10 into fine sam 10'-12' Dry 6 11 11 12 15'-17' Dry 20 33 35 20'-22' Dry 15 24 17 20'-22' Dry 4 4 5 20'-32' Dry 4 8 11 30'-32' Dry 4 9 11 30'-32' Dry 4 10 10 30'-32' Dry 4 9 11 30'-32' Dry 4 9 11 30'-32' Dry 4 9 11	and etc.	
10'-12' Dry 6 11 13 Wet Coarse sand in fine sand with 15'-17' Dry 20 33 35 Wet Medium sand with 20'-22' Dry 15 24 17 Wet Medium sand with 20'-22' Dry 15 24 17 Wet Medium sand with 25'-27' Dry 4 5 Wet Medium sand in sand 30'-32' Dry 4 8 11 Wet Fine sand trained 30'-32' Dry 4 8 11 Wet Fine sand trained 30'-32' Dry 4 8 11 Wet Fine sand trained	1	
15'-17' Dry 20 33 35 Wet Medium sand w: coarse sand low medium sand 20'-22' Dry 15 24 17 Wet Medium sand w: coarse sand low medium sand 20'-22' Dry 4 4 5 Wet Medium sand in sand 25'-27' Dry 4 8 11 Wet Medium sand in sand 30'-32' Dry 4 8 11 Wet Fine sand trainsand 30'-32' Dry 4 8 11 Wet Fine sand trainsand 30'-32' Dry 4 8 14 Wet Fine sand trainsand 30'-32' Dry 4 8 14 Wet Fine sand trainsand 30'-32' Dry 4 8 14 Wet Fine sand trainsand 30'-32' Dry 4 8 14 Wet Fine sand trainsand 30'-32' Dry 4 4 5 Medium sand trainsand Fine sand trainsand 30'-32' Dry	ito i pebbles	2 24 "2;
20'-22' Dry 15 24 17 Wet Medium sand 25'-27' Dry 4 4 5 Wet Medium sand in sand 30'-32' Dry 4 8 14 Wet Fine sand trans	th enses	3 24"2,
25!-27! Dry 4 4 5 Wet Medium sand i: sand 30!-32! Dry 4 8 11 Wet Fine sand transmit		4 24 11 22
25:-27: Dry 4 4 5 Wet Medium sand i: sand 30:-32: Dry 4 8 11 Wet Fine sand training		
	ito fine	5 24 "24
	ce of sil	+ 6 24"2
	-1	
		· · · ·
GROUND SURFACE TO J.G. USED J.G. AUGERS: THEN J.G. AUGERS: THEN J.G. THEN J.G. AUGERS: THEN J.G. THEN J.G. AUGERS:	Sampler sistency 30 + Hard	SUMMARY Earth Boring Rock Coring Samples

•

.

.

•

.

. ,

		• •	Gree	∋n ∧ R. D.	Aou 2 — 1	BARRE,	n Bo , ver <i>n</i>	ONT 0	Co., 11 5641	nc.	SHEET	30/ B-4	. 0 .9.1	
		. ·				· / .	t i i				LINE & STA;	 ne		
<u> </u>		GROUN	ID WATER OBSE	, RVATIO	NS			CASING SAMPLER CORE BAR. SURFACE ELEV.						
	AI	4.!	at	Q ⊦	lours	Type Size I.	. D.	AUGEI 2.501	RS SPLIT S	900N	DATE STARTED .9/.3 DATE COMPL.	.0. /. 9	11.	
	Ai		at	H	lours	Hamm Hamm	ier Wt. ier Fall	•••••••	140	۳	INSPECTOR SOILS ENGR			
	LC	CATIO	N OF BORING	.		ł	4.sme	pped						
EPTH		Casing Blows	Sample Depths	ype of mple	B c	Blows per 6" on Sampler From To		Moisture Density	. Strata Change	SOIL IDEN Remarks include col soil etc. Rock-color.	ITIFICATION or, gradation, Type of type, condition, hard-		S.	
0		foot	From — To	^r s	0-6	6-12	12-18	Consist.	Elev.	ness, Drilling time,	seams and etc.	No.	╞	
			5' - 7'	Dry	3	3	2	Wet		. Medium san	nd .		-ť	
	-	•	10'-12'	Dry	2	4	3	Wet		Medium sam	nd	2	+	
								117		Maddum mar	. a	7	+	
	-	· · · · · · · · · · · · · · · · · · ·	15'-1'(Dry	55	-22-		wet-		-mearum-san	1a			
		· · · · · · · · · · · ·	201-221	Dry	7	7.	12	Wet		Medium san	nd	4		
	-		251-271	Dry	2	3	5	Wet ·		Medium sam	nd	5		
			30'-32'	Dry	4	4 [.]	6	Wet		Medium sam	nð	6		
	- -							- 					-	
	-		-					- ·						
								-						
								-						
								-			. :		+	
						·							-+	
													_	
			· · · · · · · · · · · · · · · · · · ·					-					-+	
				+				-					+	
	ŀ					· · · ·		1,					+	
	ł							1						
				201-	1			5 500		TUEN SOITE	anoon to 321	<u> </u>	لــ	

Colchester Site SCPT and Soil Boring Data

Client: OWI Engineering Associates, Inc. Bapon No:: C07159-01-01-11 Project: Subsurface Investigation									Sub	surface	Investig	gation					
Client Chill Englesering Associates, Inc. Boring Location: A 5 taked Project: Suburface Investigation												Report No.:	-		CD71 <u>59-01-0</u>	1-11	
Preject: <u>absurface investigation</u>		Client:	CI	vil Engli	neering .	Associa	ites, l	nc.	-	-		Boring Loca	tion: A	s Staker	1		
Image: Program building Colchester, Vermont Start Date: 11/22011 Finish Date: 11/22011 Boring No: B-5 Sheet 1 of 2 Date Time Depth Casking Coordinates Samplar Hammer 11/22011 AM DRY 0.0° Northing Fait: 30 in. 11/22011 AM DRY 0.0° Ground Elev:		Project:		ibsurfac	e Invest	ligation				_		-				-	•
Colonality verticity Sheet 1 of 2 Conditionality Casting Boring No:: B-5 Sheet 1 of 2 Date Time Dapth Casting Coordinates Sampler Hammer 1/12/2011 AM DRY 10.0' Northing			<u>Pr</u>	oposed	Building	-	-	_		_		Start Data:	4/42/204	4	Finish Date:	1/12/2011	
Boring No: B-5 Sheet 1 of 2 Date Time Depth Casing Northing				Dicheste	r, verma		-					Start Date.	Ground	dwater O	bservations		
Coordinates Sampler Hammer 11/2/2011 AM DRY 10.0' Northing		Boring N	10.: _	B-5	-		Sheet	1	of _	2		Date	Tim	e	Depth	Casing	
Northing Weight: 140 Ibs. 11/2/2011 AN 2.9' 35.0' Easting Fall: 30 in. 11/2/2011 AN DRY OUT Ground Elev:			Coordi	nates				Samp	ter Ham	mer		1/12/2011	AM		DRY	10.0'	
Easting Fail: 30 In. 1122011 AM DRY OUT Ground Elev:		Northing					Weigh	ht:	140	lbs.		1/12/2011	AM	1	2.9	35.0'	
Hammer Type: Automatic Boring Advance By: Boreholo caved at 8.0 feet. Building DepTH Building Building Boreholo caved at 8.0 feet. Building DepTH Building Building CLASSIFICATION OF MATERIAL Building Building Building Building Building Building Building Building		Easting		_			Fa	all: _	30	in.		1/12/2011	AN	<u> </u>	DRY	TUO	-
Ground Elev: Boring Advance By: Borehole caved at 8.0 feet. Huge 0 gi 0 gi <td></td> <td></td> <td></td> <td></td> <td></td> <td>Hamme</td> <td>er Typ</td> <td>)e: _</td> <td>Automa</td> <td>tic</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>•</td>						Hamme	er Typ)e: _	Automa	tic					_		•
Har Auger CLASSIFICATION OF MATERIAL Har Auger Har Auger Har Open in the open in		Ground	Elev.:	-		-	В	Boring	Advanc	e By:		Borehole	caved at 9.	0 feet			-
But of the constraint of								41	/4" Aug	er			_		-	_	-
End Operation BLOWS ON SAMPLE BLOWS ON SPARPLE BLOW		ц.,,	ċ						0.01			CLASS	IFICATI	ON OF	MATER	AL	T
H Y S SAMPLE Y PC 0.D. SAMPLE R Y E Y D Solar	Ŧ	NCE	Ň	DEI	PTH	3	8	SAMP	LER	H OF							L
E G From To SAMPLER D m. exam titls 100 100 20 SS 2 5 7 8 0.5 6* TOPSOIL & ORGANIC MATERIAL 1 0 2 0 2 5 7 8 0.5 6* TOPSOIL & ORGANIC MATERIAL 2 6 - <td< th=""><th>B</th><th>H</th><th>MPL</th><th>SAN</th><th>IPLE</th><th>WAS</th><th></th><th>2" C</th><th>5").D.</th><th>CHAI</th><th>f - fine</th><th></th><th></th><th></th><th></th><th>and - 35-50% some - 20-35%</th><th></th></td<>	B	H	MPL	SAN	IPLE	WAS		2" C	5").D.	CHAI	f - fine					and - 35-50% some - 20-35%	
A 1 0.0 2.0 SS 2 5 7 8 0.5 6" TOPSOIL & ORGANIC MATERIAL B		×.	SA	From	То		9	SAMP	LER		m · modium c · coarse					trace - 0-10%	Ľ
G G		A	1	0.0	2.0	SS	2	5	78	0.5	6" TO	PSOIL & OR	GANIC MAT	TERIAL			Ť
- - .30. - 2 5.0 7.0 SS 1 1 1 - - - - .80. .80. .80. .80. - - - - .80. .80. .80. .80. - - - - .80. .80. .80. .80. - - - - .80. .80. .80. .80. - - - - .80. .80. .80. .80. - - - - .80. .80. .80. .80. .80. - - - - .80. .80. .80. .80. .80. - - - - .80. .80. .80. .80. .80. - - - - .80. .80. .80. .80. .80. - - - - .80. .80. .80. .80. .80. .80. .80.	1-	G									Brown	cmf SAND;	little SILT; t	race f GF	RAVEL (wet,	non-plastic)	E
2 5.0 7.0 SS 1 1 1 2 5.0 7.0 SS 1 1 1 3 10.0 12.0 SS WOH 1 1 1 4 15.0 17.0 SS 1 2 3 5 4 15.0 17.0 SS 1 2 3 5 4 15.0 17.0 SS 1 2 3 5 5 20.0 22.0 SS 1 WOH 1 1 1 5 20.0 22.0 SS 1 WOH 1 1 1 6	$\frac{2}{2}$	ER	1			1				3.0							Γ
2 5.0 7.0 SS 1 <td>4</td> <td>-</td> <td>1</td> <td></td> <td>F</td>	4	-	1														F
2 5.0 7.0 5.5 1 1 1 1 3 10.0 12.0 SS WOH 1 1 1 3 10.0 12.0 SS WOH 1 1 3 10.0 12.0 SS 1 2 4 15.0 17.0 SS 1 2 5 20.0 22.0 SS 1 WOH 1 1 1 1 1 1 5 20.0 22.0 SS 1 WOH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5_			5.0		66	_	-		4	Crow			hoterute	non-plastic)		┝
7	6			5.0	7.0	35			1 1	4	Gley	III SAND, 50	INB SILI (S	alui alcu,	non-piasie)		┝
8	7_																\mathbf{F}
3 10.0 12.0 SS WOH 1 1 1 3 10.0 12.0 SS WOH 1 1 1 4 15.0 17.0 SS 1 2 3 5 4 15.0 17.0 SS 1 2 3 5 5 4 15.0 17.0 SS 1 2 3 6 10.0 12.0 SS 1 2 3 5 6 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 9 5 20.0 22.0 SS 1 WOH 1 1	8						<u> </u>			8.0	•••••	•••••		•••••	•••••	•••••	+
3 10.0 12.0 SS WOH 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 10.0 12.0 SS WOH 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 4 15.0 17.0 SS 1 2 3 5 5 5 5 5 5 5 5 1 2 3 5 5 5 5 5 5 1 2 3 5 5 5 5 5 5 5 5 5 1 WOH 1 1 5 5 1 WOH 1 1	9									1							
1 1	°		3	10.0	12.0	SS \	WOH	H 1	1 1	1	Grey	SILT; little f S	AND (satur	rated, no	n-plastic)		F
3 3	1									1							
4 15.0 17.0 SS 1 2 3 5 5 4 15.0 17.0 SS 1 2 3 5 7 1	۲ <u>ـ</u>]							
5 4 15.0 17.0 SS 1 2 3 5 6 1 1 1 1 1 1 8 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 <td>4</td> <td></td> <td>F</td>	4																F
4 15.0 17.0 35 1 2 3 5 3<	5-			15.0	17.0	88	-	2	2 6	4	Ci-ril-	Soll /oot	tod pon-t	netic)			\mathbf{F}
3 3 <td>6-- </td> <td></td> <td>4</td> <td>15.0</td> <td>17.0</td> <td>35</td> <td></td> <td>2</td> <td>3 5</td> <td>4</td> <td>Simila</td> <td>n oon (satura</td> <td>ieo, non-pi</td> <td>aouc)</td> <td></td> <td></td> <td>\mathbf{F}</td>	6- -		4	15.0	17.0	35		2	3 5	4	Simila	n oon (satura	ieo, non-pi	aouc)			\mathbf{F}
B I	7-									-							\mathbf{F}
Similar Soil; trace CLAY (saturated, very slightly plastic)	e					<u> </u>											$\left \right $
5 20.0 22.0 SS 1 WOH 1 1 2	9 —					<u> </u>				-							F
	$^{\circ}$		5	20.0	22.0	SS	1	WOH	11 1	1	Simila	ar Soil; Irace (CLAY (satu	rated, ve	ry slightly pla	stic)	
	,																
										_							
	,																
																	_

						<u>ATI</u>	LANTIC TES Sub	<u>ring</u> surface	LABORATORIES, Limited	
	E	Boring I	No.: _	B-5			Report No.:		CD7169-01-01-11 Sheet 2 of 2	
DEPTH		METHOD OF ADVANCE	SAMPLE NO.	DEI O SAN	PTH F IPLE	SAMPLE TYPE	BLOWS ON SAMPLER PER 6" 2" O.D. SAMPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL and - 35-50% some - 20-35% Little - 10-20% Inter - 0-10%	RECOVERY (inches)
	_		8	From	To	SS	1 2 1 2		c course use course sightly plastic)	16
26-	-			20.0	27.0	30		-		
27-						'		4		
28-								1		
29-	1							1		
30.			7	30.0	32.0	SS	WOH/12" 1 2]	Similar Soil (saturated, very slightly plastic)	18
32-]		
33-	\square							4		
34-	_					ļ		4		<u> </u>
35 -	-		8	35.0	37.0	22	WOH/12" 7 5	-	Similar Soil: no CLAY (saturated, non-plastic)	18
36 -	\dashv		0	33.0	57.0	00		-		-
37 -	÷					<u> </u>		-		<u> </u>
38 -	╉							1		
39-								1		
40-			9	40.0	42.0	SS	WOH1 1 2		Similar Soil; trace f SAND; trace CLAY (saturated, very slightly	24
41-									plasuc)	
43-				42.0	44.0	SH			Shalby tube sample- No Recovery	
44 -							1100 11/011 0		Correction To Hale & CANID (activated non-plantic)	24
45-	-		10	44.0	46.0	55	WOR WOH 3	-	Grey Sic I; Inter SAND (Saturated, non-plastic)	24
46-	-					<u> </u>		-		
47 -	+							-		
48-	-+						 	-		
49-	+							1		
50-	┱		11	50.0	52.0	SS	WOH 2 1 2	1	Similar Soil; trace f SAND; trace CLAY (saturated, very slightly	18
51-									plastic)	
57-										
54-								-		
55-	_		40	66.0	67.0	88		4	Similar Soil: little CLAV (esturated stinttly plastic)	24
56-	-		12	55.0	97.0	35		4	General Guil, intro CEAT (Saturatov, sityriný prasilo)	
57 -	+		13	57.0	59.0	SS 1	1 2 4 4	-	Similar Soil; some CLAY (saturated, moderately plastic)	20
58 -	╉							60.0		—
59-	+							+ .54.0	Boring terminated at 59.0 feet.	+
60-								1	Notes:	
61-]	1. Borehole backfilled with on-site soil.	
`	T	T				1		L	L	

											Report No.:			CD7169-01-0	1.11	
	Client:	C	ivil Eng	neering	Associ	ates, l	nc.	10			Boring Loca	ation:	As Sta	ked		
	Project	9	ubsurfa	ce Inves	tigation								_			
		P	roposed	Buildin												
		C	olchest	er, Verm	ont						Start Date:	1/10	2011	Finish Date:	1/11/2011	
	Boring	No.:	B-10	·		Sheet	_1	of _	2		Date	Gr	oundwate Time	r Observations Depth	Casing	
		Coord	inates			5	Sampler	Ham	mer		1/10/2011	_	PM	SURFACE	10.0'	
	Northin	9				Weigh	t: <u>1</u>	40	lbs.		1/10/2011	_	PM	19.6'	56.5*	
	Easting		_			Fa	l:	0	ln.		1/11/2011	_	AM	14.1'	OUT	
	Ground	Elev.:			Hamm	er Type Bi	e: <u>Auto</u> oring Adr 4 1/4"	vanc Aug	lic æ By: er							-
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	DE	PTH DF WPLE	SAMPLE TYPE	BL	OWS O AMPLER PER 6" 2" O.D. AMPLER	NR	DEPTH OF CHANGE	í · Cne m · medium	CLASS	FICA	TION	OF MATERI	And - 35-50% some - 20-35% suite - 10-20%	
_			From	To						c · coarse	_		_		UNICO · 0-10%	L
1	A U	1	0.0	2.0	SS	10	11 20	13	-0.5	6" TOP	PSOIL & OR	GANIC	MATERIA			Ł
2-	G	15	1			-				Brown	cmf SAND;	and SIL	T; lrace f	GRAVEL (wet, r	non-plastic)	L
3	Ř				-											L
4 —		_														L
5		-	5.0	7.0												L
6	-	4	5.0	7.0	55	0 8	3	4		Similar	r Soll; trace (JRGAN	CMATE	RIAL (root hairs))	L
7		-	1			-		_								Ŀ
8	- 1	-	-				-	_	8.0							Ļ
9					-	_	_	_								L
10		3	10.0	12.0	22	A 4	6	2		Crowl	CAND: and	CH T /				F
	-	3	10.0	12.0	55	0 0		3		Grey	SAND; and a	SIL I (W	et, non-pi	asuc)		L
2-						-	-	-								4
3-	-				-	-	-	-								H
4		-		-	-	_										F
5-		A	15.0	17.0	22	4	2	2		Cleation	Coll Inchast	tod ===	nicettat			F
6-	-		13.0	17.0	00			-		Similar	Son (satura	lau, nor	-plasuc)			H
7-	-		1		-	-	1									1
8			-	-			_	_	. 18.0							Ļ
9-	-	-		-	·	-		_								F
0-	-	5	20.0	22.0	SS	2 2	2	2		Grav S	ILT: little CL	AY: trac	ALSAN	(saturated elig	htly-plastic)	H
1-	-	-				-	-	-		0.070		in a de	C. Crut	formineton, any	may product	\vdash
2-			1		_	-		-								H
3-	-			-		-	-	-								ł
4			- 1	-		_	-	_								┝
5-1	_	-	-	-				_	_	-	-					L

					<u>A1</u>		SL	bsurfac	e Investigation	
	Boring	No.: _	B-10	_		Re	port No.:		CD7159-01-01-11 Sheet 2 of	2
DEPTH	METHOD OF ADVANCE	SAMPLE NO.	DE	PTH)F APLE	SAMPLE	BL SA SA	OWS ON MPLER PER 6" 2" O.D. MPLER	DEPTH OF CHANGE	CLASSIFICATION OF MATERIAL	5-50% C
		6	25.0	27.0	SS	2 2	1		Similar Soll; no CLAY (saturated, non-plastic)	
6—		-	-	-		-	_	-		1
7—	_						_			- 15
8—			-	1.1.1		S				
-						E				
		7	30.0	32.0	SS	2 1	1 3	2	Similar Soll; trace CLAY (saturated, very slightly plastic)	
			32.0	34.0	SH				Shelby Tube - Grey SILT; some CLAY; trace f SAND (moderately plastic, saturated)	
_	1					1		_	(manufact) proved estimated)	
_	50		35.0	27.0	66	1 1		_	Similar Salt little CLAV (esturated alightly plastic)	- 1-
\neg		0	35.0	37.0	33			-	Similar Son, intre CLAT (Saturated, singing prasac)	
+	À.			-		-		-		- 1-
+	-		-	-			-	-		
			-			-		1		H
		9	40.0	42.0	SS	1 1	1		Similar Soil; trace CLAY (saturated, very slightly plastic)	
		0								
	-	-						_		L
4	=	10	45.0	47.0				-		1
4	1.1	10	45.0	47.0	55	2 1	2	4	Similar Soli (saturated, very slightly plastic)	H
+	1 -	-				-				H
+		-		-	-			-		1
+		1		1				-		
+		11	50.0	51.3	SS	2 2	100/4	-	Similar Soli; little CLAY (saturated, slightly plastic)	
	N		51.3	56.3	NX	RUN	1	51.3	Grey Dolostone	
	×								60" or 100% Recovery	
	C								8 Pieces (50") - 17% Chips and Fragments 6 Pieces longer than 4" (46") - RQD=77%	
_	R					-				
-	-		-			_		56.3		
-		-				-	_		Boring terminated at 56.3 feet.	
-	-	_		-			_	-	Notes:	1
+				-		_	-	-	1. Borehole backfilled with on-site soil.	H
+								-		F
			-	-			_	-		

	Job # Cone # Northerning	CD7159 Loca DSG1001 Hole East	ation <u>Colchester</u>	Operator <u>A</u> Date <u>1/11</u> Surface Elevat <u>ion</u>	dam Schneider /2011 4:34:41 PM
€ Tip Resistance 0 Qt TSF	e Local Frid	CPT DAT	Pore Pressure Seisn	nic Velocity (ff(s) 1400	REMARKS
5	A		ЦШШЦ.		
	2			1311.942	
0	3				1
TI	8	No.	340	.9777	
5	5		+++++++++++++++++++++++++++++++++++++++	╞╢┝┨╸ <mark>╸╸</mark> ╢	
	3			550.2625	
	+7+-		· →→ · · · · · · · · · · · · · · · · ·		
5	1	A Constant			
	1	- ANA		719.2585	
	5				
	2 the		AT .	722 4081	
5	-6-				
2	1 miles			1 I I I H IOT	i .
	T.			865.8137	
	3				
		attack.	++++++		Terminarod at 47.03
					et.
sensitive fine grain	ned 📕4 -	silty clay to clay	7 - silty sand to sandy s	ilt = 10 - gravelly	/ sand to sand
organic material	5 -	clayey silt to silty clay	8 - sand to silty sand	■11 - very stiff	fine grained (*)

		ATLA	NTIC TES	TING LA	BORATOR	IES, Limit	ed	
		Job #	CD7159	Location	Colchester	Operator	Adam Schneider	
		Cone #	DSG1001	Hole #	B-2	Date	1/11/2011 3:50:16 PM	
		Northerning		Easting		Surface El	evation	
						-		
DEPTH (ft)	Tip Resistar	nce Local Fr	CPT	DATA n Ratio Po	re Pressure Se	ismic Velocity		s
0	0 Qt TSF	250 0 Fs T	SF 4 0 Fs/Q	t (%) 10 0	Pw PSI 80 0	(ft/s) 1200		
	TX-Z	2						
	KB	E	18					
10	+++-	+++++++++++++++++++++++++++++++++++++++		┿╽┿┽╺ <mark>┽┥</mark> ╺	╈┝┽╵┽┥┽	- 1043.504		
	FI	- And		1111111	TID D			
	GII	2	R.					
	2 PP		>		tiniti	350.1641		
20	3	- 52	- 75					
	3	$\sum_{i=1}^{n}$	No.					
			and and			585.6627		
			Mar 1					
30						653.084		
	711	5	Mar		+			
		1 S	N. W					
	3111		R.			717.4869		
40								
	111		Mart Mart		1131		12121	
	SII	5	- Mart	iiidii		697.5066		
			Mar		T			
50	<u><u></u> </u>						Terminated at 50).3 fee=
60								
1-:	sensitive fine g	rained 💻 4	I - silty clay to cla	iy 🔳 7	- silty sand to sand	dysilt = 10 -	gravelly sand to sand	
3 -	organic mater clav	rial 🔳 f	 clayey slit to silt sandy silt to clay 	ycıay 🛛 🛛 🗱	 sand to slity sa sand 	na 📑 11 -	sand to clayey sand (*)	
in T								

Г

		ATLA	NTIC TEST		BORATO	ORIES,	Limite	d	
	all	Job #	CD7159	Location	Colcheste	r	Operator	Adam	Schneider
		Cone #	DSG1001	Hole #	B-3		Date	1/11/201	11 5:08:11 PM
		Northerning		Easting			Surface Elev	at <u>ion</u>	
								r	
PTH			CPT D	ΑΤΑ			F	PE	REMARKS
E E E E E	Tip Resistar	ice Local Fi 200 0 Fs T	riction Friction SF 3 0 Fs/Qt (Ratio Por %) 8 0	e Pressure Pw PSI 80	Seismic Ve 0 (ft/s)	iocity ഗ 800	₩ ≿	
	Arry a	3							
						1111			
		3 31							
		151	1	in hi	11111	324.47	51		
10		-+			+++++++++++++++++++++++++++++++++++++++		4185	-	
	2	2	A HA						
15		155			41111		576.115	1000	1
		5							
20	2	E I	5 Martin						
20		+++++++-			+ ++ +-	+-+ +	554.954		
	A	5	the second						
25				╶╘╾┥╾┥╺	3				
			A the			63	5.8268		
30		I SI	1 N Mar						
	51111		2		1				
25	~	1	M		55-1		586.0565		
55	TITIT	ST	T IN	1141	LITIT			Falle	
	71111	15		++ +		1111			
40	+++++	-1->-		4-1-1+	HET+	++ ++ '	701.1811	HIII	
	111111	1131	M.M.		112	111.1		1000	
45	2-1111		and the second					H III	
	Militi							THE	Terminated at 46.19 fe- et,
50	TUTUT				1111				
	sensitive fine or	rained	4 - silty clay to clay		- silty sand to s	andv silt	= 10 -	gravelly s	and to sand
2 -	organic mater	ial st	5 - clayey silt to silty	clay 8	 sand to silty 	/ sand	■ 11 - ve	ery stiff fin	e grained (*)
3 -	clay		6 - sandy silt to claye	ysilt 😑 9	- sand		∎12-s	and to cla	yey sand (*)

al	Job # Cone # Northerning	CD7159 DSG1001	Location Hole # Easting	Colcheste	ORIES,	Limite Operator Date Surface Eleva	d Adam 	n Schneider 11 2:49:54 PM
ottin (ft) dit	Resistance Local F Qt TSF 250 0 Fs	CPT	DATA	re Pressure Pw PSI 80	Seismic Ve 0 (ft/s)		BEHAVIOK TYPE	REMARKS
						737.8281		Refusal was encountered d at 9 feet, hole was augered to 10 feet and the push restarted
25		A Contraction of the second se				477.7887		
40						548.818 694.1929		Terminated at 40.05 f
50 1 - sensitiv ■ 2 - organ ■ 3 - cla	ve fine grained	 4 - silty clay to cla 5 - clayey silt to silty 6 - sandy silt to clay 	y 📑 y clay i vey silt i	7 - silty sand to 8 - sand to sil 9 - sand	sandy silt	■ 10 - 9 ■ 11 - ve ■ 12 - s	gravelly s ry stiff fin and to cl	ayey sand (*)

	AT	LANTIC TESTIN		RIES, Limite	d
	Job #	CD7159 Lo	ocation Colchester	Operator	Adam Schneider
	Cone #	DSG1001 Ho	ole #B-6	Date	1/11/2011 2:18:06 PM
	Northernin	g Ea	asting	Surface Elev	at <u>ion</u>
					r
HTG		CPT DA	ТА		
Ĵ. E E E E	Tip Resistance Loc 0 Qt TSF 90 0	al Friction Friction Rati Fs TSF 3 0 Fs/Qt (%)	o Pore Pressure S 25 0 Pw PSI 140 0	Seismic Velocity ດີ (ft/s) 1000 。	
C	La	Jan Star			
		2		iuniui 🚽	
	JIJPI E		1 1111111+	479.9869	
10		+ -+ [+ -	╪╺╤╡┿┥┿┥┾	┽┤┽┿╎╍┿┥┝╸ <mark>┙╝╝</mark>	
	HAN 2		I (ITTER) I		
	1			617.0604	
20			1 3 1 1 1 1 1		
	Ę			633.3661	
		L.			[[[[[[]]
	2	1 mar	5		
30	2		+ +		
	A A		E-2		
	and the second	- Martin		638.353	
40		and	3		
	5	Array A			
		AL.	S	967.29	
			4		
50				845.21	
			3		
60					Terminated at 57.61 fe- et.
in 1 -	sensitive fine grained	4 - silty clay to clay	■7 - silty sand to sat	ndy silt = 10 -	gravelly sand to sand
2 -	organic material	■ 5 - clayey silt to silty clay	■ 8 - sand to silty s	and 🔳 11 - ve	ry stiff fine grained (*)
1 3 -	clay	■ 6 - sandy silt to clayey sil	t 📁 9 - sand	∎ 12 - s	and to clayey sand (*)

	al			G LAB		DRIES,	Limite	d	Schneider
		Cone #	DSG1001 Hole	e #	<u>B-7</u>	<u> </u>	Date Surface Elev	1/11/2011 ation	5:38:18 PM
DEPTH (ft)	Tip Resistance	e Local Frictic	CPT DAT	FA Pore	Pressure	Seismic Vel	ocity	SEHAVIOR LYPE	REMARKS
0	0 Qt TSF	250 0 Fs TSF	4 0 Fs/Qt (%)	50 0 F	Pw PSI 80	0 (ft/s)	900		
		22							
5				++			and the second		
10	B	<u></u>			Ιij.	47	7559	388.	
	J					<u>+-</u> "			
15		2		2					
	5	2	*				595.4396		
20				-		<u>_</u>		hinn	
		51	<u>}</u>]		UIII.	1111	44.1929	TO HI	
25	<u>}</u>	- +}[
30							674.96		
		2							
35	TTT T	TA F			ST T	703	.8215	FI NOR	
40		7	₹		L.				
		1			A A				
45		S			N		836.8439		
50			5					T	erminated at 48.95 fe-
≡1-:	sensitive fine grai	ned # 4-	silty clay to clay	1 7 -	silty sand to	sandy silt	1 0 - g	gravelly san	d to sand
■ 2 -	clay	■ 5 - c ■ 6 - s	andy silt to clayey silt	ອ- ອີ-	sand to silt	y sand	■11-ve ■12-s	and to claye	grained (*) ey sand (*)

		ATLA		TING LA	BORATO	DRIES,	Limite	d	
	a _l ,	ob #	CD7159	Location	Colcheste	er	Operator	Adam	Schneider
	l o	one #	DSG1001	Hole #	B-8		Date	1/11/201	1 1:07:23 PM
	N	lortherning		Easting			Surface Elev	ation	
EPTH	Tin Desistance		CPT			Soiomio Vol	OIF	EHAVIOR YPE	REMARKS
	0 Qt TSF 30	DO 0 Fs TS	F 10 0 Fs/Qt	(%) 50 0	Pw PSi 80	0 (ft/s)	800 °	°C ⊢- 12	
								tik i i t	
5									
		-			1610	++++	93.6024		
10	20000		INT		1111	1 I Lal			
,	ET I	SI IN			1111	1111			
15						1 CL	510.1378		
	5	SIL				1111			
20	$\left\{ \right\}$	2	11 311		10.01	ITTT I	608.49	E mil	
	3	1							
25		-11	- And		<u> </u>	1 1 1			
23				┝<╎╺╪╌┼╸╎╶┿╌┥╶╡ ╽╵╹╹╹╹╹╹		627	.4279		
				6. K. K. K. F. J. J. 1. F. F. F. F. J. J. J.					
30				4					
			The second			630	0.0853		
35								TUUU	
		C	N.		17 Blood				
40		THE !!!					742.5525		1
	>		M						
45					ET I			+	
			- Veres		- VA				
50		111			The second			THIL	Torminated at 50 46 Fo-
									et.
55							1111		
m 1 -	sensitive fine grain	ed 🔳 4 -	silty clay to cla	y 🔳	7 - silty sand to	sandy silt	= 10 -	gravelly sa	nd to sand
2 -	organic material	5	clayey silt to silty	v clay 👘 l	8 - sand to silt	y sand	■ 11 - ve	ery stiff fine	e grained (*)
3 -	ciay	6.	sandy silt to clay	ey slit 📕	s - sand		■12 - S	anu to cla	yey sand (")

€ Tip Resistar	nce Local Fri 140∫0 Fs T:	CPT DAT	A Pore Pressure Seism	ic Velocity (ff/s) 900	REMARKS
10	A SA		27	75	
	A Mar			870.144	
20					
5				544.1273	
	An			370.7677	
5				5 <u>16.6339</u>	
					Terminated 39.86 fe
sensitive fine g	rained 🛛 🗰 4	 silty clay to clay clayer silt to silty clay 	 7 - silty sand to sandy s 8 - sand to silty sand 	ilt = 10 - grave	iff fine grained (*)

ATLANTIC TESTING LABORATORIES

Rock Core Photographs Proposed Building Colchester, Vermont

Boring B-10, Run 1 Grey Dolostone 60" or 100% Recovery 8 Pieces (50") – 17% Chips and Fragments 6 Pieces longer than 4" (46") – RQD=77%

Entire Core

Top Portion of Core

Bottom Portion of Core

Milton Square Site SPT, Water Well Log, and SCPT Data

Milton Square SPT Data

4

dec home dec calendar contact dec topic index silemap search Nater Supply Division wsd home regulations permits grants/loans publications calendar contacts 7 Well Details > Critical Infrastructure **Protection Information** Date Completed 09/24/1986 > Permit, Certification & **License Application Forms Date Received** 10/10/1986 & Information Driller 36 Chevalier Drilling Company Inc > Water System Capacity Well Report Number 606 **Development & DWSRF** > Well Driller & Well Tag 158F Location Program Comments Source Water Protection Town Milton > Water System Operators Map Cell 12B7 Tax Map Drinking Water Quality E911 Address > The TNC Handbook Subdivision > Rules and Regulations Lot Number Staff Directory **Owners First Name** SHIRLEY & > News **Owners Last Name** MADELINE MINOR Purchaser First Name > Other Links of Interest Purchaser Last Name Agency of Natural **Resources GIS Internet** Well Use **Business Establishment** Mapping Well Reason New Supply **Drilling Method** Rotary (AP) Well Depth 218.00 feet **Yield Gallons Per Minute** 100.00 Yield Test Tested For Hours 0.00 Static Water Level 0.00 feet **Over Flowing** 0 **Overburden Thickness** 0 feet Casing Length 218.00 feet **Casing Diameter** 6.00 inches Casing Length Below Land Surface 0.00 feet Casing Length Exposed 0.00 **Casing Material Casing Weight** 0.00 lbs/foot **Casing Finish** Above ground, finished Liner Length 0.00 feet Liner Diameter 0.00 inches Liner Material Liner Weight 0.00 lbs/foot Grout Type Seal Type **Diameter Drilled In Bedrock** 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material Screen Length 0.00 feet Screen Diameter 0.00 inches

Screen Slot Size	0.000 inches
Depth of Screen	0.00 feet
Gravel Size Type	
Casing Sealing Method	Drive shoe only
Yield Test Method	Compressed air
Well Development	
Not Steel Casing	0
Water Analysis	0
Well Screen	0
AW Partial	0
Unique GIS Name	MJ606
Lat Degree	44
Lat Minutes	37
Lat Seconds	24.8941
Long Degree	73
.ong Minutes	7
ong Seconds	33.6138
ocation DeterminationMethod	screen digitized
Vell Type	Gravel
Depth To Liner Top	0.00
lydro Fractured	0
lydro Fractured Resulting Flow	0.00
Vell Location Submitted As A Dot On A Map	N

WellMainRecordNumber StartingDepth EndingDepth WaterBearing LithologyCode Lithology

37154	0.00	90.00	S	FINE BR SAND
37154	90.00	150.00	I	FINE SIL
37154	150.00	212.00	С	HEAVY CLAY
37154	212.00	218.00	G	GRAVEL

If you would like search for a well or wells in a specific area the following link will rel to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

1

V

www.VermontDrinkingWater.org VT DEC & Water Supply Division # 103 South Main Street, Old Pantry Building # Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 # Fax: 802-241-3284

DEC home * dec calendar * contact dec * topic index * site map * search about dec * assistance * divisions & programs * dec permits * dec regulations * dec publications dec grants & loans * dec maps & GIS * hotline numbers * related links * privacy policy * ANR home

State of Vermont Agencies & Depts.
Access Government 24/7
About Vermont.Gov
Privacy Policy
Ask a State

Librarian a ?

A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

VERMONT.gov

